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Traditional computer architecture has six principles regarding processor design:

• Caching

• Pipelining

• Predicting

• Parallelizing

• Use of indirection

• Specialization

What are principles for secure architectures?

E.g. caching frequently used data in a small but fast memory helps hide data
access latencies.

Principles of Computer Architecture

E.g. predict control flow direction or data values before they are actually
computed allows code to execute speculatively.

E.g. processing multiple data in parallel allows for more computation to be
done concurrently.

E.g. virtual to physical mapping abstracts away physical details of the system.

E.g. break processing of an instruction into smaller chunks that can each be
executed sequentially reduces critical path of logic and improves
performance.

E.g. custom instructions use dedicated circuits to implement operations that
otherwise would be slower using regular processor instructions.
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Secure Processor Architectures

Secure Processor Architectures extend a processor with hardware (and related software) features 
for protection of software
• Protected pieces of code and data are now commonly called Enclaves

• But can be also Trusted Software Modules, whole Operating Systems, or Virtual Machines

• Focus on the main processor in the system
• Others focus on co-processors, cryptographic accelerators, or security monitors

• Add more features to isolate secure software from other, untrusted software
• Includes untrusted Operating System or Virtual Machines
• Many also consider physical attacks on memory

• Isolation should cover all types of possible ways for information leaks
• Architectural state
• Micro-architectural state
• Due to spatial or temporal 

sharing of hardware
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Baseline (Unsecure) Processor Hardware

Typical computer system with no secure components nor secure processor 
architectures considers all the components as trusted:
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Baseline (Unsecure) Processor Software

Typical computer system uses ring-based protection scheme, which gives most privileges
(and most trust) to the lowest levels of the system software:
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Brief History of Secure Processor Architectures

Starting with a typical baseline processor, many secure architectures have been proposed

Starting in late 1990s or early 2000s, academics have shown increased interest in secure processor 
architectures:

XOM (2000), AEGIS (2003), Secret-Protecting (2005), Bastion (2010), 
NoHype (2010), HyperWall (2012), CHERI (2014), Sanctum (2016),

Keystone (about 2017), MI6 (2018)

Commercial processor architectures have also included security features:

LPAR in IBM mainframes (1970s), Security Processor Vault in Cell Broadband Engine (2000s), 
ARM TrustZone (2000s), Intel TXT & TPM module (2000s), Intel SGX (mid 2010s), 
AMD SEV (late 2010s)
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Add New Privilege Levels

Modern computer systems define protections in terms of privilege level or protection rings,
new privilege levels are defined to provide added protections.

Ring 3 Application code, least privileged. 
Rings 2 and 1 Device drivers and other semi-privileged 

code, although rarely used. 
Ring 0 Operating system kernel. 
Ring -1 Hypervisor or virtual machine monitor (VMM), 

most privileged mode that a typical system 
administrator has access to.

Ring -2 System management mode (SMM), 
typically locked down by processor manufacturer 

Ring -3 Platform management engine, retroactively named “ring -3”, 
actually runs on a separate management processor. 

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Extend Linear Trust to the New Protection Levels

The hardware is most privileged as it is the lowest level in the system.

• There is a linear relationship between
protection ring and privilege (lower ring
is more privileged)

• Each component trusts all the software 
“below” it
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Security levels from a lattice:

Add Horizontal Privilege Separation

New privileges can be made orthogonal to existing protection rings.

• E.g. ARM’s TrustZone’s “normal” and “secure” worlds
• Need privilege level (ring number)

and normal / secure privilege

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

Privileged
Operation

Normal
Operation

Ring -1
Normal

Ring 0
Normal

Ring 3
Normal

Ring -1
Privileged

Ring 0
Privileged

Ring 3
Privileged

13



Breaking Linear Hierarchy of Protection Rings

Examples of architectures that do and don’t have a linear relationship between 
privileges and protection ring level:
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Providing Protections with a Trusted Processor Chip

Key to most secure processor architecture designs is the idea of trusted processor chip as the 
security wherein the protections are provided.
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Limitations of the Trusted Processor Chip Assumption

Threats which are outside the scope of secure processor architectures:

• Bugs or Vulnerabilities in the TCB 
• Hardware Trojans and Supply Chain Attacks 
• Physical Probing and Invasive Attacks

Threats which are underestimated when designing secure processor architectures:
• Side Channel Attacks 

TCB hardware and software is prone to
bugs just like any hardware and software.

Modifications to the processor after the
design phase can be sources of attacks.

At runtime hardware can be probed to
extract information from the physical
realization of the chip.

Information can leak through timing,
power, or electromagnetic emanations
from the implementation
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TEE and TCB

The Trusted Computing Base (TCB) is the set of hardware and software that is responsible
for realizing the TEE:
• TEE is created by a set of all the components in the TCB
• TCB is trusted to correctly implement the protections
• Vulnerability or successful attack on TCB nullifies TEE protections

• TCB is trusted
• TCB may not be trustworthy, if is not verified or is not bug free

The goal of Trusted Execution Environments (TEEs) is to provide protections for 
a piece of code and data from a range of software and hardware attacks.
• Multiple mutually-untrusting pieces of protected code can run on a system at the same time

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 17



TEEs and Software They Protect

Different architectures mainly focus on protecting Trusted Software Modules (a.k.a. enclaves) 
or whole Virtual Machines.
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Protections Offered by Secure Processor Architectures

Security properties for the TEEs that secure processor architectures aim to provide:

• Confidentiality
• Integrity

• Availability is usually not provided usually

Confidentiality and integrity protections are from attacks by other components (and hardware) not in 
the TCB.  There is typically no protection from malicious TCB.

Confidentiality is the prevention of the disclosure of secret or sensitive
information to unauthorized users or entities.

Integrity is the prevention of unauthorized modification of protected
information without detection.
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Sample Protections Categorized by Architecture

Secure processor architectures break the linear relationship (where lower level 
protection ring is more trusted):
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Protecting State of the Protected Software

Protected software’s state is distributed throughout the processor.  All of it needs to be protected 
from the untrusted components and other (untrusted) protected software.

• Protect memory through encryption 
and hashing with integrity trees

• Flush state, or isolate state, 
of functional units in side processor cores

• Isolate state in uncore
and any security modules

• Isolate state in I/O and other subsystems
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Ideal No Side-Effects Execution

Secure processor architectures ideally have no side-effects which are visible to the untrusted 
components whenever protected software is executing.

1. System is in some state
before protected software runs

2. Protected software runs
modifying system state

3. When protected software is 
interrupted or terminates 
the state modifications
are erased
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No Protections from Protected Software

The software (code and data) executing within TEE protections is assumed to be benign
and not malicious:

• Goal of Secure Processor Architectures is to create minimal TCB that realizes a TEE
within which the protected software resides and executes

• Secure Processor Architectures can not protect software if it is buggy or has vulnerabilities

Code bloat endangers invalidating assumptions about benign protected software.

Attacks from within protected software should be defended.
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Hardware TCB as Circuits or Processors

Key parts of the hardware TCB can be implemented as dedicated circuits or
as firmware or other code running on dedicated processor

• Custom logic or hardware
state machine:

• Most academic proposals

• Code running on dedicated
processor:

• Intel ME = ARC processor 
or Intel Quark processor

• AMD PSP = ARM processor

Vulnerabilities in TCB “hardware” can lead 
to attacks that nullify the security protections
offered by the system.
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Ensuring Trustworthy TCB Execution

Trustworthiness of the TCB depends on the ability to monitor the TCB code 
(hardware and software) execution as the system runs.

TCB should be monitored to ensure it is trustworthy.

Monitoring of TCB requires mechanisms to:
• Fingerprint and authenticate TCB code
• Monitor TCB execution
• Protect TCB code (on embedded security processor)

• Virtual Memory, ASLR, …
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Root of Trust for TCB

Security of the system is derived from a root of trust.

• A secret (cryptographic key) 
only accessible to TCB components

• Derive encryption and signing keys
from the root of trust
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Root of Trust and Processor Key

Each processor requires a unique secret.

• Burn in at the factory by the manufacturer
(but implies trust issues with manufacturer
and the supply chain)

• E.g. One-Time Programmable (OTP) fuses

• Use Physically Uncloneable Functions
(but requires reliability)

• Extra hardware to derive keys from PUF
• Mechanisms to generate and distribute

certificates for the key

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

KR

27



Derived Keys and Key Distribution

Derived form the root of trust are signing and verification keys.

• Public key, KPK, for encrypting data 
to be sent to the processor

• Data handled by the TCB

• Signature verification key, KVK, for checking
data signed by the processor

• TCB can sign user keys

• Key distribution for PUF based
designs will be different

• Need infrastructure!
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SMM

SecE

Hypervisor (VMM)

Software Measurement

With an embedded signing key, the software running in the TEE can be “measured” to attest to 
external users what code is running on the system.
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Using Software Measurement

Trusted / Secure / Authenticated Boot:
• Abort boot when wrong measurement is obtained
• Or, continue booting but do not decrypt secrets
• Legitimate software updates will change measurements, may prevent correct boot up
Remote attestation:
• Measure and digitally sign measurements that are sent to remove user
Data sealing (local or remote):
• Only unseal data if correct measurements are obtained
TOC-TOU attacks and measurements:
• Time-of-Check to Time-of-Use (TOC-TOU) attacks leverage the delay between when a 

measurement is taken, and when the component is used
• Cannot easily use hashes to prevent TOC-TOU attacks

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 30



Need for Continuous Monitoring of Protected Software

Continuous monitoring is potential solution to TOC-TOU:

• Constantly measure the system, e.g. performance counters, and look for anomalies
• Requires knowing correct and expected behavior of system
• Can be used for continuous authentication

Attacker can “hide in the noise” if they change the execution of the software slightly and do not affect 
performance counters significantly.
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Memory Protection
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Sources of Attacks on Memory

Memory is vulnerable to different types of attacks:
a) Untrusted software running no the processor

b) Physical attacks on the memory bus, other devices snooping on the bus, man-in-the-middle
attacks with malicious device

c) Physical attacks on the memory (Coldboot, …)

d) Malicious devices using DMA or other attacks
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Confidentiality Protection with Encryption

Contents of the memory can be protected with encryption.  Data going out of the CPU is encrypted, 
data coming from memory is decrypted before being used by CPU.

a) Encryption engine (usually AES in CTR mode) encrypts data going out of processor chip
b) Decryption engine decrypts incoming data
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Integrity Protection with Hash Trees

Hash tree (also called Merkle Tree) is a logical three structure, typically a binary tree, where two 
child nodes are hashed together to create parent node; the root node is a hash that depends on 
value of all the leaf nodes.
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Integrity Protection with Hash Trees

Memory blocks can be the leaf nodes in a Merkle Tree, 
the tree root is a hash that depends
on the contents of the memory.
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Integrity Protection with Bonsai Hash Trees

Message Authentication Codes (MACs) can be used instead of hashes, and a smaller
“Bonsai” tree can be constructed.
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Integrity Protection of Selected Memory Regions

• For encryption, type of encryption does not typically depend on memory configuration
• For integrity, the integrity tree needs to consider:

• Protect whole memory
• Protect parts of memory (e.g. per application, per VM, etc.)
• Protect external storage (e.g. data swapped to disk)
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Memory Access Pattern Protection

Snooping attacks can target extracting data (protected with encryption)
or extracting access patterns to learn what a program is doing.
• Easier in symmetric multiprocessing (SMP) due to shared bus

• Possible in other configuration if there are untrusted components
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Security of Non-Volatile Memories and NVRAMs

• Non-volatile memories (NVMs) can store data even when there is no power
• Non-volatile random-access memory (NVRAM) is a specific type of NVM that is suitable to serve 

as a computer system’s main memory, and replace or augment DRAM

• Many types of NVRAMs:
• ReRAM – based on memristors, stores data in resistance of a dialectric material
• FeRAM – uses ferroelectric material instead of a dialectric material
• MRAM – uses ferromagnetic materials and stores data in resistance of a storage cell
• PCM – typically uses chalcogenide glass where different glass phases have different resistances

Security considerations
• Data remanence makes passive attacks easier (e.g. data extraction)
• Data is maintained after reboot or crash (security state also needs to be correctly restored after 

reboot or crash)
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Encrypted, Hashed, Oblivious Access Protected Memory

Off-chip memory is untrusted and the contents ideally should be protected from the snooping, 
spoofing, splicing, replay, and disturbance attacks:

• Encryption – snooping and spoofing protection
• Hashing – spoofing, splicing, replay (counters must be used), and disturbance protection 
• Oblivious Access – snooping protection
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Side Channel Threats and Protections
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Side and Covert Channels

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.
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Side and Covert Channels

Covert Channel – a communication channel that was not intended or designed to transfer 
information, typically leverage unusual methods for communication of information, 
never intended by the system’s designers

Side Channel – is similar to a covert channel, but the sender does not intend to communicate 
information to the receiver, rather sending (i.e. leaking) of information is a side effect of the 
implementation and the way the computer hardware or software is used. 

Means for transmitting information: Timing, Power, Thermal emanations, Electro-magnetic (EM) 
emanations, Acoustic emanations 

• Covert channel is easier to establish, a precursor to side-channel attack
• Differentiate side channel from covert channel depending on who controls the “sender”

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 44



Timing Side Channels Inside a Processor

Many components of a modern processor pipeline can contribute to side channels.
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Sources of Timing Side Channels

Four sources of side channels that can lead to attacks:

1. Variable Instruction Execution Timing – Execution of different instructions takes different 
amount of time 

2. Functional Unit Contention – Sharing of hardware leads to contention, whether a program can 
use some hardware leaks information about other programs

3. Stateful Functional Units – Program’s behavior can affect state of the functional units, and 
other programs can observe the output (which depends on the state)

4. Memory Hierarchy – Data caching creates fast and slow execution paths, leading to timing 
differences depending on whether data is in the cache or not
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Variable Instruction Execution Timing

Computer architecture principles of pipelining and making common case fast drive processor 
designs where certain operations take more time than others – program execution timing may reveal 
which instruction was used.
• Multi-cycle floating point vs. single cycle addition
• Memory access hitting in the cache vs. memory access going to DRAM

Constant time software implementations can choose instructions to try to make software run in 
constant time
• Arithmetic is easiest to deal with
• Caches may need to be flushed to get constant memory instruction timing
• No way to flush state of functional units such as branch predictor
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Functional Unit Contention

Functional units within processor are re-used or shared to save on area and cost of the processor 
resulting in varying program execution.
• Contention for functional units causes execution time differences

Spatial or Temporal Multiplexing allows to dedicate part of the processor for exclusive use by an 
application
• Negative performance impact or need to duplicate hardware
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Stateful Functional Units

Many functional units inside the processor keep some history of past execution and use the 
information for prediction purposes. 
• Execution time or other output may depend on the state of the functional unit
• If functional unit is shared, other programs can guess the state (and thus the history)
• E.g. caches, branch predator, prefetcher, etc.

Flushing state can erase the history.
• Not really supported today
• Will have negative performance impact
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Timing Side Channels in Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency 
(creating fast and slow executions paths); and parts of the hierarchy area a shared resource.

• Cache replacement logic
• Inclusive caches
• Non-inclusive caches
• Exclusive caches

• Prefetcher logic
• Also speculative instruction 

fetching from processor core

• Memory controller
• Interconnect
• Coherence bus
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Emoji Image:
https://www.emojione.com/emoji/2668
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Classical vs. Speculative Side-Channels

Side channels can now be classified into two categories:
• Classical – which do not require speculative execution
• Speculative – which are based on speculative execution

Difference is victim is not fully in control of 
instructions they execute (i.e. some instructions are
executed speculatively)

Root cause of the attacks remains the same

Defending classical attacks defends speculative
attacks as well, but not the other way around
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State of functional unit is modified by victim
and it can be observed by the attacker via
timing changes

Focusing only on speculative attacks does
not mean classical attacks are prevented,
e.g. defenses for cache-based attacks



Timing Side Channel Bandwidths

The Orange Book, also called the Trusted Computer System Evaluation Criteria (TCSEC), specifies 
that a channel bandwidth exceeding a rate of 100 bps is a high bandwidth channel. 
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Side Channels as Attack Detectors

Side channels can be used to detect or observe system operation.

• Measure timing, power, EM, etc. to detect unusual behavior
• Similar to using performance counters, but attacker doesn’t know measurement is going on

Tension between side channels as attack vectors vs. detection tools
• Side channels are mostly used for attack today
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Side Channels due to Physical Emanations

Side-channels can be also observed from outside of the computer system, notably through physical 
emanations.

• Thermal
• Electromagnetic
• Acoustic
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Require measuring temperature. Thermal channels
possible in data centers without physical presence.

Require measuring EM radiation. Today need
dedicated equipment.

Require measuring sound. Today need dedicated
equipment.
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See Part 2 of the tutorial for more on side channels.



Speculative or Transient Execution Threats
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Principles of Secure Processor Architecture Design

Secure Processor Architectures

Memory Protections
Side Channel Threats and Protections
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Prediction and Speculation in Modern CPUs

Prediction is one of the six key features of modern processor
• Instructions in a processor pipeline have 

dependencies on prior instructions which 
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible, 
prediction is needed if results of prior instruction 
are not known yet

• Prediction can be done for:
• Control flow
• Data dependencies
• Actual data (also called value prediction)

• Not just branch prediction: prefetcher, memory disambiguation, …
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Speculative or Transient Execution Threats

Speculation causes transient execution to exist in modern processors
• During transient execution, processor state is modified
• If state (architectural or micro-architectural) is not properly cleaned up when mispredicted

instructions are squashed, sensitive data can be leaked out

Attacks based on transient execution have two parts:
1. Leverage speculation to execute some code transiently, 

which modifies processor state based on some secret value
2. Use a side-channel to extract the information from the processor state
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Mitigation Techniques for Attacks due to Speculation

1. Prevent or disable speculative execution – addresses Speculation Primitives
• Overheads are not clear, application specific
• Today there is no user interface for fine grain control of speculation

2. Limit attackers ability to influence predictor state – addresses Speculation Primitives
• Some proposals exist to add new instructions to minimize ability to affect branch predictor state, etc.

3. Minimize attack window – addresses Windowing Gadgets
• Ultimately would have to improve performance of memory accesses, etc.
• Not clear how to get exhaustive list of all possible windowing gadget types

4. Track sensitive information (information flow tracking) – addresses Disclosure Gadgets
• Stop transient speculation and execution if sensitive data is touched
• Users must define sensitive data

5. Prevent timing channels – addresses Disclosure Primitives
• Add secure caches
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Mitigation Techniques for Attacks due to Faults

1. Evaluate fault conditions sooner
• Will impact performance, not always possible

2. Limit access condition check races
• Don’t allow accesses to proceed until relevant access checks are finished
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See Part 3 of the tutorial for more on speculative execution.



Principles of Secure Processor Architecture Design

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

Secure Processor Architectures

Memory Protections
Side Channel Threats and Protections

Speculative or Transient Execution Threats
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Principles of Secure Processor Architecture Design

Four principles for secure processor architecture design based on existing designs and also on 
ideas about what ideal design should look like are:

1. Protect Off-chip Communication and Memory
2. Isolate Processor State among TEE Execution and other Software
3. Allow TCB Introspection
4. Authenticate and Continuously Monitor TEE and TCB

Additional design suggestions:
• Avoid code bloat
• Minimize TCB
• Ensure hardware security (Trojan prevention, supply chain issues, etc.)
• Use formal verification

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 61

• Architectural state
• Micro-architectural state
• Due to spatial or temporal 

sharing of hardware



Protect Off-chip Communication and Memory

Off-chip components and communication are untrusted, need protection with encryption, hashing, 
access pattern protection.

Open research challenges:
• Performance
• Key distribution
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E.g. encryption defends
Cold boot style attacks on
main memory.
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Isolate Processor State among TEE Execution

When switching among protected software and other software or other protected software, need to 
flush the state, or save and restore it, to prevent one software influencing another.

Open research challenges:
• Performance
• Finding all the state to flush or clean
• Isolate state during concurrent execution
• ISA interface to allow state flushing
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E.g. flushing state helps
defend Spectre and
Meltdown type attacks.
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Allow TCB Introspection

Need to ensure correct execution of TCB, through open access to TCB design, monitoring, 
fingerprinting, and authentication.

Open research challenges:
• ISA interface to introspect TCB
• Area, energy, performance costs

due extra features for introspection
• Leaking information about 

TCB or TEE
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E.g. open TCB design can
minimize attacks on ME or
PSP security engines
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Authenticate and Continuously Monitor TEE and TCB

Monitoring of software running inside TEE, e.g. TSMs or Enclaves, gives assurances about the state 
of the protected software.
Likewise monitoring TCB ensures protections are still in place.

Open research challenges:
• Interface design for monitoring
• Leaking information about TEE
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of a TEE can help prevent
TOC-TOU attacks.
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Pitfalls and Fallacies

• Pitfall: Security by Obscurity 

• Fallacy: Hardware Is Immutable 

• Pitfall: Wrong Threat Model

• Pitfall: Fixed Threat Model

• Pitfall: Use of Outdated or Custom Crypto 

• Pitfall: Not Addressing Side Channels 

• Pitfall: Requiring Zero-Overhead Security

• Pitfall: Code Bloat

• Pitfall: Incorrect Abstraction
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E.g. recent attacks on industry processors.

Most actually realized architectures use a security
processor (e.g. ME or PSP).

E.g. original SGX did not claim side channel
protection, but researchers attacked it.

Most designs are one-size-fits all solutions.

E.g. today’s devices will be in the field for many years,
but do not use post-quantum crypto.
Most architectures underestimate side channels.

Performance-, area-, or energy-only focused designs
ignore security.

E.g. rather than partition a problem, large code pieces
are ran instead TEEs; also TCB gets bigger and
bigger leading to bugs.

Abstraction (e.g. ISA assumptions) does not match
how device or hardware really behaves.
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Pitfalls and Fallacies

• Pitfall: Focus Only on Speculative Attacks

• …
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Defending only speculative attacks does not ensure
classical attacks are also protected



Tutorial Outline & Schedule

15:30 – 16:10 Secure Processor Architectures
16:10 – 16:20 Break
16:20 – 17:10 Secure Processor Caches
17:10 – 17:20 Break
17:20 – 18:00 Transient Execution Attacks and Mitigations
18:00 Wrap Up
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Slides and information at:
http://caslab.csl.yale.edu/tutorials/host2019/

WiFi Information:
Network: Hilton-Meeting, Password: HOST2019



Secure Processor Caches
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Cache Timing Side-Channel Attacks
Secure Cache Techniques

Secure Cache Architectures
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Cache Timing Attacks Continue to Raise Concerns
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• Cache timing attacks have a long history, but the research on attacks and defenses
is still a very active field

• Timing attacks using caches, and
other cache-like structures, often
target cryptographic software

• Very difficult to write “constant time”
software, so attacks are still potent

• Attacks can achieve quite high
bandwidth in idealized settings,
about 1Mbps or more



Cache Timing Attacks Continue to Raise Concerns
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• There is renewed interest in timing attacks due to Transient Execution Attacks
(i.e. Spectre, Meltdown, and their various variants)

• Most of them use transient executions and leverage cache timing attacks

• Variants using cache timing attacks (side or covert channels):
Variant 1: Bounds Check Bypass (BCB) Spectre
Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
Variant 1.2: Read-only protection bypass (RPB) Spectre
Variant 2: Branch Target Injection (BTI) Spectre
Variant 3: Rogue Data Cache Load (RDCL) Meltdown 
Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
Variant 4: Speculative Store Bypass (SSB) Spectre-NG
(none) LazyFP State Restore Spectre-NG 3
Variant 5: Return Mispredict SpectreRSB

NetSpectre, Foreshadow, SGXSpectre, or SGXPectre
SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)



Cache Timing Attacks

• Attacker and Victim
• Victim (holds security critical data)
• Attacker (attempts to learn the data)

• Attack requirement
• Attacker has ability to monitor timing of cache operations made by the victim or by self
• Can control or trigger victim to do some operations using sensitive data

• Operations having timing differences
• Memory accesses: load, store
• Data invalidation: different flushes (clflush, etc.), cache coherence

• Side-Channel vs. Covert-Channel Attack
• Side channel: victim is not cooperating
• Covert channel: victim (sender) works with attacker – easier to realize and higher bandwidth

• Many Known Attacks: Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision Attack
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Prime-Probe Attacks

L3 Cache

ways

sets

1- Attacker primes
each cache set

2- Victim accesses 
critical data

3- Attacker probes each 
cache set (measure time)

Evicted Time

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D
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Data sharing 
is not needed
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Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006. 



Flush-Reload Attack

L3 Cache

1- Attacker flushes 
each line in the cache

2- Victim accesses 
critical data

3- Attacker reloads critical 
data by running specific 
process (measure time)

Evicted Time

ways

sets

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D
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Data sharing 
is needed
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Yarom, Y., & Falkner, K. “FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack”, 2014. 



Evict-Time Attack

L3 Cache

ways

sets

1- Victim has 
some critical data

2- Attacker evicts cache 
set and fill its own data
(can evict set by set)

3- Victim accesses 
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Data sharing 
is not needed
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Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006. 



Cache Collision Attack

L3 Cache

ways

sets

1- Victim has some 
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2- Victim reuses
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Data sharing 
is not needed
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Bonneau, J., & Mironov, I. “Cache-collision timing attacks against AES”, 2006. 



Similar Attacks on Cache-Like Structures

Timing attacks do not only leverage caches, but any cache-like structure with varying timing (due to 
hits or missies in the structure) can be vulnerable to timing attacks

Instruction or Translation Look-aside
Data Cache Buffer (TLB)

Branch Target Buffer Return Stack Buffer
(BTB) (RSB)

78

Typical attacks:
Cache: Bonneau, J., & Mironov, I, “Cache-collision timing attacks against AES”, 2006
TLB: Gras, B., Razavi, K., Bos, H., & Giuffrida, C, “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with {TLB} Attacks”, 2018
BTB: Evtyushkin, D., Riley, R., Abu-Ghazaleh, N. C., & Ponomarev, D, “Branchscope: A new side-channel attack on directional branch predictor”, 2018
RSB: Koruyeh, E. M., Khasawneh, K. N., Song, C., & Abu-Ghazaleh, N., “Spectre returns! speculation attacks using the return stack buffer”, 2018
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Understanding All Possible Timing Attacks

• The Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision attacks are just 
some of the possible timing attacks

• Defenders need to understand all possible types of attacks, as attacker just 
needs to find out that works – but defenders need to protect all types of attacks

• A recent 3-step model can be used to understand timing attacks…
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A Three-Step Model for Cache Attack Modeling

Observation:
• All the existing cache timing attacks within three memory operations à three-step model
• Cache replacement policy the same to each cache block à focus on one cache block

The Three-Step Single-Cache-Block-Access Model

• Analyzed possible states of the cache block + used cache three-step simulator and reduction rules 
derive all the effective vulnerabilities

• There are 72 possible cache timing attack types

𝑆𝑡𝑒𝑝1												 ⇝ 													𝑆𝑡𝑒𝑝2										 ⇝ 				𝑆𝑡𝑒𝑝3 (fast/slow)
The initial state of 
the cache block 
set by a memory 

operation

Memory 
operation alters 
the state of the 

cache

Final memory 
operations and 
timing observation
(fast/slow)

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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Three-Step Single-Cache-Block-Access Model (cont’d)

• There are in total 17 possible states for each of the steps
• Exhaustively listed all 17 (step1) * 17 (step2) * 17 (step3) = 4913 three-step patterns
• Used cache three-step simulator and reduction rules to find all the strong effective vulnerabilities 
• In total 72 strong effective vulnerabilities were derived and presented

Deng, Shuwen, Xiong, Wenjie, Szefer, Jakub, “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
Deng, Shuwen, Xiong, Wenjie, Szefer, Jakub, “Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic”, 2018
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Exhaustive List of Cache Timing Side- Channel Attacks

Prime+
Probe

Flush+
Reload

Evict+
Time

Cache 
Collision
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Understanding All Possible Timing Attacks

• The Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision attacks are just 
some of the possible timing attacks

• Defenders need to understand all possible types of attacks, as attacker just 
needs to find out that works – but defenders need to protect all types of attacks

• A recent 3-step model can be used to understand timing attacks…

…most attacks have been known in literature under various names, but:

• Possible new, untested attacks exist

• Systematic approach to checking for attacks is necessary, not just for caches, but 
TLBs and other cache-like structures.
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Secure Cache Techniques
Secure Cache Architectures

84

Cache Timing Side-Channel Attacks
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Motivation for Design of Secure Caches

• Software defenses are possible (e.g. page coloring or “constant time” software)

• Require software writers to consider timing attacks, and to consider all possible 
attacks, if new attack is demonstrated (e.g. from the 3-step model) previously written 
secure software may no longer be secure

• Root cause of timing attacks are caches themselves
• Correctly functioning caches can leak critical secrets like encryption keys when 

the cache is shared between victim and attacker
• Need to care about different levels for the cache hierarchy, 

different kinds of caches and cache-like structures

• Secure processor architectures also are affected by timing attacks on caches
• E.g., Intel SGX is vulnerable to some Spectre variants
• E.g., Cache timing side-channel attacks are possible in ARM TrustZone
• Secure processors must have secure caches

85HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)



Secure Cache Techniques

• Numerous academic proposals have presented different secure cache architectures that aim to 
defend against different cache-based side channels.

• To-date there are 17 secure cache proposals
• They share many similar, key techniques

Secure Cache Techniques:
• Partitioning – isolates attacker and victim
• Randomization – randomizes address mapping or data brought into the cache
• Differentiating Sensitive Data – allows fine-grain control of secure data

Goal of all secure caches is to minimize interference 
between victim and attacker or victim themselves
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Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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Different Types of Interference Between Cache Accesses 

Where the interference happens
• External-interference vulnerabilities

• Main interference (e.g., eviction of one party’s data from 
the cache or observing hit of one party’s data) happens 
between the attacker and the victim

• Internal-interference vulnerabilities
• Main interference happens within the victim’s process itself

Memory reuse conditions
• Hit-based vulnerabilities

• Cache hit (fast)
• Invalidation of the data when the data is in the cache (slow)

• More operation needed (e.g., write back the dirty data)
• Miss-based vulnerabilities

• Cache miss (slow)
• Invalidation of the data when the data is in the cache (fast) 87

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019



Partitioning

• Goal: limit the victim and the attacker to be able to only access a limited set of cache blocks
• Partition among security levels: High (higher security level) and Low (lower security level) 

or even more partitions
• Type: Static partitioning v.s. dynamic partitioning
• Partitioning based on:

• Whether the memory access is victim’s or attacker’s
• Where the access is to (e.g., to a sensitive or not memory region)
• Whether the access is due to speculation or out-of-order load or store, 

or it is a normal operations
• Partitioning granularity:

• Cache sets
• Cache lines
• Cache ways
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Partitioning (cont’d)

• Partitioning usually targets external interference, but are weak at internal 
interference

• Interference between the attack and the victim partition becomes impossible 
à attacks based on these types of external interference will fail

• Interference within victim itself is still possible 
• Wasteful in terms of cache space and degrades system performance

• Dynamic partitioning can help limit the negative performance and space impacts
• At a cost of revealing some side-channel information when adjusting the 

partitioning size for each part
• Does not help with internal interference

• Partitioning in hardware or software
• Hardware partitioning 
• Software partitioning 

• E.g. page-coloring
89
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Partitioning Summary
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Randomization

• Inherently de-correlate the relationship among:

• Randomize the address to cache set mapping
• Random fill
• Random eviction
• Random delay

• The mutual information from the observed timing could be reduced to 0
• Can be used to reduce miss-based internal interference vulnerabilities

• May still suffer from hit-based vulnerabilities
• Require a fast and secure random number generator
• Mostly cache-line-based and can be combined with differentiating sensitive data for efficiency
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Information of victim's security 
critical data's normal or 

speculatively-brought address

Observed timing from cache 
hit or miss

Observed timing of flush or 
cache coherence operations
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Randomization Summary
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Differentiating Sensitive Data

• Allows the victim or attacker software or management software to explicitly label a certain 
range of the data of victim which they think are sensitive

• Can use new cache-specific instructions to protect the data and limit internal interference 
between victim’s own data

• E.g., it is possible to disable victim’s own flushing of victim’s labeled data, and therefore 
prevent vulnerabilities that leverage flushing

• Allows the designer to have stronger control over security critical data
• How to identify sensitive data and whether this identification process is reliable are open 

research questions
• Independent of whether a cache uses 

partitioning or randomization 
• Has advantage in preventing internal interference

93

Set-associative cache

ways

sets
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Differentiating Sensitive Data Summary
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Feature

Differentiating sensitive data
secure 
or non-
secure

speculative 
or not tag hit tag + id 

hit lock bit protection 
bit

L1 
Cache

Lower 
(LLC)

TLB
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Secure Cache Feature Summary
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Secure Cache Architectures

96

Cache Timing Side-Channel Attacks

Secure Cache Techniques
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Secure Caches

17 different secure caches exist in literature:

• Partitioning-based caches
• Static Partition (SP) cache, SecVerilog cache, SecDCP cache, Non-Monopolizable (NoMo) 

cache, SHARP cache, Sanctum cache, MI6 cache, Invisispec cache, CATalyst cache, DAWG 
cache, RIC cache, Partition Locked (PL) cache

• Randomization-based caches
• SHARP cache, Random Permutation (RP) cache, Newcache, Random Fill (RF) cache, 

CEASER cache, Non-deterministic cache

• Differentiating sensitive data
• CATalyst cache, Partition Locked (PL) cache, Random Permutation (RP) cache, Newcache, 

Random Fill (RF) cache, CEASER cache, Non-deterministic cache

97

Deng, Shuwen, Xiong, Wenjie, Szefer, Jakub, “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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• Basic Design for partition based caches
• Statically partition the cache for victim and attacker 
• Victim and attacker have different cache ways (or sets)
• No eviction of the cache line between different processes is allowed
• Data reuse can be allowed between processes
• Performance is degraded

Static Partition (SP) Cache
He, Z., and Lee, R.. "How secure is your cache against side-channel attacks?", 2017.
Lee, R., et al. "Architecture for protecting critical secrets in microprocessors." In ACM SIGARCH Computer Architecture News, vol. 33, no. 2, pp. 2-13. IEEE Computer Society, 2005.

Set-Associative Cache

ways

sets

L   H
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SP Cache Secure Feature Summary
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• Statically partitioned but allow specific information sharing
• Statically partitioned to different regions (H (High) and L (Low) security)

• by different ways
• Different instructions are tagged with different labels (H and L)

• H instruction can read H and L partition
• L instruction can only read L partition
• Read/write miss, H and L instruction can only modify their own partition 

(except data will be moved from H to L partition for L miss)

h1

1.if (h1) [H]
2.h1=0 [L]

SecVerilog Cache
Zhang, D., Askarov, A., & Myers. "Language-based control and mitigation of timing channels”, 2012.

Observe cache miss

Set-Associative Cache

ways

sets

L   H
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SecVerilog Cache Secure Feature Summary
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• Build on the SecVerilog cache
• Dynamically partitioned

• Security classes H (High) and L (Low) security, or more
• by different ways

• Adjust the ways assigned to L
• Percentage of cache misses for L instructions ⤋ L’s partition size ⤊

• When adjusting ways
• Change from L’s to H’s 

• Cache line is flushed before reallocating
• Change from H’s to L’s 

• H lines remain unmodified 
• Reduce extra performance overhead and protect the confidentiality
• May leak timing information when changing from H’s to L’s 

SecDCP Cache
Wang, Y., et al. "SecDCP: secure dynamic cache partitioning for efficient timing channel protection”, 2016.
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SecDCP Cache Secure Feature Summary
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• Dynamically partitioned
• Process-reserved ways and unreserved ways
• 𝑁	: number of ways, 𝑀	: number of SMT threads, 𝑌 each thread’s exclusively 

reserved blocks, 𝑌 ∈ [0, 𝑓𝑙𝑜𝑜𝑟(67)]. E.g., 
• NoMo-0: traditional set associative cache
• NoMo- 𝑓𝑙𝑜𝑜𝑟(67): partitions evenly for the different threads and no non-

reserved ways
• NoMo-1:

• When adjusting number of blocks assigned to each thread, 𝑌 blocks are 
invalidated

Non-Monopolizable (NoMo) Cache
Domnitser, L., et al. “Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks”, 2012.

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 104



NoMo Cache Secure Feature Summary
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Partitioning-Based Secure Caches vs. Attacks (a)

106

SP cache SecVerilog 
cache

SecDCP
cache

NoMo
cache

external 
miss-based 

attacks
internal

miss-based 
attacks
external 
hit-based 
attacks
internal 

hit-based 
attacks

SP cache SecVerilog 
cache

SecDCP
cache

NoMo
cache

external 
miss-based 

attacks
internal

miss-based 
attacks
external 
hit-based 
attacks
internal 

hit-based 
attacks
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• Use both partitioning and randomization scheme
• Mainly designed to prevent eviction based attacks
• Cache block augmented with the core valid bits (CVB, similar to process ID)

• Replacement policy
• Cache hit is allowed among different processes
• Cache misses and data to be evicted following the order:

• (1) Data not belonging to any current processes
• (2) Data belonging to the same process
• (3) Random data in the cache set + an interrupt generated to the OS

• Eviction between different processes becomes random
• Disallow flush (clflush) in the R or X model

• Invalidation using cache coherence is still possible

SHARP Cache

cache line CVB

Yan, M., et al. "Secure hierarchy-aware cache replacement policy (SHARP): Defending against cache-based side channel attacks”, 2017. 
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SHARP Cache Secure Feature Summary
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• Sanctum
• Open-source minimal secure processor
• Provide strong provable isolation of software modules running concurrently and 

sharing resources
• Isolate enclaves (Trusted Software Module equivalent) from each other and OS

• Cover L1 cache, TLB and last-level cache (LLC)
• L1 cache and TLB

• Security monitor (software) flushes core-private cache lines to achieve isolation
• LLC

• Page-coloring-based cache partitioning ensure per-core isolation between OS 
and enclaves

• Assign each enclave or OS to different DRAM address regions

Sanctum Cache
Costan, V., Ilia L., and Srinivas D., "Sanctum: Minimal hardware extensions for strong software isolation”, 2016.

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 109



Sanctum Cache Secure Feature Summary
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• Targets at LLC
• Use Cache Allocation Technology (CAT) to do coarse partition

• Available for some Intel processors
• Allocates up to 4 different Classes of Services (CoS) for separate cache ways 
• Replacement of cache blocks is only allowed within a certain CoS.
• Partition the cache into secure and non-secure parts

• Use software to do fine partition
• Secure pages not shared by more than one VM
• Pesudo-locking mechanism pins certain page frames (immediately bring back after eviction)

• Malicious code cannot evict secure pages

CATalyst Cache
Liu, F., et al, "Catalyst: Defeating last-level cache side channel attacks in cloud computing”, 2016.
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CATalyst Cache Secure Feature Summary
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• Implicitly performs preloading 
• Remap security-critical code or data to secure pages

• Flushes can only be done within each VM
• Secure pages are reloaded immediately after the flush

• Done by virtual machine monitor
• Make sure all the secure pages are pinned in the secure partition
• Assume security critical data is able to fit within the secure partition of the cache

• Cache coherence
• Assign secure pages to only one processor and not sharing pages among VMs

CATalyst Cache
Liu, Fangfei, et al. "Catalyst: Defeating last-level cache side channel attacks in cloud computing”, 2016.
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• Defend against eviction-based timing-based attacks 
• Targets on LLC
• Cache replacement of inclusive cache

• For normal cache
• Eviction of data in the LLC will cause the same data in L1 cache to be invalidated
• Eviction-based attacks in the higher level cache possible

• Attacker is able to evict victim’s security critical cache line
• RIC cache

• Single relaxed-inclusion bit set
• Corresponding LLC line eviction will not cause the same line in the higher-level 

cache to be invalidated
• Two kinds of data with the bit set

• Read-only data
• Threat private data
• Above two should cover all the critical data for ciphers

Relaxed Inclusion Caches (RIC)
Kayaalp, M., et al, "RIC: relaxed inclusion caches for mitigating LLC side-channel attacks”, 2017. 
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RIC Cache Secure Feature Summary
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• Dynamically partitioned each cache lines
• Cache line extended with process identifier (ID) and a locking bit (L)
• ID and L are controlled by extending load/store instruction

• ld.lock/ld.unlock & st.lock/st.unlock
• Replacement policy (D: brought in; R: replaced)

Original cache lineIDL

D.data=R.data

1. D.L = 0; R.L = 0
2. D.L = 1; R.L = 0
3. D.L = 1; R.L = 1; D.ID = R.ID

1. D.L = 0; R.L = 1
2. D.L = 1; R.L = 1; D.ID != R.ID

Partition Locked (PL) Cache
Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.
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PL Cache Secure Feature Summary
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Partitioning-Based Secure Caches vs. Attacks (b)
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• Use randomization 
• De-correlate the memory address accessing and timing of the cache

• Process ID and protection bit (P) extended for each line
• A permutation table (PT) maintained

• Store each cache set’s pre-computed permuted set number
• Number of tables depends on the number of protected processes

Random Permutation (RP) Cache

Original cache lineIDP

Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.
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• Replacement policy
• Cache hits

• When both process ID and the address are the same
• Cache misses (D: brought in; R: replaced)

• D and R in the same process, have different protection bits
• Arbitrary data of a random cache set S’ is evcted
• D is accessed without caching

• D and R in the different processes
• D is stored in an evicted cache block of S’
• Mapping of S and S’ is swapped

• Other cases
• Normal replacement policy is used

Random Permutation (RP) Cache
Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.
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RP Cache Secure Feature Summary
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• Dynamically randomize memory-to-cache mapping 
• Maintain a ReMapping Table (RMT)

• Mapping between memory address and RMT
• As direct mapped 

• logic-index bits of memory address used to look 
up entries in the RMT

• Each cache line has RMT ID and a protection bit (P)
• Cache Access

• Index miss
• Context RMT ID and index bit match

• Tag miss
• Tag matches

• Replacement policy similar to RP cache
• Except no normal replacement for any 

protected-data-related replacing

Newcache Cache

Mapping memory space to the physical cache

Wang, Z., and Lee, R.B., "A novel cache architecture with enhanced performance and security”, 2008.

less conflict

cache architecture
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• Each line is associated with the RMT ID and a protection bit (P)
• Index bits of memory address used to look up entries in the RMT
• Index stored in RMT combined with the process ID is used to look up the actual 

cache

• Cache replacement policy
• Similar to RP cache with small differences

• Any one of the D and R in the same process and having P bit set will cause 
random eviction without caching triggered

Newcache Cache
Wang, Z., and Lee, R.B., "A novel cache architecture with enhanced performance and security”, 2008.
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Newcache Secure Feature Summary
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• De-correlate cache fills with the memory access 
• Targets on hit-based attacks
• Multiple types of requests

• Normal data: “normal fill”
• Demand request: “nofill”
• Random fill request

• Look up the cache
• Get forwarded to miss queue on a miss
• “random fill” the address calculated by the random fill engine

• Random Fill Engine
• Generate an access within a neighborhood
• Two range registers (RR1 and RR2)

• (LowerBound, Range) or (LowerBound, UpperBound)
• Window size can be customized

Random Fill (RF) Cache

a) block diagram
b) random fill engine

Liu, F., and Lee, R.B., "Random fill cache architecture.”, 2014.
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RF Secure Feature Summary
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• Mitigating conflict-based cache attacks 
• When memory access tries to modify the cache state

• The address is encrypted using Low-Latency BlockCipher (LLBC)
• Randomize the cache set it maps
• Scatters the original, possible ordered addresses to different cache sets

• Decrease rate of conflict misses
• Encryption and decryption can be done within 2 cycles using LLBC

• Encryption key will be periodically changed to avoid key reconstruction
• Dynamically change the address remapping
• Improved work to be appeared @ISCA 2019

CEASER Cache
Qureshi, M. K, "CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping”, 2018.
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CEASER Secure Feature Summary
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• Use cache access decay to randomize the relation between accessing and timing
• Counters control the decay of a cache block

• Local counter records the interval of its data activeness
• Increased on each global counter clock tick
• When reaching a predefined value

• Corresponding cache line is invalidated
• Non deterministic cache randomly sets local counter’s initial value

• Can lead to different cache hit and miss statistics
• May have larger performance degradation compared with other data-targeted 

secure caches

Non Deterministic Cache
Keramidas, G., et al. "Non deterministic caches: A simple and effective defense against side channel attacks”, 2008.
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Non Deterministic Secure Feature Summary
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Randomization-Based Secure Caches vs. Attacks
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• Speculation-related cache
• MI6

• Secure Enclaves in a Speculative Out-of-Order Processor
• Isolation of enclaves (Trusted Software Module equivalent) from each other and OS

• Combination of:
• Sanctum cache’s security feature 
• Disabling speculation during the speculative execution of memory related operations

MI6 Cache
Bourgeat, T., et al. "MI6: Secure Enclaves in a Speculative Out-of-Order Processor”,2018.
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MI6 Cache Secure Feature Summary
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InvisiSpec Cache

• Speculation-related cache
• A speculative buffer (SB) will store the unsafe speculative loads (USL) before 

modifying the cache states 
• Mismatch of data in the SB and the up-to-date values in the cache

• Squashed 
• The core receives possible invalidation from the OS before checking of memory 

consistency model
• No comparison is needed

• Target on Spectre-like attacks

Yan, M., et al. "Invisispec: Making speculative execution invisible in the cache hierarchy”,2018. 
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InvisiSpec Cache Secure Feature Summary
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• Use partitioning schemes
• Provide full isolation for hits, misses and metadata between the attacker and the victim
• Cache hits

• When both the cache address tag and domain_id (process ID) associated are the same
• Allows read-only cache lines to be replicated across different domains

• Cache misses
• Victim can only be chosen within the ways belonging to the same domain_id
• Replacement policy’s bits and metadata is updated within the domain selection

• Noninterference property 
• Orthogonal to speculative execution 
• Existing attacks such as Spectre Variant 1 and 2 will not work on a system equipped with 

DAWG

Dynamically Allocated Way Guard (DAWG) Cache
Kiriansky, V., et al. "DAWG: A defense against cache timing attacks in speculative execution processors”, 2018. 
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DAWG Cache Secure Feature Summary
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Speculation-Related Secure Caches vs. Attacks
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Secure Cache Configuration
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Secure Cache Implementation
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Secure Cache Performance
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• Balance tradeoff between performance and security
• Curse of quantitative computer architecture: focus on performance, area, power numbers, but no 

easy metric for security – designers focus on performance, area, power numbers since they are 
easy to show ”better” design, there is no clear metric to say deign is “more secure” than 
another design

• Running on simulation vs. real machines
• Simulation workloads may not represent real systems, performance impact of

security features is unclear
• Real systems (hardware) can be modified to add new features and

test security

• Embedded with commercial processors and secure processors
• Many designs exist, but not in commercial processors

• Formal verification of the secure feature implementations
• Still limited work on truly showing design is secure
• Also, need more work on modelling all possible attacks, a la the 3-step model

Research Challenges

performance security
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Tutorial Outline & Schedule

15:30 – 16:10 Secure Processor Architectures
16:10 – 16:20 Break
16:20 – 17:10 Secure Processor Caches
17:10 – 17:20 Break
17:20 – 18:00 Transient Execution Attacks and Mitigations
18:00 Wrap Up
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Slides and information at:
http://caslab.csl.yale.edu/tutorials/host2019/
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Transient Execution Attacks and Mitigations
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Outline

• Taxonomy of Transient Execution Attacks
• What are transient execution attacks?
• How dangerous are the attacks?
• How the attacks happen?

• Mitigations in Micro-Architecture
• How to mitigate the transient execution attacks in micro-architecture designs?

• Secure Architectures and Transient Execution Attacks
• How the transient execution attacks affect secure architectures?
• How to protect secure architecture from transient execution attacks?

• Timing Side Channels which use Speculation
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Taxonomy of Transient Execution Attacks
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Mitigations in Micro-Architecture

Secure Architectures and Transient Execution Attacks

Timing Side Channels which use Speculation
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Spectre, Meltdown, and More…

• Spectre, Meltdown, and their variants exploit fundamental design flaws existing in nearly 
all processors.

• So far, fixes in software are expensive

https://www.alienvault.com/blogs/security-essentials/improve-
your-readiness-to-defeat-meltdown-spectre
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How Dangerous are these Attacks?

• Can read all memory in the victim’s address space
• privileged data e.g., Meltdown [M. Lipp et al., 2018]

• across virtual machine e.g., Foreshadow-NG  [J. Van Bulck, 2018]

• data in SGX enclave e.g., SGXpectre [G. Chen et al., 2018], Foreshadow [J. Van Bulck, 2018] 

• memory-protection keys (PKU) e.g., Meltdown-PK [C. Canella et al., 2018]

• sandbox in JavaScript e.g., Spectre [P. Kocher et al, 2018]

• Can read stale data
• e.g., Lazy FPU [J. Stecklina et al., 2018], Spectre v4

• Some of the variants can attack across CPU cores
• e.g.,  Spectre v1 Flush+Reload [P. Kocher et al, 2018]
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Transient Execution Attacks

• Spectre, Meltdown, etc. leverage the instructions that are executed transiently:
1. These transient instructions execute for a short time (e.g. due to mis-speculation),
2. until processor computes that they are not needed, and
3. the pipeline flush occurs and it should discard any architectural effects

of these instructions so
4. architectural state remain as if they never executed, but …

These attacks exploit transient execution to encode secrets through microarchitectural side 
effects that can later be recovered by an attacker through a (most often timing based) observation 
at the architectural level

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

Transient Execution Attacks = Transient Execution + Covert or Side Channel
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Example: Spectre (v1) – Bounds Check Bypass
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Victim code:

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

da
ta

le
n

da
ta

le
n Secret

Memory Layout
L1 Cache

arr1arr2

addr_s
of

fs
et

offset = addr_s

‘p’ ‘s’ ‘w’ ‘r’ ‘d’

arr2[‘p’] is cached! 

Time

Probe array (side channel)

Controlled by the attacker

arr1->len is not in cache

change the cache state

In
st

ru
ct

io
ns

Pr
ed

ic
tio

n

Speculation Window

Cache miss
and

make branch 
prediction misprediction

The attacker can then check if arr2[X] is 
in the cache.  If so, secret = X 150

Example of Spectre variant 1 attack:



Attack Components

Attacks leveraging transient execution have 4 components:

Microsoft, https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

1. Speculation Primitive
“provides the means for 

entering transient 
execution down a non-

architectural path”

2. Windowing Gadget 
“provides a sufficient 
amount of time for 

speculative execution 
to convey information 

through a side 
channel”

3. Disclosure Gadget 
“provides the means 
for communicating 

information through a 
side channel during 

speculative execution”

4. Disclosure Primitive
“provides the means for 
reading the information 
that was communicated 

by the disclosure 
gadget”
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Disclosure Primitive

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

Windowing GadgetSpeculation Primitive

Disclosure Gadget

arr1->len is not in cache

cache Flush+Reload
covert channel

e.g.



Speculation Primitives

• Spectre-type: transient execution after a prediction
• Branch prediction 

• Pattern History Table (PHT) Bounds Check bypass (V1) 
• Branch Target Buffer (BTB) Branch Target injection (V2)
• Return Stack Buffer (RSB) SpectreRSB (V5)

• Memory disambiguation prediction Speculative Store Bypass (V4)
• Meltdown-type: transient execution following a CPU exception

HOST Tutorial 2019
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GP: general protection fault
NM: device not available
BR: bound range exceeded 
PF: page fault
U/S: user / supervisor
P: present
R/W: read / write
RSVD: reserved bit
XD: execute disable
PK: memory-protection keys (PKU)

C. Canella, et al., ”A Systematic Evaluation of Transient Execution Attacks and Defenses”, 2018
1. Speculation Primitive
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Speculation Primitives – Sample Code

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) -- Bounds Check bypass (V1) 
• Branch Target Buffer (BTB) -- Branch Target injection (V2)
• Return Stack Buffer (RSB) -- SpectreRSB (V5)

• Memory disambiguation prediction -- Speculative Store Bypass (V4)

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB 

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant 1 Spectre Variant 2 
(Attacker pollutes the RSB)

Call F1

...

...

ret

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

F1:

Spectre Variant 5

main:

GADGET:

char sec[16] = ...;

char pub[16] = ...;

char arr2[0x200000] = ...;

char * ptr = sec;

char **slow_ptr = *ptr;

clflush(slow_ptr)

*slow_ptr = pub;

value2 = arr2[(*ptr)<<12];

Spectre Variant 4

Store	“slowly”

Load the value at the same 
memory location "quickly”.
“ptr” will get a stale value.
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Speculation Primitives – Sample Code

Meltdown-type: transient execution following a CPU exception
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GP: general	protection	fault
NM: device	not	available
BR: bound	 range	exceeded	
PF: page	fault

U/S: user/surpervisor
P: present
R/W: read/write
RSVD: reserved	bit
XD: execute	disable
PK: memory-protection	 keys	(PKU)

[M.	Lipp et	al.,	2018]

(rcx = address lead to exception)

(rbx = probe array)

Retry:

mov al, byte [rcx]

shl rax, 0xc

jz retry

Mov rbx, qword [rbx + rax]

154

C. Canella, et al., ”A Systematic Evaluation of Transient Execution Attacks and Defenses”, 2018



Windowing Gadget

Windowing gadget is used to create a “window” of time for transient instructions to execute while 
the processor resolves prediction or exception:
• Loads from main memory 
• Chains of dependent instructions, e.g., floating point operations, AES

E.g.: Spectre v1 :
if (offset < arr1->len) {

unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}

Memory access time determines how 
long it takes to resolve the branch

2. Windowing Gadget

Necessary (but not sufficient) success condition:
speculative window size > disclosure gadget’s triger latency
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Disclosure Gadget

1. Load the secret to register
2. Encode the secret into channel

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB 

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant1 (Bounds check) Spectre Variant2 (Branch Poisoning) 

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

Cache side channel AVX side channel Cache side channel

The code pointed by the arrows is the disclosure gadget:

Transient execution

3. Disclosure Gadget
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Disclosure Primitives

Two types of disclosure primitives:
• Transient channel (hyper-threading / multi-core scenario):

1. Share resource on the fly (e.g., bus, port, cache bank)
2. or state change within speculative window (e.g., speculative buffer)

• Permanent channel: 
• Change the state of micro-architecture 
• The change remains even after the speculative window
• Micro-architecture components to use: 

• D-Cache (L1, L2, L3) (Tag, replacement policy state, Coherence State, Directory),  I-cache;
TLB, AVX (power on/off), DRAM Rowbuffer, …

• Encoding method:
• Contention (e.g., cache Prime+Probe)
• Reuse (e.g., cache Flush+Reload)
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4. Disclosure Primitive
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Disclosure Primitives – Port Contention

• Execution units and ports are shared between hyper-
threads on the same core

• Port contention affect the timing of execution
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A. Bhattacharyya, et al., “SMoTherSpectre: exploiting speculative execution through port contention”, 2019
A. C. Aldaya, et al., “Port Contention for Fun and Profit”, 2018

crc32 
popcnt

Fig. Probability density function for the timing of an attacker 
measuring crc32 operations when running concurrently with a 
victim process that speculatively executes a branch which is 
conditional to the (secret) value of a register being zero.

port 
contention

no port 
contention

158



Disclosure Primitives – Cache Coherence State

• The coherence protocol may invalidate cache lines in sharer cores as a result of a speculative 
write access request even if the operation is eventually squashed
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C. Trippel, et al., “MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Protocols”, 2018
F. Yao, et al., “Are Coherence Protocol States Vulnerable to Information Leakage?”, 2018

Gadget:
void victim_function(size_t x) { 

if (x < array1_size) { 

array2[array1[x] * 512] = 1; 

} 

}
-- a write on the remote core makes 
the cache coherence state to be 
exclusive on the remote core.
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Disclosure Primitives – Directory in Non-Inclusive Cache

• Similar to the caches, the directory structure in can be used as covert channel
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M. Yan, et al. “Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World”,  S&P 2019
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Disclosure Primitives - AVX Unit States
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• To save power, the CPU can power down the upper half of the AVX2 unit which is used to 
perform operations on 256-bit registers

• The upper half of the unit is powered up as soon as an instruction is executed which uses 
256-bit values

• If the unit is not used for more than 1 ms, it is powered down again

Gadget:

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

M. Schwarz, et al., “NetSpectre: Read Arbitrary Memory over Network”, 2018
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Disclosure Primitives – Metrics

• Observability by the attacker
Time resolution of attacker’s clock. e.g., 10 cycles or 100 cycles

• Retention time of the state
How long the channel will keep the secret. e.g., AVX channel, 0.5~1ms

• Encoding time
Required speculation window

• Bandwidth of the channel
How fast data can be transmitted

• Cross-core or not
Some covert channel is only between threads in SMT settings. e.g., port contention, L1 and 
L2 cache 
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Taxonomy of Transient Execution Attacks

• Each entry in the table could be an attack
• Defender needs to cover the whole table 
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Mitigations in Micro-Architecture
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Secure Architectures and Transient Execution Attacks

Timing Side Channels which use Speculation

Taxonomy of Transient Execution Attacks
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Mitigations in Micro-architecture: Principle

• No transient execution
• No load of secrets in transient execution

• Limit attackers ability to influence prediction unit (PHT, BTB, RSB)
• Transient execution should not result in observable changes 

• State changes (Permanent channels)
• Cache 

• Resource contentions (Transient channels)

• Mitigate covert channels (across security domains)
• Cache covert channel
• …
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DAWG [V. Kiriansky, et al., 2018]

InvisiSpec [M. Yan, et al., 2018]; SafeSpec [K. N. Khasawneh, et al., 2018]

(not practical)

What is secret? E.g., Meltdown-type attacks.

Transient Execution Attacks = Transient Execution + Covert or Side Channel
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Mitigations in Micro-architecture: InvisiSpec

• Focus on transient loads in disclosure gadgets
• Unsafe speculative load (USL)

• The load is speculative and may be squashed
• Which should not cause any micro-architecture state changes 

visible to the attackers
• Speculative Buffer: a USL loads data into the speculative buffer 

(for performance), not into the local cache

• Visibility point of a load
• After which the load can cause micro-architecture state 

changes visible to attackers

• Validation or Exposure:
• Validation: the data in the speculative buffer might not be the 

latest, a validation is required to maintain memory consistency.
• Exposure: some loads will not violate the memory consistency.

• Limitations: only for covert channels in caches
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M.	Yan,	et	al.,	“InvisiSpec:	Making	Speculative	Execution	Invisible	in	the	Cache	Hierarchy”,	2018
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Taxonomy of Transient Execution Attacks

• InvisiSpec can defend transient execution attacks using cache covert channels
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Mitigations in Micro-architecture: SafeSpec
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• Similar to Invisispec, shadow caches and TLBs are proposed to store the micro-architecture 
changes by speculative loads temporarily

K.	N.	Khasawneh,	et	al.,	“SafeSpec:	Banishing	the	Spectre	of	a	Meltdown	with	Leakage-Free	 Speculation”,	2018
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Taxonomy of Transient Execution Attacks

• SafeSpec can defend transient execution attacks using cache and TLB covert channels

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05) 169

Covert	Channel

Ports L1	(tag) L2	(tag) L3	(tag) DTLB	(tag) STLB	(tag) Cache	
coherence

Directory AVX …

F+R P+P F+R P+P F+R P+P F+R P+P F+R P+P P+P F+R P+P …

Ca
us
e	
of
	T
ra
ns
ie
nt
	E
xe
cu
tio

n

Conditional
branch

Indirect	branch
BTB

Return branch
RSB

Mem-
disambiguation

Exception

Spectre
prime

Net
SpectreV1

V2

V5

V4

V3;
L1TF;
etc.

SMoTher
Spectre



Mitigations in Micro-architecture: DAWG

• Mitigate the cache covert channels by partitioning the cache
• Dynamically Allocated Way Guard (DAWG) fully isolates hits, misses, and metadata updates 

across protection domains

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

V.	Kiriansky,	et	al.,	“DAWG:	A	Defense	Against	Cache	Timing	Attacks	in	Speculative	Execution	Processors”,	2018
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Taxonomy of Transient Execution Attacks

• DAWG can defend transient execution attacks using cache covert channels
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Mitigations in Micro-architecture: Performance

• Performance overhead of hardware mitigations of Spectre Attacks at micro-architecture level
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Performance	Loss Benchmark

Fence	after	each	branch	(software) 88% SPEC2006

InvisiSpec [M.	Yan,	et	al.,	2018] 22% SPEC2006

SafeSpec [K.	N.	Khasawneh,	et	al.,	2018] 3%	improvement
(due	to	larger	effective	
cache	size)

SPEC2017

DAWG	[V.	Kiriansky,	et	al.,	2018] 1-15% PARSEC,	GAPBS
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Secure Architectures and Transient Execution Attacks
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Taxonomy of Transient Execution Attacks

Mitigations in Micro-Architecture

Timing Side Channels which use Speculation
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Transient Execution Attacks on SGX: SgxPectre

• Spectre can attack current secure architectures!

• E.g., Spectre v2 on SGX
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G.	Chen,	et	al.,	“SgxPectreAttacks:	Stealing	Intel	Secrets	from	SGX	Enclaves	via	Speculative	Execution”,	2018

1.	Poison	BTB
(Speculation	Primitive)

2.	Flush	the	victim’s	
branch	target	address	
and	deplete	the	RSB
(Windowing	Gadget)

3.	Set	secret	address	
and	probe	array	address	

4.	Execute	victim	code
(Disclosure	Gadget)

5.	Obtain	secret	from	
covert	channel	
(Disclosure	Primitive)
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Transient Execution Attacks on SGX: Foreshadow

• Meltdown-type attack can attack current secure architectures!
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J.	Van	Bulck,	et	al.,	“Foreshadow:	Extracting	the	Keys	to	the	Intel	SGX	Kingdom	with	Transient	Out-of-Order	Execution”,	2018
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Mitigating Transient Execution Attacks

Transient execution attacks need to be mitigated in secure processors

• No transient execution
• No load of secrets in transient execution

• Transient execution should not result in observable changes 
• State changes (Permanent channels)

• Cache 
• Resource contentions (Transient channels)

• Mitigate covert channels (across security domains)
• Cache covert channel: partitioning cache; randomizing cache
• …

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

What is secret? Data in secure domains in secure architectures.

Transient Execution Attacks = Transient Execution + Covert Channel

Flush states on interrupts, and other exits. 

Disable SMT during secure execution.
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Timing Side Channels which use Speculation

HOST Tutorial 2019
© Jakub Szefer, Wenjie Xiong, and Shuwen Deng (rev. 2019-05-05)

Taxonomy of Transient Execution Attacks

Mitigations in Micro-architecture

Secure Architectures and Transient Execution Attacks
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Timing Side Channels Using Speculation

• This section demonstrates how the prediction units can be leveraged to built a covert channel
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Transient	Execution	Attacks	=	Transient	Execution	+	Covert	Channel
• Cache (tag)
• Cache coherence
• TLB
• AVX
• Prediction units
• …
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Timing Side Channels Using Speculation

• Modern computer architectures gain performance by making predictions:
• Success prediction -> fast execution
• Mis-prediction -> slow execution

• Mis-predictions are also counted by performance counters

• The prediction units (e.g., Branch prediction, Memory Disambiguation prediction) usually make 
prediction based on some history stored

• The prediction units are often shared between threads running on the same core
• Victim’s execution history can affect the prediction of the attacker thread, and the attacker observe 

the timing difference

• This type of side channels are different from the transient executions attacks!
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Pattern History Table (PHT) : BranchScope

• PHT is shared among all processes on core, 
and is not flushed on context switches

• The branch predictor stores its history in the 
form of a 2-bit saturating counter in a pattern 
history table (PHT)

• The PHT entry used is a simple function of the 
branch address

• Prime+Probe Strategy
• Attacks:

• Covert channels
• Attack SGX enclave code
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D.	Evtyushkin,	et	al.,	“BranchScope:	A	New	Side-Channel	Attack	on	Directional	Branch	Predictor”,	2018
D.	Evtyushkin,	et	al.,	“Covert	Channels	Through	Branch	Predictors:	A	Feasibility	Study”,	2015

Code	1.	Pseudo-code	of	the	victim. Code	2.	Pseudo-code	of	the	attacker.
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Branch Target Buffer (BTB): Jump Over ASLR

• The BTB stores target addresses of recently executed branch 
instructions, so that those addresses can be obtained directly 
from a BTB lookup

• Same-Domain Collisions (SDC)
• BTB collisions between two processes executing in the same 

protection domain

• Attacks: 
attack KASLR (Kernel address space layout randomization)
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D.	Evtyushkin,	et	al.,	“Jump	Over	ASLR:	Attacking	Branch	Predictors	to	Bypass	ASLR”,	2016
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Memory Disambiguation: Spoiler Attack

• The processor executes the load speculatively before 
the stores, and forwards the data of a preceding store to 
the load if there is a potential dependency

• The finenet check may be implemented based on 
checking the partial physical address bits

• 1MB aliasing in Intel processors

• Attacks: Leakage of the Physical Address Mapping
• Efficient eviction set finding for Prime+Probe attacks 

in LLC
• Helps to conduct DRAM row conflicts
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S.	Islam,	et	al.,	“SPOILER:	Speculative	Load	Hazards	Boost	Rowhammer and	Cache	Attacks”,	2019
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Open-Source Attack PoC Code

• Number of proof-of-concept (PoC) codes are available for the attacks, but they do not 
cover all possible attacks

• Please contact jakub.szefer@yale.edu to report more proof-of-concept or sample codes 
available for testing

PoC codes:
§ Spectre v1: https://spectreattack.com/spectre.pdf

https://github.com/crozone/SpectrePoC
§ Spectre v4: https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
§ Meltdown: https://github.com/IAIK/meltdown
§ Foreshadow: https://foreshadowattack.eu/
§ For Windows: https://github.com/msmania/microarchitectural-attack
§ Spectre (v1, v2) on RISC-V: https://github.com/riscv-boom/boom-attacks
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Tutorial Outline & Schedule

15:30 – 16:10 Secure Processor Architectures
16:10 – 16:20 Break
16:20 – 17:10 Secure Processor Caches
17:10 – 17:20 Break
17:20 – 18:00 Transient Execution Attacks and Mitigations
18:00 Wrap Up
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Slides and information at:
http://caslab.csl.yale.edu/tutorials/host2019/

WiFi Information:
Network: Hilton-Meeting, Password: HOST2019



Summer Course on Processor Architecture Security

Who: Jakub Szefer

What: Summer Course on Processor Architecture Security 

Where: at the 15th International Summer School on Advanced Computer Architecture and 
Compilation for High-Performance and Embedded Systems (ACACES), in
Rome, Italy

When: Sunday evening July 14th, 2019 until Friday evening July 19th, 2019
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Secure Processor Architectures Book

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

http://caslab.csl.yale.edu/books/
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Thank You!
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