
Jakub Szefer
Assistant Professor

Dept. of Electrical Engineering
Yale University

CHES 2019 – August 25, 2019
Slides and information available at: https://caslab.csl.yale.edu/tutorials/ches2019/

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Design of Secure Processor
Architectures

1

Outline

9:30 – 10:00 Secure Processor Architectures (30 min.)
• Secure Processor Architectures
• Memory Protections in Secure Processors
• Principles of Design of Secure Processors

10:10 – 11:20 Timing Channels: Attacks and Hardware Defenses (70 min.)
• Side and Covert Channels
• Timing Channels in Caches
• Timing Channels in Other Parts of Memory Hierarchy
• Secure Hardware Caches
• Secure Buffers, TLBs, and Directories

11:30 – 12:30 Transient Execution Attacks and Hardware Defenses (60 min.)
• Transient Execution Attacks
• Transient Attack Hardware Mitigation Techniques
• Transient Attacks and Secure Processors

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 2

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 3

Secure Processor Architectures

Secure Processor Architectures

Secure Processor Architectures extend a processor with hardware (and related software) features
for protection of software
• Protected pieces of code and data are now commonly called Enclaves

• But can be also Trusted Software Modules

• Focus on the main processor in the system
• Others focus on co-processors, cryptographic accelerators, or security monitors

• Add more features to isolate secure software from other, untrusted software
• Includes untrusted Operating System or Virtual Machines
• Many also consider physical attacks on memory

• Isolation should cover all types of possible ways for information leaks
• Architectural state
• Micro-architectural state
• Due to spatial or temporal

sharing of hardware

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 4

Most recent threats, i.e. Spectre, etc.

Side and covert channel threats

Brief History of Secure Processor Architectures

Starting with a typical baseline processor, many secure architectures have been proposed

Starting in late 1990s or early 2000s, academics have shown increased interest in secure processor
architectures:

XOM (2000), AEGIS (2003), Secret-Protecting (2005), Bastion (2010),
NoHype (2010), HyperWall (2012), Phantom (2013), CHERI (2014), Sanctum (2016),

Keystone (about 2017), Ascend (2017), MI6 (2018)

Commercial processor architectures have also included security features:

LPAR in IBM mainframes (1970s), Security Processor Vault in Cell Broadband Engine (2000s),
ARM TrustZone (2000s), Intel TXT & TPM module (2000s), Intel SGX (mid 2010s),
AMD SEV (late 2010s)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 5

Baseline (Unsecure) Processor Hardware

Typical computer system with no secure components nor secure processor
architectures considers all the components as trusted:

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices
Compromised or malicious
devices can attack other
components of the system.

Snooping on the system
bus is possible to extract
information.

Information can be extracted
from memory or memory
contents can be modified.

6

Baseline (Unsecure) Processor Software

The hardware is most privileged as it is the lowest level in the system.

• There is a linear relationship between
protection ring and privilege (lower ring
is more privileged)

• Each component trusts all the software
“below” it

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Guest
OS

Guest
OS

Guest
OS

Hardware

AppAppApp
AppAppApp

AppAppApp

…

Ring -1

Ring 0

Ring 3

SMM

SecE

Hypervisor (VMM)
Ring -2
Ring -3

Security Engine (SecE)
can be something like
Intel’s ME or AMD’s PSP.

7

Providing Protections with a Trusted Processor Chip

Key to most secure processor architecture designs is the idea of trusted processor chip as the
security wherein the protections are provided.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Memory I/O Devices
Devices are untrusted.

System bus is untrusted.

Memory is untrusted.

Whole processor chip is
trusted.

8

TEE and TCB

The Trusted Computing Base (TCB) is the set of hardware and software that is responsible
for realizing the TEE:
• TCB is trusted to correctly implement the protections
• Vulnerabilities or attacks on TCB nullify TEE protections
• TCB is trusted
• TCB may not be trustworthy, if is not verified or is not bug free

The goal of Trusted Execution Environments (TEEs)
is to provide protections for a piece of code and data
from a range of software attacks and some hardware attacks

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 9

SMM

SecE

Hypervisor (VMM)

Guest
OS

AppAppApp

Guest
OS

AppAppApp

Hardware

Guest
OS

Guest
OS

AppAppApp
AppAppApp

…

Encl
ave

Breaking Linear Hierarchy of Protection Rings

Examples of architectures that do and don’t have a linear relationship between
privileges and protection ring level:

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

Normal Computer

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. SEV

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. Bastion

TSM

Guest
OS

Hardware

AppAppApp

Ring -1

Ring 0

Ring 3

SMM

SecE

HV
Ring -2
Ring -3

E.g. SGX

Encl
ave

10

Security levels from a lattice:

Adding Horizontal Privilege Separation

New privileges can be made orthogonal to existing protection rings.

• E.g. ARM’s TrustZone’s “normal” and “secure” worlds
• Need privilege level (ring number)

and normal / secure privilege

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Privileged
Operation

Normal
Operation

Ring -1
Normal

Ring 0
Normal

Ring 3
Normal

Ring -1
Privileged

Ring 0
Privileged

Ring 3
Privileged

11

Hardware TCB as Circuits or Processors

Key parts of the hardware TCB can be implemented as dedicated circuits or
as firmware or other code running on dedicated processor

• Custom logic or hardware
state machine:

• Most academic proposals

• Code running on dedicated
processor:

• Intel ME = ARC processor
or Intel Quark processor

• AMD PSP = ARM processor

Vulnerabilities in TCB “hardware” can lead
to attacks that nullify the security protections
offered by the system.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

12

Protections Offered by Secure Processor Architectures

Security properties for the TEEs that secure processor architectures aim to provide:

• Confidentiality
• Integrity

• Availability is usually not provided usually

Confidentiality and integrity protections are from attacks by other components (and hardware) not in
the TCB. There is typically no protection from malicious TCB.

Confidentiality is the prevention of the disclosure of secret or sensitive
information to unauthorized users or entities.

Integrity is the prevention of unauthorized modification of protected
information without detection.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 13

Protections Categorized by Architecture

Secure processor architectures break the linear relationship (where lower level
protection ring is more trusted):

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

SecE

14

SMM and SecE are always
trusted today, no
architecture explores
design where these levels
are untrusted.

Protecting State of the Protected Software

Protected software’s state is distributed throughout the processor. All of it needs to be protected
from the untrusted components and other (untrusted) protected software.

• Protect memory through encryption
and hashing with integrity trees

• Flush state, or isolate state,
of functional units in side processor cores

• Isolate state in uncore
and any security modules

• Isolate state in I/O and other subsystems

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

15

Root of Trust for TCB

Security of the system is derived from a root of trust.
• A secret (cryptographic key)

only accessible to TCB components
• Derive encryption and signing keys

from the root of trust

• Burn in at the factory by the manufacturer
(but implies trust issues with manufacturer
and the supply chain)

• E.g. One-Time Programmable (OTP) fuses

• Use Physically Uncloneable Functions
(but requires reliability)

• Extra hardware to derive keys from PUF
• Mechanisms to generate and distribute

certificates for the key Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

KR

Hierarchy of keys can be
derived from the root of trust

KR

Km KSK KPK …

16

Derived Keys and Key Distribution

Derived form the root of trust are signing and verification keys.

• Public key, KPK, for encrypting data
to be sent to the processor

• Data handled by the TCB

• Signature verification key, KVK, for checking
data signed by the processor

• TCB can sign user keys

• Key distribution for PUF based
designs will be different

• Need infrastructure!
Tutorial at CHES 2019, Atlanta, GA, USA

© Jakub Szefer 2019

Emoji Image:
https://www.emojione.com/emoji/1f3ed

https://www.emojione.com/emoji/1f469-1f4bc
https://www.emojione.com/emoji/1f3e2

Processor Chip

KR

Cert
ID, KPK

Cert
ID, KPK

ID

ID

KSKKSigK

Cert
ID, KVK

Cert
ID, KVK

17

SMM

SecE

Hypervisor (VMM)

Software Measurement

With an embedded signing key, the software running in the TEE can be “measured” to attest to
external users what code is running on the system.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Hardware

Guest
OS

Guest
OS

Guest
OS

AppAppApp
AppAppApp

AppAppApp

…

Emoji Image:
https://www.emojione.com/emoji/1f469-1f4bc

When all levels
are trusted,
compute
cryptographic
hashes over
code and data
of each level.

Some
architectures,
e.g. SGX or
SEV, “skip”
untrusted
layers when
computing
hashes

18

Using Software Measurement

Trusted / Secure / Authenticated Boot:
• Abort boot when wrong measurement is obtained
• Or, continue booting but do not decrypt secrets
• Legitimate software updates will change measurements, may prevent correct boot up
Remote attestation:
• Measure and digitally sign measurements that are sent to remove user
Data sealing (local or remote):
• Only unseal data if correct measurements are obtained
TOC-TOU attacks and measurements:
• Time-of-Check to Time-of-Use (TOC-TOU) attacks leverage the delay between when a

measurement is taken, and when the component is used
• Cannot easily use hashes to prevent TOC-TOU attacks

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 19

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 20

Memory Protections in Secure Processors

Sources of Attacks on Memory

Memory is vulnerable to different types of attacks:
a) Untrusted software running no the processor

b) Physical attacks on the memory bus, other devices snooping on the bus, man-in-the-middle
attacks with malicious device

c) Physical attacks on the memory (Coldboot, …)

d) Malicious devices using DMA or other attacks

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 21

Common attack types:
• Snooping
• Spoofing
• Splicing
• Replay
• Disturbance

Confidentiality Protection with Encryption

Contents of the memory can be protected with encryption. Data going out of the CPU is encrypted,
data coming from memory is decrypted before being used by CPU.

a) Encryption engine (usually AES in CTR mode) encrypts data going out of processor chip
b) Decryption engine decrypts incoming data

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Pre-compute encryption pads, then only
need to do XOR; speed depends on how
well counters are fetched / predicted.

22

Integrity Protection with Hash Trees

Hash tree (also called Merkle Tree) is a logical three structure, typically a binary tree, where two
child nodes are hashed together to create parent node; the root node is a hash that depends on
value of all the leaf nodes.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 23

Integrity Protection with Hash Trees

Memory blocks can be the leaf nodes in a Merkle Tree,
the tree root is a hash that depends
on the contents of the memory.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Hash tree nodes are stored in
(untrusted) main memory.

Counters are included in
hashes for freshness.

Cache

On-chip (cached) nodes are
assumed trusted, used to
speed up verification.

24

Integrity Protection with Bonsai Hash Trees

Message Authentication Codes (MACs) can be used instead of hashes, and a smaller
“Bonsai” tree can be constructed.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 25

Key for MAC

Integrity Protection of Selected Memory Regions

• For encryption, type of encryption does not typically depend on memory configuration
• For integrity, the integrity tree needs to consider:

• Protect whole memory
• Protect parts of memory (e.g. per application, per VM, etc.)
• Protect external storage (e.g. data swapped to disk)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 26

Memory Data on Disk

E.g., Bastion’s memory integrity tree
(Champagne, et al., HPCA ‘10)

Integrity Protection of NVRAMs

• Non-volatile memories (NVMs) can store data even when there is no power, they are suitable to
serve as a computer system’s main memory, and replace or augment DRAM

• Data remanence makes passive attacks easier (e.g. data extraction)
• Data is maintained after reboot or crash (security state also needs

to be correctly restored after reboot or crash)
Integrity considerations

• Atomicity of memory updates for data and related security state (so it is correct after reboot or a crash)
• Which data in NVRAM is to be persisted (i.e. granularity)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 27

NVRAM Data on Disk
Persistent Data

Memory Access Pattern Protection

Snooping attacks can target extracting data (protected with encryption)
or extracting access patterns to learn what a program is doing.
• Easier in Symmetric multiprocessing (SMP) due to shared bus

• Possible in other configuration if there are untrusted components

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 28

Memory Access Pattern Protection

Access patterns (traffic analysis) attacks can be protected with use Oblivious RAM, such as Path
ORAM. This is on top of encryption and integrity checking.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 29

Leveraging 2.5D and 3D Integration

With 2.5D and 3D integration, the memory is brought into the same package as the main processor
chip. Further, with embedded DRAM (eDRAM) the memory is on the same chip.
• Potentially probing attacks are more difficult
• Still limited memory (eDRAM around 128MB in 2017)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 30

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 31

Principles of Design of Secure Processors

Principles of Secure Processor Architecture Design

Four principles for secure processor architecture design based on existing designs and also on
ideas about what ideal design should look like are:

1. Protect Off-chip Communication and Memory
2. Isolate Processor State among TEE Execution and other Software
3. Allow TCB Introspection
4. Authenticate and Continuously Monitor TEE and TCB

Additional design suggestions:
• Avoid code bloat
• Minimize TCB
• Ensure hardware security (Trojan prevention, supply chain issues, etc.)
• Use formal verification

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 32

• Architectural state
• Micro-architectural state
• Due to spatial or temporal

sharing of hardware

Focus of other two parts of
the tutorial

Protect Off-chip Communication and Memory

Off-chip components and communication are untrusted, need protection with encryption, hashing,
access pattern protection.

Open research challenges:
• Performance

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore
Enc

E.g. encryption defends
Cold boot style attacks on
main memory.

33

Isolate Processor State among TEE Execution

When switching among protected software and other software or other protected software, need to
flush the state, or save and restore it, to prevent one software influencing another.

Open research challenges:
• Performance
• Finding all the state to flush or clean
• Isolate state during concurrent execution
• ISA interface to allow state flushing

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecE

$ Reg. FU State

Cache

SecE Uncore

E.g. flushing state helps
defend Spectre and
Meltdown type attacks.

34

Allow TCB Introspection

Need to ensure correct execution of TCB, through open access to TCB design, monitoring,
fingerprinting, and authentication.

Open research challenges:
• ISA interface to introspect TCB
• Area, energy, performance costs

due extra features for introspection
• Leaking information about

TCB or TEE

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor Chip

Cache

Uncore

Core
$ $

Core
$ Reg.…

Memory I/O Devices

FU State

SecESecE

E.g. open TCB design can
minimize attacks on ME or
PSP security engines

35

Authenticate and Continuously Monitor TEE and TCB

Monitoring of software running inside TEE, e.g. TSMs or Enclaves, gives assurances about the state
of the protected software.
Likewise monitoring TCB ensures protections are still in place.

Open research challenges:
• Interface design for monitoring
• Leaking information about TEE

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Guest
OS

Hardware

AppAppApp

SMM

SecE

HV

TSM

E.g. continuous monitoring
of a TEE can help prevent
TOC-TOU attacks.

36

Jakub Szefer
Assistant Professor

Dept. of Electrical Engineering
Yale University

CHES 2019 – August 25, 2019
Slides and information available at: https://caslab.csl.yale.edu/tutorials/ches2019/

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Design of Secure Processor
Architectures

1

Timing Channels: Attacks and Hardware Defenses

Part 2

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 2

Side and Covert Channels

Side and Covert Channels in Processors

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Processor
Chip

Emoji Image:
https://www.emojione.com/emoji/2668

https://www.emojione.com/emoji/1f469-1f4bc

1. “Sender”
application
runs.

2a. Physical change
or emanation is
created

Cache
2b. Or a change is
made to the state of
the system, such as
modifying the cache
contents

3. “Receiver” observes
the emanation or state
change

3

Means for transmitting
information:
• Timing
• Power
• Thermal emanations
• Electro-magnetic

(EM) emanations
• Acoustic emanations

Goals of Side and Covert Channels

Goal of side or covert channels is to break the logical protections of the computer system
and leak confidential or sensitive information.

• Typically attack confidentiality (leak data from secure to insecure)
• All attacks fall in this category, they establish a channel to exfiltrate information

• Could be used in “reverse” to attack integrity (insecure data leaks to, and affects secure data)
• Power, thermal, or EM fault attacks can also fall in this category

• Beyond leaking data:
• Leak control flow or execution patterns
• Leak memory access patterns

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 4

Channels: Victim-to-Attacker and Attacker-to-Victim

Typically a channel is from an unsuspecting victim to an attacker:
• Goal is to extract some information from victim
• Victim does not observe any execution behavior change

A channel can also exist from attacker to victim:
• Attacker’s behavior can “send” some information to the victim
• The information, in form of processor state for example, affects

how the victim behaves unbeknownst to them

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Emoji Image:
https://www.emojione.com/emoji/1f468-1f4bc
https://www.emojione.com/emoji/1f469-1f4bc

Victim’s operation
sends information
to attacker

Attacker obtains
information via the
side channel

5

Victim’s operation
depends on the
information sent
from attacker

Attacker modulates
some information
that is sent to victim

E.g. modulate branch predictor state
to affect execution of the victim

Distance: small
(physical connection)

Power channels require physical connection to
measure the power consumed by the CPU (assuming
there is no on-chip sensor that can be abused to get
power measurements).

Side and Covert Channels and Physical Proximity

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 6

Processor
Chip

Distance: medium
(emanations signal range)

Thermal, acoustic, and EM emanation based
channels allow for remote signal collection, but
depend on strength of the transmitter and type of
emanation.

Distance: infinity
(assuming network connection)

Timing channels don’t require
measurement equipment, only
attacker can run code on victim
(not even always needed, c.f.
AVX-based channel used in
NetSpectre) and have network
connection.

Timing Channels Inside a Processor

Many components of a modern processor pipeline can contribute to timing channels.

Emoji Image:
https://www.emojione.com/emoji/2668

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 7

Sources of Timing Side Channels

Six source of timing channels that can lead to attacks:
1. Instruction with Different Execution Timing – Execution of different instructions takes

different amount of time
2. Variable Instruction Timing – Execution of a specific instruction takes different time, e.g.

depending on the state of the unit
3. Functional Unit Contention – Sharing of hardware leads to contention, whether a program can

use some hardware leaks information about other programs
4. Stateful Functional Units – Program’s behavior can affect state of the functional units, and

other programs can observe the output (which depends on the state)
5. Prediction Units – Prediction units can be used to build timing channels, this is different from

prediction units being used as part of transient attacks
6. Memory Hierarchy – Data caching creates fast and slow execution paths, leading to timing

differences depending on whether data is in the cache or not

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 8

Instruction with Different Execution Timing

Computer architecture principles of pipelining and making common case fast drive processor
designs where certain operations take more time than others – program execution timing may reveal
which instruction was used.
• Multi-cycle floating point operations vs. single cycle addition
• Execution time of a piece of code depends on the types of instructions it uses, especially, between

different runs of software can distinguish from timing if different instructions were executed

Constant time software implementations strive to choose instructions to try to make software run in
constant time independent of any secret values
• Instructions with different execution timing are easiest to deal with
• Other sources of timing differences make it more difficult or even not possible to make software

run in constant time
• Note, ”constant time” is not always same time, just that time is independent of secret values

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 9

Variable Instruction Timing

For a specific instruction, its timing depends on the state of the processor. Different state, or
different execution history of instructions, affect timing of certain instructions:
• Memory loads and stores: memory access hitting in the cache vs.

memory access going to DRAM
• Multimedia instructions: whether AVX unit is powered on or not affects timing
• Reading from special registers: e.g., random number generator slows down if it is used a lot

and entropy drops
• Instructions that trigger some state cleanup, e.g. interrupt latency for SGX enclaves depends

on amount of data processor has to clean up and secure before handling the interrupt

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 10

Functional Unit Contention

Functional units within processor are re-used or shared to save on area and cost of the processor
resulting in varying program execution.
• Contention for functional units causes execution time differences

Spatial or Temporal Multiplexing allows to dedicate part of the processor for exclusive use by an
application
• Negative performance impact or need to duplicate hardware

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 11

Stateful Functional Units

Many functional units inside the processor keep some history of past execution and use the
information for prediction purposes.
• Execution time or other output may depend on the state of the functional unit
• If functional unit is shared, other programs can guess the state (and thus the history)
• E.g. caches, branch predator, prefetcher, etc.

Flushing state can erase the history.
• Not really supported today
• Will have negative performance impact

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 12

Prediction Units

Prediction units can be used to build timing channels, this is different from prediction units being
used as part of transient attacks.

• The prediction units make prediction based on history of executed instructions
and the processor’s state

• The prediction units are often shared between threads running on the same core
• Victim’s or sender’s execution history can affect the prediction observed by the attacker

thread, and the attacker observe the timing difference

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 13

Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency
(creating fast and slow executions paths); and most parts of the hierarchy area a shared resource.
• Caches

• Inclusive caches, Non-inclusive caches,
Exclusive caches

• Different cache levels: L1, L2, LLC

• Cache Replacement Logic
• Load, Store, and Other Buffers
• TLBs
• Directories
• Prefetches
• Coherence Bus and Coherence State
• Memory Controller and Interconnect

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Emoji Image:
https://www.emojione.com/emoji/2668

14

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 15

Timing Channels in Caches

Cache Timing Attacks Continue to Raise Concerns

16Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

• There is renewed interest in timing attacks due to Transient Execution Attacks
• Most of them use transient executions and leverage cache timing attacks
• Variants using cache timing attacks (side or covert channels):

Variant 1: Bounds Check Bypass (BCB) Spectre
Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
Variant 1.2: Read-only protection bypass (RPB) Spectre
Variant 2: Branch Target Injection (BTI) Spectre
Variant 3: Rogue Data Cache Load (RDCL) Meltdown
Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
Variant 4: Speculative Store Bypass (SSB) Spectre-NG
(none) LazyFP State Restore Spectre-NG 3
Variant 5: Return Mispredict SpectreRSB

NetSpectre, Foreshadow, SGXSpectre, or SGXPectre
SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)

And more…

Cache Timing Attacks

• Attacker and Victim
• Victim (holds security critical data)
• Attacker (attempts to learn the data)

• Attack requirement
• Attacker has ability to monitor timing of cache operations made by the victim or by self
• Can control or trigger victim to do some operations using sensitive data

• Use of instructions which have timing differences
• Memory accesses: load, store
• Data invalidation: different flushes (clflush, etc.), cache coherence

• Side-channel attack vs. covert-channel attack
• Side channel: victim is not cooperating
• Covert channel: victim (sender) works with attacker – easier to realize and higher bandwidth

• Many known attacks: Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision Attack

17

Victim Attacker

App, OS,
VM, etc.

App, OS,
VM, etc.

Timing
Channel

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Prime-Probe Attacks

L3 Cache

ways

sets

1- Attacker primes
each cache set

2- Victim accesses
critical data

3- Attacker probes each
cache set (measure time)

Evicted Time

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D

18

Data sharing
is not needed

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006.

Flush-Reload Attack

L3 Cache

1- Attacker flushes
each line in the cache

2- Victim accesses
critical data

3- Attacker reloads critical
data by running specific
process (measure time)

Evicted Time

ways

sets

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D

19

Data sharing
is needed

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Yarom, Y., & Falkner, K. “FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack”, 2014.

A Three-Step Model for Cache Timing Attack Modeling

Observation:
• All the existing cache timing attacks equivalent to three memory operations à three-step model
• Cache replacement policy the same to each cache block à focus on one cache block

The Three-Step Single-Cache-Block-Access Model

• Analyzed possible states of the cache block + used cache three-step simulator and reduction rules
derive all the effective vulnerabilities

• There are 72 possible cache timing attack types

𝑆𝑡𝑒𝑝1												 ⇝ 													𝑆𝑡𝑒𝑝2										 ⇝ 				𝑆𝑡𝑒𝑝3 (fast/slow)
The initial state of
the cache block
set by a memory

operation

Memory
operation alters
the state of the

cache

Final memory
operations and
timing observation
(fast/slow)

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

20Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:
Vu, Aa, Va, Aa

alisa, Va
alias, Ad, Vd, …

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

21Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:
Vu, Aa, Va, Aa

alisa, Va
alias, Ad, Vd, Ainv, Vinv, Aa

inv, Va
inv, Aa

aliasinv, Va
aliasinv, Ad

inv, Vd
inv, …

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

22Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:
Vu, Aa, Va, Aa

alisa, Va
alias, Ad, Vd, Ainv, Vinv, Aa

inv, Va
inv, Aa

aliasinv, Va
aliasinv, Ad

inv, Vd
inv, Vu

inv, *

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

23Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

A Three-Step Model for Cache Timing Attack Modeling

• Exhaustively evaluate all 17 (step1) * 17 (step2) * 17 (step3) = 4913 three-step patterns
• Used cache three-step simulator and reduction rules to find all the strong effective vulnerabilities
• In total 72 strong effective vulnerabilities were derived and presented

“Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, S. Deng, et al., 2019
“Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic”, S. Deng, et al., 2018

24Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Exhaustive List of Cache Timing Side- Channel Attacks

25

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Security Micro-Benchmarks for Cache Timing Attacks

• On-going research in our group looks into development of open-source benchmarks
for quantifying cache timing attacks

26

Different
CPUs tested

Tests that pass for
one or more CPUs

Tests that pass for
all CPUs

Tests for
individual
CPUs

Three-step tests: 72 * 8 or 16 variantsTutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 27

Timing Channels in Other Parts of Mem. Hierarchy

Timing Channels due to Other Components

• Cache Replacement Logic – LRU states can be abused for a timing channel, especially cache
hits modify the LRU state, no misses are required

• TLBs – Translation Look-aside Buffers are types of caches with similar vulnerabilities
• Directories – Directory used for tracking cache coherence state is a type of a cache as well
• Prefetches – Prefetchers leverage memory access history to eagerly fetch data and can create

timing channels
• Load, Store, and Other Buffers – different buffers can forward data that is in-flight and not in

caches, this is in addition to recent Micro-architectural Data Sampling attacks
• Coherence Bus and Coherence State – different coherence state of a cache line may affect

timing, such as flushing or upgrading state
• Memory Controller and Interconnect – memory and interconnect are shared resources

vulnerable to contention channels

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 28

LRU Timing Attacks

• Cache replacement policy has been shown to be a source of timing attacks
• Many caches use variant of Least Recently Used (LRU) policy

• Update LRU state on miss and also on a cache hit
• Different variants exist, True LRU, Tree LRU, Bit LRU

• LRU timing attacks leverage LRU state update on both hit or miss
• After filing cache set, even on a hit, LRU will be updated,

which determines which cache line gets evicted
• More stealthy attacks based on hits
• Affect secure caches, such as PL cache

• High-bandwidth and work with Spectre-like
attacks

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 29

Wenjie Xiong and Jakub Szefer, “Leaking	Information	 Through	Cache	LRU	States”, 2019

TLB Timing Attacks

• Existing practical attacks have been demonstrated against TLBs, e.g., TLBleed attack on RSA

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 30

Ben Gras et al. "Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks” USENIX Security Symposium, 2018.

1. void _gcry_mpi_powm (gcry_mpi_y_ res,
gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)

2. {
3. mpi_ptr_t rp, xp; /* pointers to MPI data */
4. mpi_ptr_t tp;
5. ...
6. for(;;) {
7. /* For every exponent bit in expo*/
8. _gcry_mpih_sqr_n_basecase(xp, rp);
9. if(secret_exponent || e_bit_is1) {
10. /* unconditional multiply if exponent is
11. * secret to mitigate FLUSH+RELOAD
12. */
13. _gcry_mpih_mul(xp, rp);
14. }
15. if(e_bit_is1) {
16. /*e bit is 1, use the result*/
17. tp = rp; rp = xp; xp = tp;
18. rsize = xsize;
19. }
20. }
21. }

Existing TLBleed work can extract
the cryptographic key from the
RSA public-key algorithm* with a
92% success rate.

* modular exponentiation function
of RSA from Libgcrypt 1.8.2:
https://gnupg.org/ftp/gcrypt/libgcrypt/

Cache Directory Timing Attacks

• Directories have been shown to be vulnerable to side-channel attacks
• Every cache line in the cache hierarchy has an associated directory entry
• Directory attack outline:

1. Directory conflict
2. Evicts victim’s directory entry
3. Evicts victim’s cache line

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 31

Mengjia Yan et al. “SecDir: A Secure Directory to Defeat Directory Side-Channel Attacks”. 2019

……

……

……

……

……

……

Traditional
Directory

…

…

victim
core 0

attacker
core 1

Private
cache

Extended
Directory

LLC
slice

……

……

……

……

……

……

……

……

…

L3 Cache
Lines

………

Animation adapted from
slides by Mengjia Yan

Timing Attacks in Prefetchers

Prefetchers have been abused for timing attacks
• E.g. IP-based stride prefetcher, has been used to break

cryptographic algorithm implementations
• Any cryptographic algorithm implementation

that utilizes a lookup table is subject to the attack
• Pattern of accesses in the table will be revealed

by the data that is prefetched

• Prefetching is a type of prediction or speculation

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 32

Prefetchers in Intel processors

“Unveiling Hardware-based Data Prefetcher, a Hidden Source of Information Leakage”, Y. Shin, et al., CCS 2018

Classical vs. Speculative Side-Channels

Side channels can now be classified into two categories:
• Classical – which do not require speculative execution
• Speculative – which are based on speculative execution

Difference is victim is not fully in control of
instructions they execute (i.e. some instructions are
executed speculatively)

Root cause of the attacks remains the same

Defending classical attacks defends speculative
attacks as well, but not the other way around

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 33

State of functional unit is modified by victim
and it can be observed by the attacker via
timing changes

Focusing only on speculative attacks does
not mean classical attacks are prevented,
e.g. defenses for cache-based attacks

Timing Side Channels which Use Speculation

• Modern computer architectures gain performance by using prediction mechanisms:
• Successful prediction = fast execution and performance gain
• Mis-prediction = slow execution and performance loss

• The prediction units (e.g., branch predictor, prefetcher, memory disambiguation prediction, etc.)
make prediction based on prior history of executed instructions and data

• The prediction units are often shared between threads in SMT cores
• Victim’s execution history can affect the prediction observed by the attacker thread,

and the attacker can observe the timing difference

• These types of side channels are different from the transient executions attacks
• In transient execution attacks, secrets are accessed during mis-prediction
• In timing side channels using speculation victim’s behavior is leaked to the attacker, through the mis-

prediction (or lack there of) by the attacker

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 34

Timing Channels Through Pattern History Table

• Branch predictors Pattern History Table (PHT) is shared among all processes on a core, and is
not flushed on context switches

• The branch predictor stores its history
in the form of a 2-bit saturating counter
which is the PHT

• Attack on PHT using Prime+Probe strategy
1. Prime the branch predictor by executing

branches at specific address
2. Let victim or sender run
3. Observe the branch outcomes

• Existing attacks:
• Covert channels
• Attacks on SGX enclave code

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

D. Evtyushkin, et al., “BranchScope: A New Side-Channel Attack on Directional Branch Predictor”, 2018
D. Evtyushkin, et al., “Covert Channels Through Branch Predictors: A Feasibility Study”, 2015

35

Timing Channels Through Branch Target Buffer

• The Branch Target Buffer (BTB) stores target addresses of recently executed branch
instructions, so that those addresses can be obtained directly from a BTB lookup

• BTB can be indexed using some bits of the virtual address
• Conflicts will exist when branches have same low-order bits

• Attack strategy
1. Prime the BTB by executing branches or jumps at specific address
2. Let victim or sender run
3. Observe the branch outcomes

• Existing attacks:
• Attack KASLR (Kernel address space layout randomization)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

D. Evtyushkin, et al., “Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR”, 2016

36

Timing Channels Through Memory Disambiguation

• The processor can execute loads speculatively before the stores finish
• Forward the data of a preceding store to the load if there is a potential dependency
• Later check if the dependency was true
• May not use all address bits or check permissions for fast execution

• Existing attacks:
• Leakage of the physical address mapping
• Efficient eviction set finding for Prime+Probe

attacks in L3 caches
• Helps to construct DRAM row conflicts

for Rowhammer type attacks

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

S. Islam, et al., “SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks”, 2019

37

Loosenet = lower address comparision logic
Finenet = upper address comparison logic

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 38

Secure Hardware Caches

Motivation for Design of Hardware Secure Caches

• Software defenses are possible (e.g. page coloring or “constant time” software)
• But require software writers to consider timing attacks, and to consider all possible

attacks, if new attack is demonstrated previously written secure software may no longer
be secure

• Root cause of timing attacks are caches themselves
• Caches by design have timing differences (hit vs. miss, slow vs. fast flush)
• Correctly functioning caches can leak critical secrets like encryption keys when

the cache is shared between victim and attacker
• Need to consider about different levels for the cache hierarchy,

different kinds of caches, and cache-like structures

• Secure processor architectures also are affected by timing attacks on caches
• E.g., Intel SGX is vulnerable to cache attacks and some Spectre variants
• E.g., cache timing side-channel attacks are possible in ARM TrustZone
• Secure processors must have secure caches

39Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Secure Cache Techniques

• Numerous academic proposals have presented different secure cache architectures that aim to
defend against different cache-based side channels.

• To-date there are 18 secure cache proposals
• They share many similar, key techniques

Secure Cache Techniques:
• Partitioning – isolates the attacker and the victim
• Randomization – randomizes address mapping or data brought into the cache
• Differentiating Sensitive Data – allows fine-grain control of secure data

Goal of all secure caches is to minimize interference
between victim and attacker or within victim themselves

40Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

s
0

s
1

s
4

s
2

s
6

ld
issue

{probe}

{hit}

{miss}

{replace}{bypass}

ISA-level Microarchitecture-level

ld
return

{force
evict}

s
3

{return data}

s
5la

te
n

cy
 ↔

ca

ch
e

h
it

 o
r

m
is

s

fast
access

slow
access

Different Types of Interference Between Cache Accesses

Where the interference happens
• External-interference vulnerabilities

• Interference (e.g., eviction of one party’s data from
the cache or observing hit of one party’s data) happens
between the attacker and the victim

• Internal-interference vulnerabilities
• Interference happens within the victim’s process itself

Memory reuse conditions
• Hit-based vulnerabilities

• Cache hit (fast)
• Invalidation of the data when the data is in the cache (slow)

• Miss-based vulnerabilities
• Cache miss (slow)
• Invalidation of the data when the data is not in the cache (fast)

41

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Partitioning

• Goal: limit the victim and the attacker to be able to only access a limited set of cache blocks
• Partition among security levels: High (higher security level) and Low (lower security level)

or even more partitions are possible
• Type: Static partitioning vs. dynamic partitioning
• Partitioning based on:

• Whether the memory access is victim’s or attacker’s
• Where the access is to (e.g., to a sensitive or not sensitive memory region)
• Whether the access is due to speculation or out-of-order load or store,

or it is a normal operation
• Partitioning granularity:

• Cache sets
• Cache ways
• Cache lines or block

42Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Partitioning (cont.)

• Partitioning usually targets external interference, but is weak at defending
internal interference:

• Interference between the attack and the victim partition becomes impossible,
attacks based on these types of external interference will fail

• Interference within victim itself is still possible
• Wasteful in terms of cache space and degrades system performance

• Dynamic partitioning can help limit the negative performance and space impacts
• At a cost of revealing some side-channel information when adjusting the

partitioning size for each part
• Does not help with internal interference

• Partitioning in hardware or software
• Hardware partitioning
• Software partitioning

• E.g. page-coloring

43Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Randomization

• Randomization aims to inherently de-correlate the relationship among the address and the
observed timing

• Randomization approaches:
• Randomize the address to cache set mapping
• Random fill
• Random eviction
• Random delay

• Goal: reduce the mutual information from the observed timing to 0
• Some limitations: Requires a fast and secure random number generator, ability to predict the

random behavior will defeat these technique; may need OS support or interface to specify range
of memory locations being randomized; …

44Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Information of victim's security
critical data's address

Observed timing from
cache hit or miss

Observed timing of flush
or cache coherence

operations

Differentiating Sensitive Data

• Allows the victim or management software to explicitly label a certain range of the data of
victim which they think are sensitive

• Can use new cache-specific instructions to protect the data and limit internal interference
between victim’s own data

• E.g., it is possible to disable victim’s own flushing of victim’s labeled data, and therefore
prevent vulnerabilities that leverage flushing

• Has advantage in preventing internal interference
• Allows the designer to have stronger control over security critical data

• How to identify sensitive data and whether this
identification process is reliable are open
research questions

• Independent of whether a cache uses
partitioning or randomization

45

Set-associative cache

ways

sets

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Secure Caches

18 different secure caches exist in literature,
which use one or more of the below techniques

to provide the enhanced security:

• Partitioning-based caches
• Static Partition cache, SecVerilog cache, SecDCP cache, Non-Monopolizable (NoMo) cache,

SHARP cache, Sanctum cache, MI6 cache, Invisispec cache, CATalyst cache, DAWG cache,
RIC cache, Partition Locked cache

• Randomization-based caches
• SHARP cache, Random Permutation cache, Newcache, Random Fill cache, CEASER cache,

SCATTER cache, Non-deterministic cache

• Differentiating sensitive data
• CATalyst cache, Partition Locked cache, Random Permutation cache, Newcache, Random Fill

cache, CEASER cache, Non-deterministic cache

46

Deng, Shuwen, Xiong, Wenjie, Szefer, Jakub, “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Secure Caches vs. Attacks

47

SP

Se
cV

er
ilo

g

Se
cD

CP

No
M

o

SH
AR

P

Sa
nc

tu
m

CA
Ta

ly
st

RI
C

PL RP

Ne
w

ca
ch

e

RF

CE
AS

ER

SC
AT

TE
R

No
n-

de
t.

ca
ch

e

external miss-
based attacks ✓ ✓ ~ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ O

internal miss-
based attacks X X X X X X ✓ ✓ X X ✓ X ✓ ✓ O

external hit-
based attacks X ✓ ✓ X X ✓ ✓ X X ✓ ✓ ✓ X ~ O

internal hit-
based attacks X X X X X X ✓ X X X X ✓ X X O

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Effectiveness of the secure caches:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

CATalyst uses number of
assumptions, such as

pre-loading

Speculation-Related Secure Caches vs. Attacks

48

MI6 cache InivisiSpec cache DAWG cache

Normal Speculative Normal Speculative Normal Speculative

external miss-
based attacks ✓ ✓ X ✓ ✓ ✓

internal miss-
based attacks X ✓ X ✓ X X

external hit-
based attacks ✓ ✓ X ✓ ✓ ✓

internal hit-
based attacks X ✓ X ✓ X X

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Effectiveness of the secure caches:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Secure Cache Performance
SP

*

Se
cV

er
ilo

g

Se
cD

C
P

N
oM

o

SH
A

R
P

Sa
nc

tu
m

M
I6

In
vi

si
Sp

ec

C
AT

al
ys

t

D
AW

G

R
IC PL R
P

N
ew

ca
ch

e

R
an

do
m

 F
ill

C
EA

SE
R

SC
AT

TE
R

N
on

D
et

.

Pe
rf. 1% -

12.5%
better
over
SP

cache

1.2%
avr.,
5%

worst

3%-4% - -

reduce
slowdo
wn of

Spectre
from

74% to
21%

average
slowdow

n of
0.7% for
SPEC
and

0.5% for
PARSE

C

L1
and
L2

most
4%-
7%

impr
oves
10%

12
%

0.3%,
1.2%
worst

within
the

10%
range
of the
real
miss
rate

3.5%,
9% if
setting

the
windo
w size
to be

largest

1%
for

perfor
manc

e
optimi
zation

3.5%
for

perfor
-

manc
e opti-
miza-
tion

7%
with
simpl

e
bench
marks

Pw
r.

- - - - - - -

L1 0.56
mW,
LLC
0.61
mW

- - - -
avera

ge
1.5nj

<5%
power - - -

Ar
ea - - - - - - -

L1-SB
LLC-SB

Area
(mm2)
0.0174
0.0176

- - 0.17
6% - - - - - -

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

49

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 50

Secure Buffers, TLBs, and Directories

• Various buffers exist in the processor which are used
to improve performance of caches and TLBs

• Main types of buffers in caches:
• Line Fill Buffer (L1 cache ⟷ L2 cache)
• Load Buffer (core ⟷ cache)
• Store Buffer (core ⟷ cache)
• Write Combining Buffers (for dirty cache lines

before store completes)
• … (more could be undesclosed)

• Main types of buffers in TLBs:
• Page Walk Cache

Buffers

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 51

Figures from Rogue In-Flight Data Load paper and UW-Madison CS slides

• Various buffers store data or memory translation based on the history of the code executed
on the processor

• Hits and misses in the buffers can potentially be measured and result in timing attacks
• This is different from recent MDS attacks, which abuse the buffers in another way: MDS attacks

leverage the fact that data from the buffers is sometimes forwarded without proper address
checking during transient execution

• Towards secure buffers
• No specific academic proposal (yet)
• Partitioning – can partition the buffers, already some are per hardware thread
• Randomization – can randomly evict data from the buffers or randomly bring in data,

may not be possible
• Add new instructions to conditionally disable some of the buffers

Secure Buffers

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 52

• All timing-based channels in microarchitecture pose threats to system security,
and all should be mitigated

• TLBs are cache-like structures, which exhibit fast and slow timing based on the request type
and the current contents of the TLB

• Contents of the TLB is affected by past history of executions
• Can leak information about other processes

• Timing variations due to hits and misses exist in TLBs and can be leveraged to build
practical timing-based attacks:

• TLB timing attacks are triggered by memory translation requests,
not by direct accesses to data

• TLBs have more complicated logic, compared to caches,
for supporting various memory page sizes

• Further, defending cache attacks does not protect against TLB attacks

TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 53

• Random Fill Engine and RF TLB microarchitecture.

Secure TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 54

Processor

DCache

TLB

(b)

(1) Request from CPU

Page Table Walker

(2) Normal
 Fill

(3) Response
 to CPU

Processor

Random Fill
 Engine

DCache

TLB

(3) Send
 SecR
 signal (2) Probe

(5) Modify
Response

buffer

RNG Random Fill
Generation

demand
address

sbase ssize

To the
 Mux

(a) (b)

(1) Request from CPU

Page Table Walker

(4) Random
 Fill

(6) No
 Fill

(7) Response
 to CPU

Random Fill
Logic

Random FillProbe No fill

• Regular Set-Associative TLBs can prevent external hit-based vulnerabilities and
vulnerabilities requiring getting hit for different processes

• Static-Partitioned TLB can prevent more external miss-based vulnerabilities than SA TLB
• Random-Fill TLB can prevent all types of vulnerabilities

• Evaluated on a 3-step model for TLBs; model and list of all attack types are in the cited paper.

Secure TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 55

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C* C C* C C* C
TLB Evict+Probe Vd Vu Ad (slow) 0 0 0 0 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0 0 0 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0 0 0 0 0
TLB Prime+Probe Ad Vu Ad (slow) 0.99 1 0.02 0 0.01 0
TLB Evict+Time Vu Ad Vu (slow) 1 1 0.03 0 0 0

TLB Internal Collision Ad Vu Va (fast) 1 1 0.98 1 0.01 0
TLB Bernstein’s A�ack Vu Va Vu (slow) 0.99 1 0.99 1 0.01 0

SA TLB
A�ack Category Vulnerability Type C
TLB Evict+Probe Vd Vu Ad (slow) 0
TLB Prime+Time Ad Vu Vd (slow) 0
TLB Flush+ Reload Ad Vu Aa (fast) 0
TLB Prime+Probe Ad Vu Ad (slow) 1
TLB Evict+Time Vu Ad Vu (slow) 1

TLB Internal Collision Ad Vu Va (fast) 1
TLB Bernstein’s A�ack Vu Va Vu (slow) 1

SA TLB SP TLB
A�ack Category Vulnerability Type C C
TLB Evict+Probe Vd Vu Ad (slow) 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0
TLB Prime+Probe Ad Vu Ad (slow) 1 0
TLB Evict+Time Vu Ad Vu (slow) 1 0

TLB Internal Collision Ad Vu Va (fast) 1 1
TLB Bernstein’s A�ack Vu Va Vu (slow) 1 1

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C C C
TLB Evict+Probe Vd Vu Ad (slow) 0 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0 0
TLB Prime+Probe Ad Vu Ad (slow) 1 0 0
TLB Evict+Time Vu Ad Vu (slow) 1 0 0

TLB Internal Collision Ad Vu Va (fast) 1 1 0
TLB Bernstein’s A�ack Vu Va Vu (slow) 1 1 0

2

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C* C C* C C* C
TLB Evict+Probe Vd Vu Ad (slow) 0 0 0 0 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0 0 0 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0 0 0 0 0
TLB Prime+Probe Ad Vu Ad (slow) 0.99 1 0.02 0 0.01 0
TLB Evict+Time Vu Ad Vu (slow) 1 1 0.03 0 0 0

TLB Internal Collision Ad Vu Va (fast) 1 1 0.98 1 0.01 0
TLB Bernstein’s A�ack Vu Va Vu (slow) 0.99 1 0.99 1 0.01 0

SA TLB
A�ack Category Vulnerability Type C
TLB Evict+Probe Vd Vu Ad (slow) 0
TLB Prime+Time Ad Vu Vd (slow) 0
TLB Flush+ Reload Ad Vu Aa (fast) 0
TLB Prime+Probe Ad Vu Ad (slow) 1
TLB Evict+Time Vu Ad Vu (slow) 1

TLB Internal Collision Ad Vu Va (fast) 1
TLB Bernstein’s A�ack Vu Va Vu (slow) 1

SA TLB SP TLB
A�ack Category Vulnerability Type C C
TLB Evict+Probe Vd Vu Ad (slow) 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0
TLB Prime+Probe Ad Vu Ad (slow) 1 0
TLB Evict+Time Vu Ad Vu (slow) 1 0

TLB Internal Collision Ad Vu Va (fast) 1 1
TLB Bernstein’s A�ack Vu Va Vu (slow) 1 1

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C C C
TLB Evict+Probe Vd Vu Ad (slow) 0 0 0
TLB Prime+Time Ad Vu Vd (slow) 0 0 0
TLB Flush+ Reload Ad Vu Aa (fast) 0 0 0
TLB Prime+Probe Ad Vu Ad (slow) 1 0 0
TLB Evict+Time Vu Ad Vu (slow) 1 0 0

TLB Internal Collision Ad Vu Va (fast) 1 1 0
TLB Bernstein’s A�ack Vu Va Vu (slow) 1 1 0

2

• Directories are used for cache coherence to keep track of the state of the data in the caches
• By forcing directory conflicts, an attacker can evict victim directory entries, which in turn

triggers the eviction of victim cache lines from private caches
• SecDir re-allocates directory structure to create per-core private directory areas used in a

victim-cache manner called Victim Directories; the partitioned nature of Victim Directories
prevents directory interference across cores, defeating directory side-channel attack.

Secure Directories
Deng, S., et al., “Secure TLBs”, ISCA 2019.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 56

Intel Directory in Skylake CPUs Secure Directory (SecDir)

Mitigation Overheads

• Performance overhead of the different secure components
and the benchmarks used for the evaluation

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Performance Overhead Benchmark

Secure Buffers n/a n/a

Secure TLBs [S. Deng, et al., 2019] For SR TLB: IPC 1.4%, MPKI 9% SPEC2006

SecDir [M. Yan, et al., 2019] few % (some benchmarks faster
some slower)

SPEC2006

57

• In response to timing attacks on caches, and other parts of the processor’s memory
hierarchy, many secure designs have been proposed

• Caches are most-researched, from which we learned about two main defense techniques:
• Partitioning
• Randomization

• The techniques can be applied to other parts of the processor: Buffers, TLBs, and Directories

• Most claim modest overheads of few % on SPEC2006 workloads
• Unclear of overhead on real-life applications

• Other parts of memory hierarchy are still vulnerable: memory bus contention, for example

Summary of Timing Attacks and Defenses

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 58

• Balance tradeoff between performance and security
• Curse of quantitative computer architecture: focus on performance, area, power numbers, but no

easy metric for security – designers focus on performance, area, power numbers since they are
easy to show ”better” design, there is no clear metric to say deign is “more secure” than
another design

• Evaluation on simulation vs. real machines
• Simulation workloads may not represent real systems, performance impact of

security features is unclear
• Real systems (hardware) can’t be easily modified to add new features and

test security

• Formal verification of the secure feature implementations
• Still limited work on truly showing design is secure
• Also, need more work on modelling all possible attacks,

e.g. the three-step model

• Side channels can be used to detect or observe
system’s operation

Research Challenges

performance security

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 59

Jakub Szefer
Assistant Professor

Dept. of Electrical Engineering
Yale University

CHES 2019 – August 25, 2019
Slides and information available at: https://caslab.csl.yale.edu/tutorials/ches2019/

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Design of Secure Processor
Architectures

1

Transient Exec. Attacks and Hardware Defenses

Part 3

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 2

Transient Execution Attacks

Prediction and Speculation in Modern CPUs

Prediction is one of the six key features of modern processors
• Instructions in a processor pipeline have

dependencies on prior instructions which
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible,
prediction is needed if results of prior instruction
are not known yet

• Prediction can be done for:
• Control flow
• Data dependencies
• Actual data (also called value prediction)

• Not just branch prediction: prefetcher, memory disambiguation, …

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 3

Transient Execution Attacks

• Spectre, Meltdown, etc. leverage the instructions that are executed transiently:
1. these transient instructions execute for a short time (e.g. due to mis-speculation),
2. until processor computes that they are not needed, and
3. the pipeline flush occurs and it should discard any side effects

of these instructions so
4. architectural state remain as if they never executed, but …

These attacks exploit transient execution to encode secrets through microarchitectural side
effects that can later be recovered by an attacker through a (most often timing based) observation
at the architectural level

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Transient Execution Attacks = Transient Execution + Covert or Side Channel

4

Example: Spectre Bounds Check Bypass Attack

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Victim code:

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index * size];

...

da
ta

le
n

da
ta

le
n Secret

Memory Layout
L1 Cache

arr1arr2

addr_s
of

fs
et

offset = addr_s

‘p’ ‘s’ ‘w’ ‘r’ ‘d’

arr2[‘p’] is cached!

Time

Probe array (side channel)

Controlled by the attacker

arr1->len is not in cache

change the cache state

In
st

ru
ct

io
ns

Pr
ed

ic
tio

n

Speculation Window

Cache miss
and

make branch
prediction misprediction

The attacker can then check if arr2[X] is
in the cache. If so, secret = X 5

Example of Spectre variant 1 attack:

Transient Execution – due to Prediction

transient (adjective): lasting only for a short time; impermanent

• Because of prediction, some instructions are executed transiently:
1. Use prediction to begin execution of instruction with unresolved dependency
2. Instruction executes for some amount of time, changing architectural and micro-architectural state
3. Processor detects misprediction, squashes the instructions
4. Processor cleans up architectural state and should cleanup all micro-architectural state

Spectre Variant 1 example:

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 6

if (offset < arr1->len) {
unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}
Cache miss on
arr1->len

Incorrect
prediction

Speculative execution
of if statement

Detect
misprediction

Transient Execution – due to Faults

transient (adjective): lasting only for a short time; impermanent

• Because of faults, some instructions are executed transiently:
1. Perform operation, such as memory load from forbidden memory address
2. Fault is not immediately detected, continue execution of following instructions
3. Processor detects fault, squashes the instructions
4. Processor cleans up architectural state and should cleanup all micro-architectural state

Meltdown Variant 3 example:

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 7

...
kernel_memory = *(uint8_t*)(kernel_address);
final_kernel_memory = kernel_memory * 4096;
dummy = probe_array[final_kernel_memory];
... Access

kernel_memory
Fault not
caught yet

Continue executing
following instructions

Raise fault and
squash instructions

Covert Channels Usable for Transient Exec. Attacks

The channels can be short-lived or long-lived channels:
• Short-lived channels hold the state for a (relatively) short time and eventually data is lost,

these are typically contention-based channels that require concurrent execution of the victim and
the attacker

• Long-lived channels hold the state for a (relatively) long time

Processor
Chip

8Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Short-lived channels:

• Execution Ports
• Cache Ports
• Memory Bus
• …

Long-lived channels:

• AVX2 unit
• TLB
• L1, L2 (tag, LRU)
• LLC (tag, LRU)
• Cache Coherence
• Cache Directory
• DRAM row buffer
• …

Covert channels not (yet)
explored in transient
attacks:

• Random Number
Generators

• AES or SHA
instructions

• …

Spectre, Meltdown, and Their Variants

• Most Spectre & Meltdown attacks and their variants use transient execution
• Many use cache timing channels to extract the secrets
Different Spectre and Meltdown attack variants:

• Variant 1: Bounds Check Bypass (BCB) Spectre
• Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
• Variant 1.2: Read-only protection bypass (RPB) Spectre
• Variant 2: Branch Target Injection (BTI) Spectre
• Variant 3: Rogue Data Cache Load (RDCL) Meltdown
• Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
• Variant 4: Speculative Store Bypass (SSB) Spectre-NG
• (none) LazyFP State Restore Spectre-NG 3
• Variant 5: Return Mispredict SpectreRSB

• Others: NetSpectre, Foreshadow, SMoTher, SGXSpectre, or SGXPectre
• SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)
• Spectre SWAPGS

9

SGXPectre is also Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

SGXSpectre is Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

Foreshadow is Meltdown type attack that
targets Intel SGX, Foreshadow-NG

targets OS, VM, VMM, SMM; all steal data
from L1 cache

NetSpectre is a Spectre Variant 1 done
over the network with Evict+Reload, also

with AVX covert channel

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

SMoTher is Spectre variant that uses
port-contention in SMT processors to leak

information from a victim process

More Spectre and Meltdown Variants

Micro-architectural Data Sampling (MDS) vulnerabilities:
• Fallout – Store Buffers

• RIDL (Rogue In-Flight Data Load) and ZombieLoad – Line-Fill Buffers and Load Ports

10

Meltdown-type attacks where “faulting load instructions (i.e., loads that have to be re-issued
for either architectural or micro-architectural reasons) may transiently dereference unauthorized
destinations previously brought into the buffers by the current or a sibling logical CPU.”

RIDL exploits the fact that “if the load and store instructions are ambiguous, the processor can
speculatively store-to-load forward the data from the store buffer to the load buffer.”

ZombieLoad exploits the fact “that the fill buffer is accessible by all logical CPUs of a physical
CPU core and that it does not distinguish between processes or privilege levels.”

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Meltdown-type attack which “exploits an optimization that we call Write Transient Forwarding
(WTF), which incorrectly passes values from memory writes to subsequent memory reads”
through the store and load buffers

Classes of Attacks

• Spectre type – attacks which leverage mis-prediction in the processor,
pattern history table (PHT), branch target buffer (BTB), return stack
buffer (RSB), store-to-load forwarding (STL), …

• Meltdown type – attacks which leverage exceptions, especially protection checks that are done
in parallel to actual data access

• Micro-architectural Data Sampling (MDS) type – attacks which leverage in-flight data that is
stored in fill and other buffers, which is forwarded without checking permissions, load-fill buffer
(LFB), or store-to-load forwarding (STL)

Variants:
• Targeting SGX
• Using non-cache based channels

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 11

Types of prediction:
• Data prediction
• Address prediction
• Value prediction

Attack Components

Attacks leveraging transient execution have 4 components:

Microsoft, https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

1. Speculation Primitive
“provides the means for

entering transient
execution down a non-

architectural path”

2. Windowing Gadget
“provides a sufficient
amount of time for

speculative execution
to convey information

through a side
channel”

3. Disclosure Gadget
“provides the means
for communicating

information through a
side channel during

speculative execution”

4. Disclosure Primitive
“provides the means for
reading the information
that was communicated

by the disclosure
gadget”

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 12

Disclosure Primitive

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

Windowing GadgetSpeculation Primitive

Disclosure Gadget

arr1->len is not in cache

cache Flush+Reload
covert channel

e.g.

Speculation Primitives

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) Bounds Check bypass (V1)
• Branch Target Buffer (BTB) Branch Target injection (V2)
• Return Stack Buffer (RSB) SpectreRSB (V5)

• Memory disambiguation prediction Speculative Store Bypass (V4)
• Meltdown-type: transient execution following a CPU exception

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

GP: general protection fault
NM: device not available
BR: bound range exceeded
PF: page fault
U/S: user / supervisor
P: present
R/W: read / write
RSVD: reserved bit
XD: execute disable
PK: memory-protection keys (PKU)

C. Canella, et al., ”A Systematic Evaluation of
Transient Execution Attacks and Defenses”,20181. Speculation Primitive

13

Speculation Primitives – Sample Code

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) -- Bounds Check bypass (V1)
• Branch Target Buffer (BTB) -- Branch Target injection (V2)
• Return Stack Buffer (RSB) -- SpectreRSB (V5)

• Memory disambiguation prediction -- Speculative Store Bypass (V4)

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant 1 Spectre Variant 2
(Attacker pollutes the RSB)

Call F1

...

...

ret

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

F1:

Spectre Variant 5

main:

GADGET:

char sec[16] = ...;

char pub[16] = ...;

char arr2[0x200000] = ...;

char * ptr = sec;

char **slow_ptr = *ptr;

clflush(slow_ptr)

*slow_ptr = pub;

value2 = arr2[(*ptr)<<12];

Spectre Variant 4

Store	“slowly”

Load the value at the same
memory location "quickly”.
“ptr” will get a stale value.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Speculation Primitives – Sample Code

Meltdown-type: transient execution following a CPU exception

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

GP: general	protection	fault
NM: device	not	available
BR: bound	 range	exceeded	
PF: page	fault

U/S: user/surpervisor
P: present
R/W: read/write
RSVD: reserved	bit
XD: execute	disable
PK: memory-protection	 keys	(PKU)

[M.	Lipp et	al.,	2018]

(rcx = address that leads to exception)

(rbx = probe array)

retry:

mov al, byte [rcx]

shl rax, 0xc

jz retry

mov rbx, qword [rbx + rax]

15

C. Canella, et al., ”A Systematic Evaluation of Transient Execution Attacks and Defenses”, 2018

Windowing Gadget

Windowing gadget is used to create a “window” of time for transient instructions to execute while
the processor resolves prediction or exception:
• Loads from main memory
• Chains of dependent instructions, e.g., floating point operations, AES

E.g.: Spectre v1 :
if (offset < arr1->len) {

unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}

Memory access time determines how
long it takes to resolve the branch

2. Windowing Gadget

Necessary (but not sufficient) success condition:
windowing gadget’s latency > disclosure gadget’s trigger latency

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 16

Disclosure Gadget

1. Load the secret to register
2. Encode the secret into channel

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant1 (Bounds check) Spectre Variant2 (Branch Poisoning)

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

Cache side channel AVX side channel Cache side channel

The code pointed by the arrows is the disclosure gadget:

Transient execution

3. Disclosure Gadget

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 17

More Disclosure Gadgets – SWAPGS

• Most recent disclosure gadget presented by researchers is the SWAPGS instruction
on 64-bit Intel processors

• SWAPGS instruction
• Kernel-level instruction, swap contents of IA32_GS_BASE with IA32_KERNEL_GS_BASE
• GS points to per CPU data structures (user or kernel), IA32_GS_BASE can be updated by user-mode
WRGSBASE instruction

• Disclosure gadgets with SWAPGS instruction
• Scenario 1: SWAPGS not getting speculatively

executed when it should
• Scenario 2: SWAPGS getting speculatively

executed when it shouldn’t

Later use cache-based timing channel to lean information
Tutorial at CHES 2019, Atlanta, GA, USA

© Jakub Szefer 2019 18

1. test byte ptr [nt!KiKvaShadow],1
2. jne skip_swapgs [4]
3. swapgs
4. mov r10,qword ptr gs:[188h]
5. mov rcx,qword ptr gs:[188h]
6. mov rcx,qword ptr [rcx+220h]
7. mov rcx,qword ptr [rcx+830h]
8. mov qword ptr gs:[270h],rcx

Bitdefender. “Bypassing KPTI Using the Speculative Behavior of the SWAPGS Instruction”, Aug. 2019.

Disclosure Primitives

Two types of disclosure primitives:
• Short-lived or contention-based (hyper-threading / multi-core scenario):

1. Share resource on the fly (e.g., bus, port, cache bank)
2. State change within speculative window (e.g., speculative buffer)

• Long-lived channel:
• Change the state of micro-architecture
• The change remains even after the speculative window
• Micro-architecture components to use:

• D-Cache (L1, L2, L3) (Tag, replacement policy state, Coherence State, Directory), I-cache;
TLB, AVX (power on/off), DRAM Rowbuffer, …

• Encoding method:
• Contention (e.g., cache Prime+Probe)
• Reuse (e.g., cache Flush+Reload)

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

4. Disclosure Primitive

19

Disclosure Primitives – Port Contention

• Execution units and ports are shared between hyper-
threads on the same core

• Port contention affect the timing of execution

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

A. Bhattacharyya, et al., “SMoTherSpectre: exploiting speculative execution through port contention”, 2019
A. C. Aldaya, et al., “Port Contention for Fun and Profit”, 2018

crc32
popcnt

Fig. Probability density function for the timing of an attacker
measuring crc32 operations when running concurrently with a
victim process that speculatively executes a branch which is
conditional to the (secret) value of a register being zero.

port
contention

no port
contention

20

Disclosure Primitives – Cache Coherence State

• The coherence protocol may invalidate cache lines in sharer cores as a result of a speculative
write access request even if the operation is eventually squashed

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

C. Trippel, et al., “MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols”, 2018
F. Yao, et al., “Are Coherence Protocol States Vulnerable to Information Leakage?”, 2018

Gadget:
void victim_function(size_t x) {

if (x < array1_size) {

array2[array1[x] * 512] = 1;

}

}

21

If array2 is initially in shared state or exclusive
state on attacker’s core, after transient access it

transitions to exclusive state on victim’s core,
changing timing of accesses on attacker’s core

Disclosure Primitives – Directory in Non-Inclusive Cache

• Similar to the caches, the directory structure in can be used as covert channel

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

M. Yan, et al. “Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World”, S&P 2019

22

E.g. accessing LLC data creates directory entries,
which may evict L2 entries (in the shared portion)

Disclosure Primitives - AVX Unit States

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

• To save power, the CPU can power down the upper half of the AVX2 unit which is used to
perform operations on 256-bit registers

• The upper half of the unit is powered up as soon as an instruction is executed which uses
256-bit values

• If the unit is not used for more than 1 ms, it is powered down again

Gadget:

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

M. Schwarz, et al., “NetSpectre: Read Arbitrary Memory over Network”, 2018

23

Attack “Parameters”

1. Ability to affect speculation primitive
• Can the attacker affect predictor state?

2. Speculative window size
• The delay from prediction to when misprediction is detected

3. Disclosure gadget’s latency (encoding time)
• Amount of time needed to extract secret information

and put into micro-architectural state
4. Time reference resolution

• How accurate is reference clock
5. Extraction window size

or Disclosure primitive latency
• Amount of time when data can be extracted

6. Retention time of channel
• How long the channel will keep the secret. e.g., AVX channel, 0.5~1ms

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 24

Necessary (but not sufficient) success conditions:
speculative window size > disclosure gadget’s latency
retention time of channel > disclosure prim. latency

Bandwidth of the channel: How fast data
can be transmitted? High-bandwidth is
about 100bps

In-thread, Cross-thread, or Cross-
processor: Do attacker and victim share
same thread, are on sibling threads in
SMT, or can be on separate processors?

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 25

Transient Attack Hardware Mitigation Techniques

Mitigation Techniques for Attacks due to Speculation

1. Prevent or disable speculative execution – addresses Speculation Primitives
• Today there is no user interface for fine grain control of speculation; overheads unclear

2. Limit attackers ability to influence predictor state – addresses Speculation Primitives
• Some proposals exist to add new instructions to minimize ability to affect branch predictor state, etc.

3. Minimize attack window – addresses Windowing Gadgets
• Ultimately would have to improve performance of memory accesses, etc.
• Not clear how to get exhaustive list of all possible windowing gadget types

4. Track sensitive information (information flow tracking) – addresses Disclosure Gadgets
• Stop transient speculation and execution if sensitive data is touched
• Users must define sensitive data

5. Prevent timing channels – addresses Disclosure Primitives
• Add secure caches
• Crate “secure” AVX, etc. Tutorial at CHES 2019, Atlanta, GA, USA

© Jakub Szefer 2019 26

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigation Techniques for Attacks due to Faults

1. Evaluate fault conditions sooner
• Will impact performance, not always possible

2. Limit access condition check races
• Don’t allow accesses to proceed until relevant access checks are finished

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 27

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigation Techniques for MDS

1. Prevent Micro-architectural Data Sampling
• Will impact performance, not always possible

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 28

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigations in Micro-architecture: InvisiSpec

• Focus on transient loads in disclosure gadgets
• Unsafe speculative load (USL)

• The load is speculative and may be squashed
• Which should not cause any micro-architecture state changes

visible to the attackers
• Speculative Buffer: a USL loads data into the speculative buffer

(for performance), not into the local cache

• Visibility point of a load
• After which the load can cause micro-architecture state

changes visible to attackers

• Validation or Exposure:
• Validation: the data in the speculative buffer might not be the

latest, a validation is required to maintain memory consistency.
• Exposure: some loads will not violate the memory consistency.

• Limitations: only for covert channels in caches

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

M. Yan, et al., “InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy”, 2018

29

Mitigations in Micro-architecture: SafeSpec

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

• Similar to InvisiSpec, shadow caches and TLBs are proposed to store the micro-architecture
changes by speculative loads temporarily

K. N. Khasawneh, et al., “SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free Speculation”, 2018

30

Mitigations in Micro-architecture: SpecShield

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

“WiP: Isolating Speculative Data to Prevent Transient Execution Attacks” Kristin Barber, et al., HASP 2019 Presentation

31

• Similar to other work key idea to restrict speculative data
use by dependent instructions

• Approach:
• Monitor speculative status of Load instructions
• Forward data to dependents only when “safe”

• Two schemes:
• Conservative – don’t forward data from loads until they reach

the head of the ROB
• Early Resolution Point (Optimized) – all older branches have

resolved and all older loads and stores have had addresses
computed and there are no branch miss-predictions or memory-
access exceptions

C
on

se
rv

at
iv

e
ER

P
(O

pt
im

iz
ed

)

Mitigations in Micro-architecture: ConTExT

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

“ConTExT: Leakage-Free Transient Execution”, Michael Schwarz et al., arXiv 2019

32

• ConTExT (Considerate Transient Execution Technique)
makes the proposal that secrets can enter registers, but
not transiently leave them

• It mitigates the recently found MDS attacks on processor
buffers, such as fill buffers:

• Secret data is ‘tagged’ in memory using extra page table entry
bits to indicate the secure data

• Extra tag bits are added to registers to indicate they contain the
secret data

• The tagged secret data cannot be used during transient
execution

Mitigations in Micro-architecture: Conditional Speculation

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

“Conditional Speculation: An Effective Approach to Safeguard Out-of-OrderExecution Against Spectre Attacks”, Peinan Li et al., HPCA 2019

33

• Introduces security dependence, a new dependence used to
depict the speculative instructions which leak micro-architecture
information

• Security hazard detection was introduced in the issue queue to
identify suspected unsafe instructions with security dependence

• Performance filters:
• Cache-hit based Hazard Filter targets at the speculative

instructions which hit the cache – have to be careful about LRU
• Trusted Page Buffer based Hazard Filter targets at the attacks

which use Flush+Reload type channels or other channels using
shared page, others are assumed safe – but there are many other
channels in the caches

Mitigations in Micro-architecture: EISE

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

“Efficient Invisible Speculative Execution through Selective Delay and Value Prediction”, Christos Sakalis, et al., ISCA 2019.

34

• Efficient Invisible Speculative Execution through selective delay and value
prediction proposes to:

a) (naïve) delay loads until they reach the head of ROB
or (eager) until they will no longer be squashed, similar
to SpecShield and others

b) allow only accesses that hit in the L1 data cache to
proceed – but have to be careful about LRU channels

c) prevent stalls by value predicting the loads that miss
in the L1 – value prediction can leak data values as
well, security of value prediction is not well studied

Mitigation Overheads: Hardware-Only Schemes

• Performance overhead of hardware mitigations of at the micro-architecture level

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

Performance Loss Benchmark

Fence after each branch (software) 88% SPEC2006

InvisiSpec [M. Yan, et al., 2018] 22% SPEC2006

SafeSpec [K. N. Khasawneh, et al., 2018] 3% improvement
(due to larger effective cache size)

SPEC2017

SpecShield [K. Barber, et al., 2019] 55% (conservative)
18% (ERP)

SPEC2006

ConTExT [M. Schwarz, et al., 2019] 71% (security critical applications)
1% (real-world workloads)

n/a

Conditional Speculation [P. Li, et al., 2019] 6% - 10% (when using their filters) SPEC2006

EISE [C. Sakalis, et al., 2019] 74% naïve, 50% eager, 19% delay-on-
miss, or 11% delay-on-miss + value
prediction

SPEC2006

35

Most hardware solutions have bigger overheads than reported overheads
for secure caches – more motivation to look at secure caches

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 36

Transient Attacks and Secure Processors

Transient Execution Attacks on SGX: SgxPectre

• Spectre can attack current
secure processor
architectures

• E.g., Spectre v2 on SGX

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

G. Chen, et al., “SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via Speculative Execution”, 2018

1.	Poison	BTB
(Speculation	Primitive)

2.	Flush	the	victim’s	
branch	target	address	
and	deplete	the	RSB
(Windowing	Gadget)

3.	Set	secret	address	
and	probe	array	address	

4.	Execute	victim	code
(Disclosure	Gadget)

5.	Obtain	secret	from	
covert	channel	
(Disclosure	Primitive)

37

Shared BTB allows the
attacker to create

speculative execution
attack in enclave

Transient Execution Attacks on SGX: Foreshadow

• Meltdown-type attack can attack current secure processor architectures

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019

J. Van Bulck, et al., “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, 2018

38

Delayed permission
checks allows transient

read of data by the
attacker

Transient Execution Attacks Summary

Prediction is one of the six key features of modern processor
• Instructions in a processor pipeline have

dependencies on prior instructions which
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible,
prediction is needed if results of prior instruction
are not known yet

• Prediction however leads to transient execution

• Contention during transient execution, or improperly cleaned up architectural or micro-
architectural state after transient execution can lead to security attacks.

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 39

Thank You!

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/

Tutorial at CHES 2019, Atlanta, GA, USA
© Jakub Szefer 2019 40

	ches2019_des_sec_proc_arch_part-1
	ches2019_des_sec_proc_arch_part-2-temp
	ches2019_des_sec_proc_arch_part-3

