
Jakub Szefer
Associate Professor
Dept. of Electrical Engineering
Yale University

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Securing Processor Architectures

1

Tutorial co-located with ASPLOS 2021 – April 15, 2021

Logistics and Schedule

All times are in the Pacific Time (PT) time zone.

11:00am – 1:00pm
Tutorial – Topics: Information leaks in processors and transient execution attacks

1:00pm – 1:12pm
Brainstorming and shuffle rooms

1:12pm – 1:15pm
Break

1:15pm – 2:30pm
Tutorial – Topics: Trusted Execution Environments

2:30pm – 2:42pm
Brainstorming and shuffle rooms

2:42pm – 3:00pm
Wrap-up and conclusion

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 2

Need for Securing Processor Architectures

• Computer systems have become pervasive today
• Attacks on such systems affect privacy and security of users
• Processor hardware security focuses

on analyzing attacks and defenses
which originate in the hardware

• Need to understand the attacks
to develop better defenses

• Hardware defenses can tackle
the root-causes of the attacks

• Threats keep evolving so research
and defenses need to keep up

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 3

Outline

• Information Leaks in Processors
• Side and Covert Channels in Processors
• Side Channel Attacks on ML Algorithms
• Other Attacks: Power and Energy based Attacks
• Hardware Defense for Side and Covert Channels

• Transient Execution Attacks in Processors
• Transient Execution and Attacks on Processors
• Hardware Defenses for Transient Execution Attacks

• Design of Trusted Execution Environments

• Wrap-up and Conclusion

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 4

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 5

Side and Covert Channels in Processors

Information Leaks in Processors

Many components of a modern processor pipeline can contribute to information leaks

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 6

Focus of this talk
is on (remote)

timing and power
information leaks

Physical Access Attacks
(require physical connection)

Power channels require physical connection to
measure the power consumed by the CPU (assuming
there is no on-chip sensor that can be abused to get
power measurements).

Information Leaks with and without Physical Access

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 7

Emanations-based Attacks
(within emanation’s signal range)

Thermal, acoustic, and EM emanation based
channels allow for remote signal collection, but
depend on strength of the transmitter and type of
emanation.

Remote Attacks
(don’t require physical access)

Timing channels don’t require
measurement equipment, only
attacker can run code on victim
(not even always needed, c.f.
AVX-based channel used in
NetSpectre) and have network
connection.

Power channels possible with
access to proper performance
counters

This talk:

Information Leaks and Side and Covert Channels

• A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

• In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

1. “Sender”
application
runs on the
processor

2. Physical emanation is
generated

2. Or a change is made to
the state of the system,

such as modifying the
cache contents

3. “Receiver” observes
the emanation or state

change

8

Means for transmitting
information:
• Timing
• Power
• Thermal emanations
• Electro-magnetic

(EM) emanations
• Acoustic emanations

Interference Between Attacker and Victim

• Many of the information leakage attacks are based on interference

• Typically an information leak is from victim to attacker
• Goal is to extract some information from victim

• But interference can also affect the victim
• Attacker’s behavior can “send” some information and modulate

victim’s behavior

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Victim’s operation
“sends” information
to attacker

Attacker obtains
information via the
side channel

9

Victim’s operation
depends on the
processor state set
by the attacker

Attacker modulates
some processor state
that affects the victim

Sources of Timing and Power Side Channels

Five source of timing and power channels that can lead to attacks:
1. Instructions have Different Execution Timing or Power – Execution of

different instructions takes different amount of time or power
2. An Instruction’s Variable Timing or Power – Execution of a specific

instruction takes different time or power depending on the state of the unit
3. Functional Unit Contention – Sharing of hardware leads to contention,

affecting timing and power that is used
4. Prediction Units – Prediction and misprediction affects execution timing

and power
5. Memory Hierarchy – Caching creates fast and slow execution paths,

leading to timing or power differences

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 10

Side and covert
channels are orthogonal

to transient execution
attacks

Transient attacks =
transient execution +

covert channel

Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency
(creating fast and slow executions paths); and most parts of the hierarchy are a shared resource.
• Caches

• Inclusive caches, Non-inclusive caches,
Exclusive caches

• Different cache levels: L1, L2, LLC

• Cache Replacement Logic
• Load, Store, and Other Buffers
• TLBs
• Directories
• Prefetches
• Coherence Bus and Coherence State
• Memory Controller and Interconnect

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 11

Importance of Cache Timing Attacks

12Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

• There is renewed interest in timing attacks due to Transient Execution Attacks
• Most of them use transient executions and leverage cache timing attacks
• Variants using cache timing attacks (side or covert channels):

Variant 1: Bounds Check Bypass (BCB) Spectre
Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
Variant 1.2: Read-only protection bypass (RPB) Spectre
Variant 2: Branch Target Injection (BTI) Spectre
Variant 3: Rogue Data Cache Load (RDCL) Meltdown
Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
Variant 4: Speculative Store Bypass (SSB) Spectre-NG
(none) LazyFP State Restore Spectre-NG 3
Variant 5: Return Mispredict SpectreRSB

NetSpectre, Foreshadow, SGXSpectre, or SGXPectre
SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)

And more…

Cache Timing Attacks

• Attacker and Victim
• Victim (holds security critical data)
• Attacker (attempts to learn the data)

• Attack requirement
• Attacker has ability to monitor timing of cache operations made by the victim or by self
• Can control or trigger victim to do some operations using sensitive data

• Use of instructions which have timing differences
• Memory accesses: load, store
• Data invalidation: different flushes (clflush, etc.), cache coherence

• Side-channel attack vs. covert-channel attack
• Side channel: victim is not cooperating
• Covert channel: victim (sender) works with attacker – easier to realize and higher bandwidth

• Many known attacks: Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision Attack

13

Victim Attacker

App, OS, VM,
etc.

App, OS, VM,
etc.Information

Leak

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Prime-Probe Attacks

L3 Cache

ways

sets

1- Attacker primes
each cache set

2- Victim accesses
critical data

3- Attacker probes each
cache set (measure time)

Evicted Time

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D

14

Data sharing
is not needed

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006.

Flush-Reload Attack

L3 Cache

1- Attacker flushes
each line in the cache

2- Victim accesses
critical data

3- Attacker reloads critical
data by running specific
process (measure time)

Evicted Time

ways

sets

L2
L1-I

Victim
CPU1

L1-D
L2

Attacker

Shared L3

CPU2

L1-I L1-D

15

Data sharing
is needed

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Yarom, Y., & Falkner, K. “FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack”, 2014.

A Three-Step Model for Cache Timing Attack Modeling

Observation:
• All the existing cache timing attacks equivalent to three memory operations à three-step model
• Cache replacement policy the same to each cache block à focus on one cache block

The Three-Step Single-Cache-Block-Access Model

• Analyzed possible states of the cache block + used cache three-step simulator and reduction rules
derive all the effective vulnerabilities

• There are 88 possible cache timing attack types

𝑆𝑡𝑒𝑝1												 ⇝ 													𝑆𝑡𝑒𝑝2										 ⇝ 				𝑆𝑡𝑒𝑝3 (fast/slow)
The initial state of
the cache block
set by a memory

operation

Memory
operation alters
the state of the

cache

Final memory
operations and
timing observation
(fast/slow)

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

16Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Discovering New Cache Attack Types

17

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Cache Related Attack: LRU Timing Attacks

• Cache replacement policy has been shown to be a source of timing attacks
• Many caches use variant of Least Recently Used (LRU) policy

• Update LRU state on miss and also on a cache hit
• Different variants exist, True LRU, Tree LRU, Bit LRU

• LRU timing attacks leverage LRU state update on both hit or miss
• After filing cache set, even on a hit, LRU will be updated,

which determines which cache line gets evicted
• More stealthy attacks based on hits
• Affect secure caches, such as PL cache

• High-bandwidth and work with Spectre-like
attacks

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 18

Wenjie Xiong and Jakub Szefer, “Leaking	Information	 Through	Cache	LRU	States”, 2019

Cache Related Attacks: TLB Timing Attacks

• Existing practical attacks have been demonstrated against TLBs, e.g., TLBleed attack on RSA

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 19

Ben Gras et al. "Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks” USENIX Security Symposium, 2018.

1. void _gcry_mpi_powm (gcry_mpi_y_ res,
gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)

2. {
3. mpi_ptr_t rp, xp; /* pointers to MPI data */
4. mpi_ptr_t tp;
5. ...
6. for(;;) {
7. /* For every exponent bit in expo*/
8. _gcry_mpih_sqr_n_basecase(xp, rp);
9. if(secret_exponent || e_bit_is1) {
10. /* unconditional multiply if exponent is
11. * secret to mitigate FLUSH+RELOAD
12. */
13. _gcry_mpih_mul(xp, rp);
14. }
15. if(e_bit_is1) {
16. /*e bit is 1, use the result*/
17. tp = rp; rp = xp; xp = tp;
18. rsize = xsize;
19. }
20. }
21. }

Existing TLBleed work can extract
the cryptographic key from the
RSA public-key algorithm* with a
92% success rate.

* modular exponentiation function
of RSA from Libgcrypt 1.8.2:
https://gnupg.org/ftp/gcrypt/libgcrypt/

Timing Channels due to Other Components

• Cache Replacement Logic – LRU states can be abused for a timing channel, especially cache
hits modify the LRU state, no misses are required

• TLBs – Translation Look-aside Buffers are types of caches with similar vulnerabilities
• Directories – Directory used for tracking cache coherence state is a type of a cache as well
• Prefetches – Prefetchers leverage memory access history to eagerly fetch data and can create

timing channels
• Load, Store, and Other Buffers – different buffers can forward data that is in-flight and not in

caches, this is in addition to recent Micro-architectural Data Sampling attacks
• Coherence Bus and Coherence State – different coherence state of a cache line may affect

timing, such as flushing or upgrading state
• Memory Controller and Interconnect – memory and interconnect are shared resources

vulnerable to contention channels

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 20

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 21

Side Channel Attacks on ML Algorithms

Attacks on Machine Learning

• Caches and other structures can leak information about secrets or user programs
• Information leak depends on the application

• Microarchtiecture attacks on Machine Learning have
emerged recently as important class of attacks:

• Most attacks target inference that is run on the CPU
• ML parameters are considered sensitive or secret intellectual property

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 22

Secret or private information
in Machine Learning

(typically Deep Neural Networks)

• Number of layers
• Layer parameters
• Weights and biases
• Inputs

Secret or private information
in Cryptography

• Secret key
Many more

attack
targets

Example Attacks on Machine Learning Algorithms

Numerous researchers have recently explored ways to abuse timing or power related
information to leak secrets from machine learning algorithms running on processors.

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 23

Attacks requiring
physical access

and measurements

Attacks not
requiring physical

access

Simple Timing Attacks and Floating Point Attacks on ML

• Vasisht et al. use simple execution timing which
can reveal information about ML architectures

• Can reveal some sensitive information such
as number of layers

• Cheng et al. use floating-point timing side channel
to learn Machine Learning network’s parameters
(weights and biases)

• Target IEEE-754 single-precision
• Target subnormal floating-point numbers

which are less frequent
• Subnormal operations are executed in software

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 24

Duddu, Vasisht, et al. "Stealing neural networks via timing side
channels." arXiv preprint arXiv:1812.11720 (2018).

Gongye, Cheng, Yunsi Fei, and Thomas Wahl. "Reverse-
engineering deep neural networks using floating-point timing side-
channels." 2020 57th ACM/IEEE Design Automation Conference

(DAC). IEEE, 2020.

Emulated
in software
= slower

execution

Timing
correlates
to number
of layers

From Timing and Cache Attacks on ML

• Yan et al. observe that DNN architecture parameters
determine the number of GEMM (Generalized Matrix
Multiply) calls and the dimensions of the matrices

• Cache side channels can reveal GEMM calls
• Reduce the search space of DNN model architectures

by learning GEMM usage
• Use Flush+Reload and Prime+Probe attacks

• Hong et al. recover the DNN structure by monitoring
function calls through a Flush+Reload cache channel.

• Liu et al. present a generative adversarial network
(GAN)-based Reverse Engineering attack on DNNs

• Use discriminator compares the cache side-channel
information of victim vs. attacker DNN

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 25

Hong, Sanghyun, et al. "Security analysis of deep neural networks
operating in the presence of cache side-channel attacks." arXiv

preprint arXiv:1810.03487 (2018).

Liu, Yuntao, and Ankur Srivastava. "GANRED: GAN-based
Reverse Engineering of DNNs via Cache Side-Channel."

Proceedings of the 2020 ACM SIGSAC Conference on Cloud
Computing Security Workshop. 2020.

Yan, Mengjia, et al. "Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures." 29th USENIX Security

Symposium (USENIX Security 20). 2020.

Learn parameters to assist
with model extraction attack

Microarchitecture and Attacks on ML

• Performance features of processors
have been abused in existing attacks

• Area and power savings
of simpler FP lead to
attacks

• Power and performance
savings of caches
lead to attacks

• Many more attack targets
when considering ML
algorithms

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 26

Cache
hierarchy
attacks

FP usage and
simple timing

attacks

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 27

Other Attacks: Power and Energy based Attacks

Abusing DVFS Interfaces to Inject Faults

• Plundervolt, by Murdock et al., bypasses Intel SGX’s
memory encryption engine protection boundaries
by abusing an undocumented voltage scaling interface
to induce predictable faults

• Must be run with administrative privileges

• VoltJockey, by Qiu et al., manipulates voltages
in Arm processors to generate faults in TrustZone

• Requires access to DVFS interface

• CLKscrew, by Tang et al., manipulates frequency
settings in Arm to generate faults as well

• Requires access to DVFS interface

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 28

Murdock, Kit, et al. "Plundervolt: How a little bit of undervolting can
create a lot of trouble." IEEE S&P 18.5 (2020): 28-37.

Qiu, Pengfei, et al. "VoltJockey: Breaching TrustZone by software-
controlled voltage manipulation over multi-core frequencies."

Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019.

Undervolti
ng causes

faults in
computati

ons

Tang, Adrian, Simha Sethumadhavan, and Salvatore Stolfo.
"CLKSCREW: exposing the perils of security-oblivious energy
management." 26th USENIX Security Symposium (USENIX

Security 17). 2017.

Abusing Power Perf Counters to Leak Secrets

• Platypus, by Lipp et al. is a software-based power side-channel attack that abuses Intel’s RAPL
(Running Average Power Limit) interface to gather power consumption traces

• Unprivileged attack, but fixed with new software
restrictions in powercap framework

• Privileged attack still possible

• RAPL interface has a bandwidth of 20 kHz,
but still good enough to measure different
processor activities

• Cache activity
• Different instructions
• Create covert channel
• Extract secrets from Intel’s SGX

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 29

RAPL
measurement to

distinguish
cache hit vs miss

imul
instructions

with different
operands

Hamming weight

Covert channel
example

Lipp, Moritz, et al. "PLATYPUS: Software-based Power Side-
Channel Attacks on x86." IEEE Symposium on Security and

Privacy (SP). 2021.

User-level Control vs. Security

• Giving users access to DVFS interfaces or power and energy
performance counters can help measure and tune the software,
but introduces new security issues

• DVFS interfaces need to be designed
to prevent users abusing them

• User-level attacks
• Privileged-level attacks, e.g. on SGX

• Performance counters for power
and energy can leak secrets as well

• User-level attacks
• Privileged-level attacks, e.g. on SGX as well

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 30

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

Hypervisor (VMM)

Guest
OS

Guest
OS

App
AppAppApp

…

Encl
ave

Providing Protections with a Trusted Processor Chip

Key to most secure processor architecture designs is the idea of trusted processor chip as the
security wherein the protections are provided.

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Processor Chip

$

Uncore

Core
$ $

Core
$ $…

31

Hypervisor (VMM)

Guest
OS

Guest
OS

AppAppApp
AppAppApp

…

Encl
ave

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 32

Hardware Defenses for Side and Covert Channels

Timing Channels due to Memory Hierarchy

• Caches – state of the cache affects timing of operations: cache hit, cache miss, flush timing
• Cache Replacement Logic – LRU states can be abused for a timing channel, especially cache

hits modify the LRU state, no misses are required
• TLBs – Translation Look-aside Buffers are types of caches with similar vulnerabilities
• Directories – Directory used for tracking cache coherence state is a type of a cache as well
• Prefetches – Prefetchers leverage memory access history to eagerly fetch data and can create

timing channels
• Load, Store, and Other Buffers – different buffers can forward data that is in-flight and not in

caches, this is in addition to recent Micro-architectural Data Sampling attacks
• Coherence Bus and Coherence State – different coherence state of a cache line may affect

timing, such as flushing or upgrading state
• Memory Controller and Interconnect – memory and interconnect are shared resources

vulnerable to contention channels
Securing Processor Architectures Tutorial – ASPLOS 2021

© Jakub Szefer 2021 33

Motivation for Design of Hardware Secure Caches

• Software defenses are possible (e.g. page coloring or “constant time” software)
• But require software writers to consider timing attacks, and to consider all possible

attacks, if new attack is demonstrated previously written secure software may no longer
be secure

• Root cause of timing attacks are caches themselves
• Caches by design have timing differences (hit vs. miss, slow vs. fast flush)
• Correctly functioning caches can leak critical secrets like encryption keys when

the cache is shared between victim and attacker
• Need to consider about different levels for the cache hierarchy,

different kinds of caches, and cache-like structures

• Secure processor architectures also are affected by timing attacks on caches
• E.g., Intel SGX is vulnerable to cache attacks and some Spectre variants
• E.g., cache timing side-channel attacks are possible in ARM TrustZone
• Secure processors must have secure caches

34Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Secure Cache Techniques

• Numerous academic proposals have presented different secure cache architectures that aim to
defend against different cache-based side channels.

• To-date there are approximately 18 secure cache proposals
• They share many similar, key techniques

Secure Cache Techniques:
• Partitioning – isolates the attacker and the victim
• Randomization – randomizes address mapping or data brought into the cache
• Differentiating Sensitive Data – allows fine-grain control of secure data

Goal of all secure caches is to minimize interference
between victim and attacker or within victim themselves

35Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

s
0

s
1

s
4

s
2

s
6

ld
issue

{probe}

{hit}

{miss}

{replace}{bypass}

ISA-level Microarchitecture-level

ld
return

{force
evict}

s
3

{return data}

s
5la

te
n

cy
 ↔

ca

ch
e

h
it

 o
r

m
is

s

fast
access

slow
access

Different Types of Interference Between Cache Accesses

Where the interference happens
• External-interference vulnerabilities

• Interference (e.g., eviction of one party’s data from
the cache or observing hit of one party’s data) happens
between the attacker and the victim

• Internal-interference vulnerabilities
• Interference happens within the victim’s process itself

Memory reuse conditions
• Hit-based vulnerabilities

• Cache hit (fast)
• Invalidation of the data when the data is in the cache (slow)

• Miss-based vulnerabilities
• Cache miss (slow)
• Invalidation of the data when the data is not in the cache (fast)

36

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Partitioning

• Goal: limit the victim and the attacker to be able to only access a limited set of cache blocks
• Partition among security levels: High (higher security level) and Low (lower security level)

or even more partitions are possible
• Type: Static partitioning vs. dynamic partitioning
• Partitioning based on:

• Whether the memory access is victim’s or attacker’s
• Where the access is to (e.g., to a sensitive or not sensitive memory region)
• Whether the access is due to speculation or out-of-order load or store,

or it is a normal operation
• Partitioning granularity:

• Cache sets
• Cache ways
• Cache lines or block

37Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Partitioning (cont.)

• Partitioning usually targets external interference, but is weak at defending
internal interference:

• Interference between the attack and the victim partition becomes impossible,
attacks based on these types of external interference will fail

• Interference within victim itself is still possible
• Wasteful in terms of cache space and degrades system performance

• Dynamic partitioning can help limit the negative performance and space impacts
• At a cost of revealing some side-channel information when adjusting the

partitioning size for each part
• Does not help with internal interference

• Partitioning in hardware or software
• Hardware partitioning
• Software partitioning

• E.g. page-coloring

38Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Randomization

• Randomization aims to inherently de-correlate the relationship among the address and the
observed timing

• Randomization approaches:
• Randomize the address to cache set mapping
• Random fill
• Random eviction
• Random delay

• Goal: reduce the mutual information from the observed timing to 0
• Some limitations: Requires a fast and secure random number generator, ability to predict the

random behavior will defeat these technique; may need OS support or interface to specify range
of memory locations being randomized; …

39Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Information of victim's security
critical data's address

Observed timing from
cache hit or miss

Observed timing of flush
or cache coherence

operations

Differentiating Sensitive Data

• Allows the victim or management software to explicitly label a certain range of the data of
victim which they think are sensitive

• Can use new cache-specific instructions to protect the data and limit internal interference
between victim’s own data

• E.g., it is possible to disable victim’s own flushing of victim’s labeled data, and therefore
prevent vulnerabilities that leverage flushing

• Has advantage in preventing internal interference
• Allows the designer to have stronger control over security critical data

• How to identify sensitive data and whether this
identification process is reliable are open
research questions

• Independent of whether a cache uses
partitioning or randomization

40

Set-associative cache

ways

sets

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Secure Caches

At least 18 different secure caches exist in literature,
which use one or more of the below techniques

to provide the enhanced security:

• Partitioning-based caches
• Static Partition cache, SecVerilog cache, SecDCP cache, Non-Monopolizable (NoMo) cache,

SHARP cache, Sanctum cache, MI6 cache, Invisispec cache, CATalyst cache, DAWG cache,
RIC cache, Partition Locked cache

• Randomization-based caches
• SHARP cache, Random Permutation cache, Newcache, Random Fill cache, CEASER cache,

SCATTER cache, Non-deterministic cache

• Differentiating sensitive data
• CATalyst cache, Partition Locked cache, Random Permutation cache, Newcache, Random Fill

cache, CEASER cache, Non-deterministic cache

41

Deng, Shuwen, Xiong, Wenjie, Szefer, Jakub, “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Secure Caches vs. Attacks

42

SP

Se
cV

er
ilo

g

Se
cD

CP

No
M

o

SH
AR

P

Sa
nc

tu
m

CA
Ta

ly
st

RI
C

PL RP

Ne
w

ca
ch

e

RF

CE
AS

ER

SC
AT

TE
R

No
n-

de
t.

ca
ch

e

external miss-
based attacks ✓ ✓ ~ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ O

internal miss-
based attacks X X X X X X ✓ ✓ X X ✓ X ✓ ✓ O

external hit-
based attacks X ✓ ✓ X X ✓ ✓ X X ✓ ✓ ✓ X ~ O

internal hit-
based attacks X X X X X X ✓ X X X X ✓ X X O

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Effectiveness of the secure caches:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

CATalyst uses number of
assumptions, such as

pre-loading

Speculation-Related Secure Caches vs. Attacks

43

MI6 cache InivisiSpec cache DAWG cache

Normal Speculative Normal Speculative Normal Speculative

external miss-
based attacks ✓ ✓ X ✓ ✓ ✓

internal miss-
based attacks X ✓ X ✓ X X

external hit-
based attacks ✓ ✓ X ✓ ✓ ✓

internal hit-
based attacks X ✓ X ✓ X X

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Effectiveness of the secure caches:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Secure Cache Performance
SP

*

Se
cV

er
ilo

g

Se
cD

C
P

N
oM

o

SH
A

R
P

Sa
nc

tu
m

M
I6

In
vi

si
Sp

ec

C
AT

al
ys

t

D
AW

G

R
IC PL R
P

N
ew

ca
ch

e

R
an

do
m

 F
ill

C
EA

SE
R

SC
AT

TE
R

N
on

D
et

.

Pe
rf. 1% -

12.5%
better
over
SP

cache

1.2%
avr.,
5%

worst

3%-4% - -

reduce
slowdo
wn of

Spectre
from

74% to
21%

average
slowdow

n of
0.7% for
SPEC
and

0.5% for
PARSE

C

L1
and
L2

most
4%-
7%

impr
oves
10%

12
%

0.3%,
1.2%
worst

within
the

10%
range
of the
real
miss
rate

3.5%,
9% if
setting

the
windo
w size
to be

largest

1%
for

perfor
manc

e
optimi
zation

3.5%
for

perfor
-

manc
e opti-
miza-
tion

7%
with
simpl

e
bench
marks

Pw
r.

- - - - - - -

L1 0.56
mW,
LLC
0.61
mW

- - - -
avera

ge
1.5nj

<5%
power - - -

Ar
ea - - - - - - -

L1-SB
LLC-SB

Area
(mm2)
0.0174
0.0176

- - 0.17
6% - - - - - -

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

44

Outline

• Information Leaks in Processors
• Side and Covert Channels in Processors
• Side Channel Attacks on ML Algorithms
• Other Attacks: Power and Energy based Attacks
• Hardware Defense for Side and Covert Channels

• Transient Execution Attacks in Processors
• Transient Execution and Attacks on Processors
• Hardware Defenses for Transient Execution Attacks

• Design of Trusted Execution Environments

• Wrap-up and Conclusion

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 45

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 46

Transient Execution and Attacks on Processors

Prediction and Speculation in Modern CPUs

Prediction is one of the six key features of modern processors
• Instructions in a processor pipeline have

dependencies on prior instructions which
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible,
prediction is needed if results of prior instruction
are not known yet

• Prediction can be done for:
• Control flow
• Data dependencies
• Actual data (also called value prediction)

• Not just branch prediction: prefetcher, memory disambiguation, …

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 47

Transient Execution Attacks

• Spectre, Meltdown, etc. leverage the instructions that are executed transiently:
1. these transient instructions execute for a short time (e.g. due to mis-speculation),
2. until processor computes that they are not needed, and
3. the pipeline flush occurs and it should discard any side effects

of these instructions so
4. architectural state remain as if they never executed, but …

These attacks exploit transient execution to encode secrets through microarchitectural side
effects that can later be recovered by an attacker through a (most often timing based) observation
at the architectural level

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Transient Execution Attacks = Transient Execution + Covert or Side Channel

48

Example: Spectre Bounds Check Bypass Attack

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Victim code:

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index * size];

...

da
ta

le
n

da
ta

le
n Secret

Memory Layout
L1 Cache

arr1arr2

addr_s
of

fs
et

offset = addr_s

‘p’ ‘s’ ‘w’ ‘r’ ‘d’

arr2[‘p’] is cached!

Time

Probe array (side channel)

Controlled by the attacker

arr1->len is not in cache

change the cache state

In
st

ru
ct

io
ns

Pr
ed

ic
tio

n

Speculation Window

Cache miss
and

make branch
prediction misprediction

The attacker can then check if arr2[X] is
in the cache. If so, secret = X 49

Example of Spectre variant 1 attack:

Transient Execution – due to Prediction

transient (adjective): lasting only for a short time; impermanent

• Because of prediction, some instructions are executed transiently:
1. Use prediction to begin execution of instruction with unresolved dependency
2. Instruction executes for some amount of time, changing architectural and micro-architectural state
3. Processor detects misprediction, squashes the instructions
4. Processor cleans up architectural state and should cleanup all micro-architectural state

Spectre Variant 1 example:

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 50

if (offset < arr1->len) {
unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}
Cache miss on
arr1->len

Incorrect
prediction

Speculative execution
of if statement

Detect
misprediction

Transient Execution – due to Faults

transient (adjective): lasting only for a short time; impermanent

• Because of faults, some instructions are executed transiently:
1. Perform operation, such as memory load from forbidden memory address
2. Fault is not immediately detected, continue execution of following instructions
3. Processor detects fault, squashes the instructions
4. Processor cleans up architectural state and should cleanup all micro-architectural state

Meltdown Variant 3 example:

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 51

...
kernel_memory = *(uint8_t*)(kernel_address);
final_kernel_memory = kernel_memory * 4096;
dummy = probe_array[final_kernel_memory];
... Access

kernel_memory
Fault not
caught yet

Continue executing
following instructions

Raise fault and
squash instructions

Covert Channels Usable for Transient Exec. Attacks

The channels can be short-lived or long-lived channels:
• Short-lived channels hold the state for a (relatively) short time and eventually data is lost,

these are typically contention-based channels that require concurrent execution of the victim and
the attacker

• Long-lived channels hold the state for a (relatively) long time

52Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Short-lived channels:

• Execution Ports
• Cache Ports
• Memory Bus
• …

Long-lived channels:

• AVX2 unit
• TLB
• L1, L2 (tag, LRU)
• LLC (tag, LRU)
• Cache Coherence
• Cache Directory
• DRAM row buffer
• …

Covert channels not (yet)
explored in transient
attacks:

• (Random Number
Generators)

• AES or SHA
instructions

• …

Spectre, Meltdown, and Their Variants

• Most Spectre & Meltdown attacks and their variants use transient execution
• Many use cache timing channels to extract the secrets
Different Spectre and Meltdown attack variants:

• Variant 1: Bounds Check Bypass (BCB) Spectre
• Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
• Variant 1.2: Read-only protection bypass (RPB) Spectre
• Variant 2: Branch Target Injection (BTI) Spectre
• Variant 3: Rogue Data Cache Load (RDCL) Meltdown
• Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
• Variant 4: Speculative Store Bypass (SSB) Spectre-NG
• (none) LazyFP State Restore Spectre-NG 3
• Variant 5: Return Mispredict SpectreRSB

• Others: NetSpectre, Foreshadow, SMoTher, SGXSpectre, or SGXPectre
• SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)
• Spectre SWAPGS

53

SGXPectre is also Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

SGXSpectre is Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

Foreshadow is Meltdown type attack that
targets Intel SGX, Foreshadow-NG

targets OS, VM, VMM, SMM; all steal data
from L1 cache

NetSpectre is a Spectre Variant 1 done
over the network with Evict+Reload, also

with AVX covert channel

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

SMoTher is Spectre variant that uses
port-contention in SMT processors to leak

information from a victim process

More Spectre and Meltdown Variants

Micro-architectural Data Sampling (MDS) vulnerabilities:
• Fallout – Store Buffers

• RIDL (Rogue In-Flight Data Load) and ZombieLoad – Line-Fill Buffers and Load Ports

54

Meltdown-type attacks where “faulting load instructions (i.e., loads that have to be re-issued
for either architectural or micro-architectural reasons) may transiently dereference unauthorized
destinations previously brought into the buffers by the current or a sibling logical CPU.”

RIDL exploits the fact that “if the load and store instructions are ambiguous, the processor can
speculatively store-to-load forward the data from the store buffer to the load buffer.”

ZombieLoad exploits the fact “that the fill buffer is accessible by all logical CPUs of a physical
CPU core and that it does not distinguish between processes or privilege levels.”

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Meltdown-type attack which “exploits an optimization that we call Write Transient Forwarding
(WTF), which incorrectly passes values from memory writes to subsequent memory reads”
through the store and load buffers

Classes of Attacks

• Spectre type – attacks which leverage mis-prediction in the processor,
pattern history table (PHT), branch target buffer (BTB), return stack
buffer (RSB), store-to-load forwarding (STL), …

• Meltdown type – attacks which leverage exceptions, especially protection checks that are done
in parallel to actual data access

• Micro-architectural Data Sampling (MDS) type – attacks which leverage in-flight data that is
stored in fill and other buffers, which is forwarded without checking permissions, load-fill buffer
(LFB), or store-to-load forwarding (STL)

Variants:
• Targeting SGX
• Using non-cache based channels

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 55

Types of prediction:
• Data prediction
• Address prediction
• Value prediction

Attack Components

Attacks leveraging transient execution have 4 components:

Microsoft, https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

1. Speculation Primitive
“provides the means for

entering transient
execution down a non-

architectural path”

2. Windowing Gadget
“provides a sufficient
amount of time for

speculative execution
to convey information

through a side
channel”

3. Disclosure Gadget
“provides the means
for communicating

information through a
side channel during

speculative execution”

4. Disclosure Primitive
“provides the means for
reading the information
that was communicated

by the disclosure
gadget”

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 56

Disclosure Primitive

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

Windowing GadgetSpeculation Primitive

Disclosure Gadget

arr1->len is not in cache

cache Flush+Reload
covert channel

e.g.

Speculation Primitives

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) Bounds Check bypass (V1)
• Branch Target Buffer (BTB) Branch Target injection (V2)
• Return Stack Buffer (RSB) SpectreRSB (V5)

• Memory disambiguation prediction Speculative Store Bypass (V4)
• Meltdown-type: transient execution following a CPU exception

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

GP: general protection fault
NM: device not available
BR: bound range exceeded
PF: page fault
U/S: user / supervisor
P: present
R/W: read / write
RSVD: reserved bit
XD: execute disable
PK: memory-protection keys (PKU)

C. Canella, et al., ”A Systematic Evaluation of
Transient Execution Attacks and Defenses”,20181. Speculation Primitive

57

Speculation Primitives – Sample Code

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) -- Bounds Check bypass (V1)
• Branch Target Buffer (BTB) -- Branch Target injection (V2)
• Return Stack Buffer (RSB) -- SpectreRSB (V5)

• Memory disambiguation prediction -- Speculative Store Bypass (V4)

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant 1 Spectre Variant 2
(Attacker pollutes the RSB)

Call F1

...

...

ret

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

F1:

Spectre Variant 5

main:

GADGET:

char sec[16] = ...;

char pub[16] = ...;

char arr2[0x200000] = ...;

char * ptr = sec;

char **slow_ptr = *ptr;

clflush(slow_ptr)

*slow_ptr = pub;

value2 = arr2[(*ptr)<<12];

Spectre Variant 4

Store	“slowly”

Load the value at the same
memory location "quickly”.
“ptr” will get a stale value.

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Speculation Primitives – Sample Code

Meltdown-type: transient execution following a CPU exception

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

GP: general	protection	fault
NM: device	not	available
BR: bound	 range	exceeded	
PF: page	fault

U/S: user/surpervisor
P: present
R/W: read/write
RSVD: reserved	bit
XD: execute	disable
PK: memory-protection	 keys	(PKU)

[M.	Lipp et	al.,	2018]

(rcx = address that leads to exception)

(rbx = probe array)

retry:

mov al, byte [rcx]

shl rax, 0xc

jz retry

mov rbx, qword [rbx + rax]

59

C. Canella, et al., ”A Systematic Evaluation of Transient Execution Attacks and Defenses”, 2018

Windowing Gadget

Windowing gadget is used to create a “window” of time for transient instructions to execute while
the processor resolves prediction or exception:
• Loads from main memory
• Chains of dependent instructions, e.g., floating point operations, AES

E.g.: Spectre v1 :
if (offset < arr1->len) {

unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}

Memory access time determines how
long it takes to resolve the branch

2. Windowing Gadget

Necessary (but not sufficient) success condition:
windowing gadget’s latency > disclosure gadget’s trigger latency

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 60

Disclosure Gadget

1. Load the secret to register
2. Encode the secret into channel

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant1 (Bounds check) Spectre Variant2 (Branch Poisoning)

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

Cache side channel AVX side channel Cache side channel

The code pointed by the arrows is the disclosure gadget:

Transient execution

3. Disclosure Gadget

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 61

More Disclosure Gadgets – SWAPGS

• Most recent disclosure gadget presented by researchers is the SWAPGS instruction
on 64-bit Intel processors

• SWAPGS instruction
• Kernel-level instruction, swap contents of IA32_GS_BASE with IA32_KERNEL_GS_BASE
• GS points to per CPU data structures (user or kernel), IA32_GS_BASE can be updated by user-mode
WRGSBASE instruction

• Disclosure gadgets with SWAPGS instruction
• Scenario 1: SWAPGS not getting speculatively

executed when it should
• Scenario 2: SWAPGS getting speculatively

executed when it shouldn’t

Later use cache-based timing channel to lean information
Securing Processor Architectures Tutorial – ASPLOS 2021

© Jakub Szefer 2021 62

1. test byte ptr [nt!KiKvaShadow],1
2. jne skip_swapgs [4]
3. swapgs
4. mov r10,qword ptr gs:[188h]
5. mov rcx,qword ptr gs:[188h]
6. mov rcx,qword ptr [rcx+220h]
7. mov rcx,qword ptr [rcx+830h]
8. mov qword ptr gs:[270h],rcx

Bitdefender. “Bypassing KPTI Using the Speculative Behavior of the SWAPGS Instruction”, Aug. 2019.

Disclosure Primitives

Two types of disclosure primitives:
• Short-lived or contention-based (hyper-threading / multi-core scenario):

1. Share resource on the fly (e.g., bus, port, cache bank)
2. State change within speculative window (e.g., speculative buffer)

• Long-lived channel:
• Change the state of micro-architecture
• The change remains even after the speculative window
• Micro-architecture components to use:

• D-Cache (L1, L2, L3) (Tag, replacement policy state, Coherence State, Directory), I-cache;
TLB, AVX (power on/off), DRAM Rowbuffer, …

• Encoding method:
• Contention (e.g., cache Prime+Probe)
• Reuse (e.g., cache Flush+Reload)

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

4. Disclosure Primitive

63

Disclosure Primitives – Port Contention

• Execution units and ports are shared between hyper-
threads on the same core

• Port contention affect the timing of execution

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

A. Bhattacharyya, et al., “SMoTherSpectre: exploiting speculative execution through port contention”, 2019
A. C. Aldaya, et al., “Port Contention for Fun and Profit”, 2018

crc32
popcnt

Fig. Probability density function for the timing of an attacker
measuring crc32 operations when running concurrently with a
victim process that speculatively executes a branch which is
conditional to the (secret) value of a register being zero.

port
contention

no port
contention

64

Disclosure Primitives – Cache Coherence State

• The coherence protocol may invalidate cache lines in sharer cores as a result of a speculative
write access request even if the operation is eventually squashed

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

C. Trippel, et al., “MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols”, 2018
F. Yao, et al., “Are Coherence Protocol States Vulnerable to Information Leakage?”, 2018

Gadget:
void victim_function(size_t x) {

if (x < array1_size) {

array2[array1[x] * 512] = 1;

}

}

65

If array2 is initially in shared state or exclusive
state on attacker’s core, after transient access it

transitions to exclusive state on victim’s core,
changing timing of accesses on attacker’s core

Disclosure Primitives – Directory in Non-Inclusive Cache

• Similar to the caches, the directory structure in can be used as covert channel

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

M. Yan, et al. “Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World”, S&P 2019

66

E.g. accessing LLC data creates directory entries,
which may evict L2 entries (in the shared portion)

Disclosure Primitives - AVX Unit States

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

• To save power, the CPU can power down the upper half of the AVX2 unit which is used to
perform operations on 256-bit registers

• The upper half of the unit is powered up as soon as an instruction is executed which uses
256-bit values

• If the unit is not used for more than 1 ms, it is powered down again

Gadget:

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

M. Schwarz, et al., “NetSpectre: Read Arbitrary Memory over Network”, 2018

67

Alternative Speculative Execution Terminology from Intel

• Domain-Bypass Attacks
• Meltdown, MDS,

and newer MDS related attacks

• Cross-Domain Attacks
• Spectre, LVI, and SWAPGS

• In-Domain Attacks
• Spectre and LVI

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 68

Source: https://software.intel.com/security-software-guidance/best-practices/refined-speculative-execution-terminology

Recent Attacks (MDS Related)

• TSX Asynchronous Abort
• In Intel Transactional Synchronization Extensions (TSX) an

asynchronous abort takes place when a different thread accesses
a cache line that is also used within the transactional region

• Immediately after an uncompleted asynchronous abort, certain
speculatively executed loads may read data from internal buffers
and pass it to dependent operations. This can be then used to
infer the value via a cache side channel attack.

• Vector Register Sampling
• Partial data values previously read from a vector register on a

physical core may be propagated into portions of the store buffer
• Malicious software may be able to use vector register sampling to

infer vector data used by previously run software, or to infer vector
data used by software running on a sibling hyperthread

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 69

Intel Best Practices for Security
https://software.intel.com/security-software-guidance/best-practices

Recent Attacks (MDS Related)

• Snoop Assisted L1D Sampling
• Data in a modified cache line that is being returned in response

to a snoop may also be forwarded to a faulting load operation to
a different address that occurs simultaneously

• Malicious adversary may infer modified data in the L1D cache

• Special Register Buffer Data Sampling (SRBDS)
• When RDRAND, RDSEED and EGETKEY instructions are

executed, the data is moved to the core through the special
register mechanism that is susceptible to MDS attacks

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 70

Intel Best Practices for Security
https://software.intel.com/security-software-guidance/best-practices

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 71

Hardware Defenses for Transient Execution Attacks

Serializing Instructions and Software Mitigations

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 72

• Serializing instructions can prevent speculative execution
• LFENCE (x86) will stop younger instructions from executing, even speculatively,

before older instructions have retired
• CSDB (Consumption of Speculative Data Barrier) (Arm) instruction is a memory

barrier that controls Speculative execution and data value prediction

• Insert the instructions in the code to help stop speculation
• E.g. Microsoft's C/C++ Compiler uses static analyzer to select where to insert

LFENCE instructions
• E.g. LLVM includes Intel’s patches for load-hardening mitigations that add LFENCE

• Large overheads for inserting serializing instructions, often cited overheads
>50%, but depends on application and how and where instructions are inserted

Mitigation Techniques for Attacks due to Speculation

1. Prevent or disable speculative execution – addresses Speculation Primitives
• Today there is no user interface for fine grain control of speculation; overheads unclear

2. Limit attackers ability to influence predictor state – addresses Speculation Primitives
• Some proposals exist to add new instructions to minimize ability to affect branch predictor state, etc.

3. Minimize attack window – addresses Windowing Gadgets
• Ultimately would have to improve performance of memory accesses, etc.
• Not clear how to get exhaustive list of all possible windowing gadget types

4. Track sensitive information (information flow tracking) – addresses Disclosure Gadgets
• Stop transient speculation and execution if sensitive data is touched
• Users must define sensitive data

5. Prevent timing channels – addresses Disclosure Primitives
• Add secure caches
• Crate “secure” AVX, etc. Securing Processor Architectures Tutorial – ASPLOS 2021

© Jakub Szefer 2021 73

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigation Techniques for Attacks due to Faults and MDS

Due to Faults:

1. Evaluate fault conditions sooner
• Will impact performance, not always possible

2. Limit access condition check races
• Don’t allow accesses to proceed until relevant access checks are finished

Due to MDS:

1. Prevent Micro-architectural Data Sampling
• Will impact performance, not always possible

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 74

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigations in Micro-architecture: InvisiSpec

• Focus on transient loads in disclosure gadgets
• Unsafe speculative load (USL)

• The load is speculative and may be squashed
• Which should not cause any micro-architecture state changes

visible to the attackers
• Speculative Buffer: a USL loads data into the speculative buffer

(for performance), not into the local cache

• Visibility point of a load
• After which the load can cause micro-architecture state

changes visible to attackers

• Validation or Exposure:
• Validation: the data in the speculative buffer might not be the

latest, a validation is required to maintain memory consistency.
• Exposure: some loads will not violate the memory consistency.

• Limitations: only for covert channels in caches

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

M. Yan, et al., “InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy”, 2018

75

Mitigations in Micro-architecture: SafeSpec

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

• Similar to InvisiSpec, shadow caches and TLBs are proposed to store the micro-architecture
changes by speculative loads temporarily

K. N. Khasawneh, et al., “SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free Speculation”, 2018

76

Mitigations in Micro-architecture: SpecShield

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

“WiP: Isolating Speculative Data to Prevent Transient Execution Attacks” Kristin Barber, et al., HASP 2019 Presentation

77

• Similar to other work key idea to restrict speculative data
use by dependent instructions

• Approach:
• Monitor speculative status of Load instructions
• Forward data to dependents only when “safe”

• Two schemes:
• Conservative – don’t forward data from loads until they reach

the head of the ROB
• Early Resolution Point (Optimized) – all older branches have

resolved and all older loads and stores have had addresses
computed and there are no branch miss-predictions or memory-
access exceptions

C
on

se
rv

at
iv

e
ER

P
(O

pt
im

iz
ed

)

Mitigations in Micro-architecture: ConTExT

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

“ConTExT: Leakage-Free Transient Execution”, Michael Schwarz et al., arXiv 2019

78

• ConTExT (Considerate Transient Execution Technique)
makes the proposal that secrets can enter registers, but
not transiently leave them

• It mitigates the recently found MDS attacks on processor
buffers, such as fill buffers:

• Secret data is ‘tagged’ in memory using extra page table entry
bits to indicate the secure data

• Extra tag bits are added to registers to indicate they contain the
secret data

• The tagged secret data cannot be used during transient
execution

Mitigations in Micro-architecture: Conditional Speculation

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

“Conditional Speculation: An Effective Approach to Safeguard Out-of-OrderExecution Against Spectre Attacks”, Peinan Li et al., HPCA 2019

79

• Introduces security dependence, a new dependence used to
depict the speculative instructions which leak micro-architecture
information

• Security hazard detection was introduced in the issue queue to
identify suspected unsafe instructions with security dependence

• Performance filters:
• Cache-hit based Hazard Filter targets at the speculative

instructions which hit the cache – have to be careful about LRU
• Trusted Page Buffer based Hazard Filter targets at the attacks

which use Flush+Reload type channels or other channels using
shared page, others are assumed safe – but there are many other
channels in the caches

Mitigations in Micro-architecture: EISE

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

“Efficient Invisible Speculative Execution through Selective Delay and Value Prediction”, Christos Sakalis, et al., ISCA 2019.

80

• Efficient Invisible Speculative Execution through selective delay and value
prediction proposes to:

a) (naïve) delay loads until they reach the head of ROB
or (eager) until they will no longer be squashed, similar
to SpecShield and others

b) allow only accesses that hit in the L1 data cache to
proceed – but have to be careful about LRU channels

c) prevent stalls by value predicting the loads that miss
in the L1 – value prediction can leak data values as
well, security of value prediction is not well studied

Mitigation Overheads: Hardware-Only Schemes

• Performance overhead of hardware mitigations of at the micro-architecture level

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021

Performance Loss Benchmark

Fence after each branch (software) 88% SPEC2006

InvisiSpec [M. Yan, et al., 2018] 22% SPEC2006

SafeSpec [K. N. Khasawneh, et al., 2018] 3% improvement
(due to larger effective cache size)

SPEC2017

SpecShield [K. Barber, et al., 2019] 55% (conservative)
18% (ERP)

SPEC2006

ConTExT [M. Schwarz, et al., 2019] 71% (security critical applications)
1% (real-world workloads)

n/a

Conditional Speculation [P. Li, et al., 2019] 6% - 10% (when using their filters) SPEC2006

EISE [C. Sakalis, et al., 2019] 74% naïve, 50% eager, 19% delay-on-
miss, or 11% delay-on-miss + value
prediction

SPEC2006

81

Industry Solutions and Mitigations

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 82

Hardware (x86)

• Indirect Branch Restricted Speculation (IBRS): restricts speculation of indirect branches

• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch predictions from
being controlled by the sibling hyperthread

• Indirect Branch Predictor Barrier (IBPB): ensures that earlier code’s behavior does not control
later indirect branch predictions.

Microarchitectural Optimizations Still Pose Threats

• Threats keep evolving so research
and defenses need to keep up

• “Hiden” microarchtiectural optimizations
and operations expose new security threats

• “Security by obscurity” does not work

• There is need for new interface or contract
between the hardware and software in regards
to the microarchtiectural operation

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 83

End of First Part of the Tutorial

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/

Securing Processor Architectures Tutorial – ASPLOS 2021
© Jakub Szefer 2021 84

Jakub Szefer
Associate Professor
Dept. of Electrical Engineering
Yale University

