
Jakub Szefer
Assistant Professor

Dept. of Electrical Engineering
Yale University

(These slides include some prior slides by Jakub Szefer and Wenjie Xiong from HOST 2019 Tutorial)

ACACES 2019 – July 14th - 20th, 2019
Slides and information available at: https://caslab.csl.yale.edu/tutorials/acaces2019/

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 1

Processor Architecture Security
Part 4: Transient Execution Attacks and Mitigations

Prediction and Speculation in Modern CPUs

Prediction is one of the six key features of modern processor
• Instructions in a processor pipeline have

dependencies on prior instructions which
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible,
prediction is needed if results of prior instruction
are not known yet

• Prediction can be done for:
• Control flow
• Data dependencies
• Actual data (also called value prediction)

• Not just branch prediction: prefetcher, memory disambiguation, …

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 2

Transient Execution Attacks

• Spectre, Meltdown, etc. leverage the instructions that are executed transiently:
1. these transient instructions execute for a short time (e.g. due to mis-speculation),
2. until processor computes that they are not needed, and
3. the pipeline flush occurs and it should discard any architectural effects

of these instructions so
4. architectural state remain as if they never executed, but …

These attacks exploit transient execution to encode secrets through microarchitectural side
effects that can later be recovered by an attacker through a (most often timing based) observation
at the architectural level

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Transient Execution Attacks = Transient Execution + Covert or Side Channel

3

Example: Spectre (v1) – Bounds Check Bypass

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Victim code:

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

da
ta

le
n

da
ta

le
n Secret

Memory Layout
L1 Cache

arr1arr2

addr_s
of

fs
et

offset = addr_s

‘p’ ‘s’ ‘w’ ‘r’ ‘d’

arr2[‘p’] is cached!

Time

Probe array (side channel)

Controlled by the attacker

arr1->len is not in cache

change the cache state

In
st

ru
ct

io
ns

Pr
ed

ic
tio

n

Speculation Window

Cache miss
and

make branch
prediction misprediction

The attacker can then check if arr2[X] is
in the cache. If so, secret = X 4

Example of Spectre variant 1 attack:

Transient Execution – due to Prediction

transient (adjective): lasting only for a short time; impermanent

• Because of prediction, some instructions are executed transiently:
1. Use prediction to begin execution of instruction with unresolved dependency
2. Instruction executes for some amount of time, changing architectural and micro-architectural state
3. Processor detects misprediction, squashes the instructions
4. Processor cleansup architectural state and should cleanup all micro-architectural state

Spectre Variant 1 example:

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 5

if (offset < arr1->len) {
unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}
Cache miss on
arr1->len

Incorrect
prediction

Speculative execution
of if statement

Detect
misprediction

Transient Execution – due to Faults

transient (adjective): lasting only for a short time; impermanent

• Because of faults, some instructions are executed transiently:
1. Perform operation, such as memory load from forbidden memory address
2. Fault is not immediately detected, continue execution of following instructions
3. Processor detects fault, squashes the instructions
4. Processor cleansup architectural state and should cleanup all micro-architectural state

Meltdown Variant 3 example:

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 6

...
kernel_memory = *(uint8_t*)(kernel_address);
final_kernel_memory = kernel_memory * 4096;
dummy = probe_array[final_kernel_memory];
... Access

kernel_memory
Fault not
caught yet

Continue executing
following instructions

Raise fault and
squash instructions

Speculative or Transient Execution Threats

Speculation causes transient execution to exist in modern processors
• During transient execution, processor state is modified
• If state (architectural or micro-architectural) is not properly cleaned up when mispredicted

instructions are squashed, sensitive data can be leaked out

Attacks based on transient execution have two parts:
1. Leverage speculation to execute some code transiently,

which modifies processor state based on some secret value
2. Use a side or covert channel to extract the information from the processor state

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 7

Side and Covert Channels

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.

Processor
Chip

Emoji Image:
https://www.emojione.com/emoji/2668

https://www.emojione.com/emoji/1f469-1f4bc

1. “Sender”
application
runs.

2a. Physical change
or emanation is
created

Cache
2b. Or a change is
made to the state of
the system, such as
modify cache
contents

3. “Receiver” observes
the emanation or state
change

8ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Side and Covert Channels

The channels can be short-lived or long-lived channels:
• Short-lived channels hold the state for a (relatively) short time and eventually data is lost,

these are typically contention-based channels that require concurrent execution of the victim and
the attacker

• Long-lived channels hold the state for a (relatively) long time

Processor
Chip

9ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Short-lived channels:

• Execution Ports
• Cache Ports
• Memory Bus
• …

Long-lived channels:

• AVX2 unit
• TLB
• L1, L2 (tag, LRU)
• LLC (tag, LRU)
• Cache Coherence
• Cache Directory
• DRAM row buffer
• …

Covert channels not (yet)
explored in transient
attacks:

• Random Number
Generators

• …

Spectre

Spectre vulnerability can be used to break isolation between different applications.

1. Attacker “trains” branch predictor
2. If statement in example is executed

(predicted true)
3. Secret data from array1 is used as index to array2

4. Cache state is modified

5. Branch is resolved, processor cleans up the state,
but data is left in cache

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 10

Meltdown

Meltdown vulnerability can be used to break isolation between user applications and the operating
system.

1. Attempt to read data from kernel memory
(mapped into address space of application)

2. Before an exception is raised, following instructions
are speculatively executed

3. Exception is raised, however…

4. Cache state is modified

5. Processor cleans up the state, but data is left in cache

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 11

Spectre, Meltdown, and Their Variants

• Most Spectre & Meltdown attacks and their variants use transient execution
• Many use cache timing channels to extract the secrets

Different Spectre and Meltdown attack variants:
• Variant 1: Bounds Check Bypass (BCB) Spectre
• Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
• Variant 1.2: Read-only protection bypass (RPB) Spectre
• Variant 2: Branch Target Injection (BTI) Spectre
• Variant 3: Rogue Data Cache Load (RDCL) Meltdown
• Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
• Variant 4: Speculative Store Bypass (SSB) Spectre-NG
• (none) LazyFP State Restore Spectre-NG 3
• Variant 5: Return Mispredict SpectreRSB

• Others: NetSpectre, Foreshadow, SMoTher, SGXSpectre, or SGXPectre
• SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)

12

SGXPectre is also Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

SGXSpectre is Spectre Variant 1 or 2
where code outside SGX Enclave can

influence the branch behavior

Foreshadow is Meltdown type attack that
targets Intel SGX, Foreshadow-NG

targets OS, VM, VMM, SMM; all steal data
from L1 cache

NetSpectre is a Spectre Variant 1 done
over the network with Evict+Reload, also

with AVX covert channel

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

SMoTher is Spectre variant that uses
port-contention in SMT processors to leak

information from a victim process

More Spectre and Meltdown Variants

Micro-architectural Data Sampling (MDS) vulnerabilities:
• Fallout – Store Buffers

• RIDL (Rogue In-Flight Data Load) and ZombieLoad – Line-Fill Buffers and Load Ports

13

Meltdown-type attacks where “faulting load instructions (i.e., loads that have to be re-issued
for either architectural or micro-architectural reasons) may transiently dereference unauthorized
destinations previously brought into the buffers by the current or a sibling logical CPU.”

RIDL exploits the fact that “if the load and store instructions are ambiguous, the processor can
speculatively store-to-load forward the data from the store buffer to the load buffer.”

ZombieLoad exploits the fact “that the fill buffer is accessible by all logical CPUs of a physical
CPU core and that it does not distinguish between processes or privilege levels.”

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Meltdown-type attack which “exploits an optimization that we call Write Transient Forwarding
(WTF), which incorrectly passes values from memory writes to subsequent memory reads”
through the store and load buffers

Classes of Attacks

• Spectre type – attacks which leverage mis-prediction in the processor,
pattern history table (PHT), branch target buffer (BTB), return stack
buffer (RSB), store-to-load forwarding (STL), …

• Meltdown type – attacks which leverage exceptions, especially protection checks that are done
in parallel to actual data access

• Micro-architectural Data Sampling (MDS) type – attacks which leverage in-flight data that is
stored in fill and other buffers, which is forwarded without checking permissions, load-fill buffer
(LFB), or store-to-load forwarding (STL)

Variants:
• Targeting SGX
• Using non-cache based channels

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 14

Types of prediction:
• Data prediction
• Address prediction
• Value prediction

Attack Components

Attacks leveraging transient execution have 4 components:

Microsoft, https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

1. Speculation Primitive
“provides the means for

entering transient
execution down a non-

architectural path”

2. Windowing Gadget
“provides a sufficient
amount of time for

speculative execution
to convey information

through a side
channel”

3. Disclosure Gadget
“provides the means
for communicating

information through a
side channel during

speculative execution”

4. Disclosure Primitive
“provides the means for
reading the information
that was communicated

by the disclosure
gadget”

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 15

Disclosure Primitive

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

Windowing GadgetSpeculation Primitive

Disclosure Gadget

arr1->len is not in cache

cache Flush+Reload
covert channel

e.g.

Speculation Primitives

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) Bounds Check bypass (V1)
• Branch Target Buffer (BTB) Branch Target injection (V2)
• Return Stack Buffer (RSB) SpectreRSB (V5)

• Memory disambiguation prediction Speculative Store Bypass (V4)
• Meltdown-type: transient execution following a CPU exception

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

GP: general protection fault
NM: device not available
BR: bound range exceeded
PF: page fault
U/S: user / supervisor
P: present
R/W: read / write
RSVD: reserved bit
XD: execute disable
PK: memory-protection keys (PKU)

C. Canella, et al., ”A Systematic Evaluation of
Transient Execution Attacks and Defenses”,20181. Speculation Primitive

16

Speculation Primitives – Sample Code

• Spectre-type: transient execution after a prediction
• Branch prediction

• Pattern History Table (PHT) -- Bounds Check bypass (V1)
• Branch Target Buffer (BTB) -- Branch Target injection (V2)
• Return Stack Buffer (RSB) -- SpectreRSB (V5)

• Memory disambiguation prediction -- Speculative Store Bypass (V4)

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant 1 Spectre Variant 2
(Attacker pollutes the RSB)

Call F1

...

...

ret

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

F1:

Spectre Variant 5

main:

GADGET:

char sec[16] = ...;

char pub[16] = ...;

char arr2[0x200000] = ...;

char * ptr = sec;

char **slow_ptr = *ptr;

clflush(slow_ptr)

*slow_ptr = pub;

value2 = arr2[(*ptr)<<12];

Spectre Variant 4

Store	“slowly”

Load the value at the same
memory location "quickly”.
“ptr” will get a stale value.

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Speculation Primitives – Sample Code

Meltdown-type: transient execution following a CPU exception

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

GP: general	protection	fault
NM: device	not	available
BR: bound	 range	exceeded	
PF: page	fault

U/S: user/surpervisor
P: present
R/W: read/write
RSVD: reserved	bit
XD: execute	disable
PK: memory-protection	 keys	(PKU)

[M.	Lipp et	al.,	2018]

(rcx = address lead to exception)

(rbx = probe array)

Retry:

mov al, byte [rcx]

shl rax, 0xc

jz retry

Mov rbx, qword [rbx + rax]

18

C. Canella, et al., ”A Systematic Evaluation of Transient Execution Attacks and Defenses”, 2018

Windowing Gadget

Windowing gadget is used to create a “window” of time for transient instructions to execute while
the processor resolves prediction or exception:
• Loads from main memory
• Chains of dependent instructions, e.g., floating point operations, AES

E.g.: Spectre v1 :
if (offset < arr1->len) {

unsigned char value = arr1->data[offset];
unsigned long index = value;
unsigned char value2 = arr2->data[index];
...

}

Memory access time determines how
long it takes to resolve the branch

2. Windowing Gadget

Necessary (but not sufficient) success condition:
speculative window size > disclosure gadget’s triger latency

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 19

Disclosure Gadget

1. Load the secret to register
2. Encode the secret into channel

struct array *arr1 = ...;

struct array *arr2 = ...;

unsigned long offset = ...;

if (offset < arr1->len) {

unsigned char value = arr1->data[offset];

unsigned long index = value;

unsigned char value2 = arr2->data[index];

...

(Attacker trains the BTB

to jump to GADGET)

jmp LEGITIMATE_TRGT

...

mov r8, QWORD PTR[r15]

lea rdi, [r8]

...

GADGET:

Spectre Variant1 (Bounds check) Spectre Variant2 (Branch Poisoning)

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

Cache side channel AVX side channel Cache side channel

The code pointed by the arrows is the disclosure gadget:

Transient execution

3. Disclosure Gadget

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 20

Disclosure Primitives

Two types of disclosure primitives:
• Transient channel (hyper-threading / multi-core scenario):

1. Share resource on the fly (e.g., bus, port, cache bank)
2. or state change within speculative window (e.g., speculative buffer)

• Permanent channel:
• Change the state of micro-architecture
• The change remains even after the speculative window
• Micro-architecture components to use:

• D-Cache (L1, L2, L3) (Tag, replacement policy state, Coherence State, Directory), I-cache;
TLB, AVX (power on/off), DRAM Rowbuffer, …

• Encoding method:
• Contention (e.g., cache Prime+Probe)
• Reuse (e.g., cache Flush+Reload)

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

4. Disclosure Primitive

21

Disclosure Primitives – Port Contention

• Execution units and ports are shared between hyper-
threads on the same core

• Port contention affect the timing of execution

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

A. Bhattacharyya, et al., “SMoTherSpectre: exploiting speculative execution through port contention”, 2019
A. C. Aldaya, et al., “Port Contention for Fun and Profit”, 2018

crc32
popcnt

Fig. Probability density function for the timing of an attacker
measuring crc32 operations when running concurrently with a
victim process that speculatively executes a branch which is
conditional to the (secret) value of a register being zero.

port
contention

no port
contention

22

Disclosure Primitives – Cache Coherence State

• The coherence protocol may invalidate cache lines in sharer cores as a result of a speculative
write access request even if the operation is eventually squashed

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

C. Trippel, et al., “MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols”, 2018
F. Yao, et al., “Are Coherence Protocol States Vulnerable to Information Leakage?”, 2018

Gadget:
void victim_function(size_t x) {

if (x < array1_size) {

array2[array1[x] * 512] = 1;

}

}
-- a write on the remote core makes
the cache coherence state to be
exclusive on the remote core.

23

Disclosure Primitives – Directory in Non-Inclusive Cache

• Similar to the caches, the directory structure in can be used as covert channel

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

M. Yan, et al. “Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World”, S&P 2019

24

Disclosure Primitives - AVX Unit States

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

• To save power, the CPU can power down the upper half of the AVX2 unit which is used to
perform operations on 256-bit registers

• The upper half of the unit is powered up as soon as an instruction is executed which uses
256-bit values

• If the unit is not used for more than 1 ms, it is powered down again

Gadget:

if(x < bitstream_length){

if(bitstream[x])

_mm256_instruction();

}

M. Schwarz, et al., “NetSpectre: Read Arbitrary Memory over Network”, 2018

25

Attack “Parameters”

1. Ability to affect speculation primitive
• Can the attacker affect predictor state?

2. Speculative window size
• The delay from prediction to when misprediction is detected

3. Disclosure gadget’s latency (encoding time)
• Amount of time needed to extract secret information

and put into micro-architectural state
4. Time reference resolution

• How accurate is reference clock
5. Extraction window size

or Disclosure primitive latency
• Amount of time when data can be extracted

6. Retention time of channel
• How long the channel will keep the secret. e.g., AVX channel, 0.5~1ms

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 26

Necessary (but not sufficient) success conditions:
speculative window size > disclosure gadget’s latency
retention time of channel > disclosure prim. latency

Bandwidth of the channel: How fast data
can be transmitted? High-bandwidth is
about 100bps

In-thread, Cross-thread, or Cross-
processor: Do attacker and victim share
same thread, are on sibling threads in
SMT, or can be on separate processors?

Disclosure Gadget Latency

Common transient execution attacks leverage some form of cache-based timing attacks:
1. Disclosure gadget modifies cache state
2. Disclosure primitive uses cache timing to find out how the state changed

Whole disclosure gadget has to fit into speculation window:
• E.g. cache Flush+Reload attack requires to fetch

data from main memory, thus window has
to be bigger than about 300 cycles

• E.g. Foreshadow attack requires fetch from L1 cache,
so few cycles window is enough

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 27

Cache and Memory
Access Latencies

L1 1 cycle
L2 10 cycles
L3 50 cycles
Memory ~300 cycles

Transient Attacks Categorization

A categorization of transient attacks has been
proposed by Canella, et al.:
• Attacks depend on prediction of faults
• No attacks found to depend on traps and aborts

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 28

Image and reference:
“A Systematic Evaluation of Transient Execution Attacks and Defenses”, https://arxiv.org/pdf/1811.05441.pdf

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 29

Transient Attack Mitigation Techniques

Mitigation Techniques for Attacks due to Speculation

1. Prevent or disable speculative execution – addresses Speculation Primitives
• Today there is no user interface for fine grain control of speculation; overheads unclear

2. Limit attackers ability to influence predictor state – addresses Speculation Primitives
• Some proposals exist to add new instructions to minimize ability to affect branch predictor state, etc.

3. Minimize attack window – addresses Windowing Gadgets
• Ultimately would have to improve performance of memory accesses, etc.
• Not clear how to get exhaustive list of all possible windowing gadget types

4. Track sensitive information (information flow tracking) – addresses Disclosure Gadgets
• Stop transient speculation and execution if sensitive data is touched
• Users must define sensitive data

5. Prevent timing channels – addresses Disclosure Primitives
• Add secure caches

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 30

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigation Techniques for Attacks due to Faults

1. Evaluate fault conditions sooner
• Will impact performance, not always possible

2. Limit access condition check races
• Don’t allow accesses to proceed until relevant access checks are finished

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 31

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigation Techniques for MDS

1. Prevent Micro-architectural Data Sampling
• Will impact performance, not always possible

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 32

Transient Execution Attacks = Transient Execution + Covert or Side Channel

Mitigations in Micro-architecture: InvisiSpec

• Focus on transient loads in disclosure gadgets
• Unsafe speculative load (USL)

• The load is speculative and may be squashed
• Which should not cause any micro-architecture state changes

visible to the attackers
• Speculative Buffer: a USL loads data into the speculative buffer

(for performance), not into the local cache

• Visibility point of a load
• After which the load can cause micro-architecture state

changes visible to attackers

• Validation or Exposure:
• Validation: the data in the speculative buffer might not be the

latest, a validation is required to maintain memory consistency.
• Exposure: some loads will not violate the memory consistency.

• Limitations: only for covert channels in caches

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

M. Yan, et al., “InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy”, 2018

33

Mitigations in Micro-architecture: SafeSpec

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

• Similar to InvisiSpec, shadow caches and TLBs are proposed to store the micro-architecture
changes by speculative loads temporarily

K. N. Khasawneh, et al., “SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free Speculation”, 2018

34

Mitigations in Micro-architecture: SpecShield

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

“WiP: Isolating Speculative Data to Prevent Transient Execution Attacks” Kristin Barber, et al., HASP 2019 Presentation

35

• Similar to other work key idea to restrict speculative data
use by dependent instructions

• Approach:
• Monitor speculative status of Load instructions
• Forward data to dependents only when “safe”

• Two schemes:
• Conservative – don’t forward data from loads until they reach

the head of the ROB
• Early Resolution Point (Optimized) – all older branches have

resolved and all older loads and stores have had addresses
computed and No branch mis-predictions or memory-access
exceptions

C
on

se
rv

at
iv

e
ER

P
(O

pt
im

iz
ed

)

Mitigations in Micro-architecture: ConTExT

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

“ConTExT: Leakage-Free Transient Execution”, Michael Schwarz et al., arXiv 2019

36

• ConTExT (Considerate Transient Execution Technique)
makes the proposal that secrets can enter registers, but
not transiently leave them

• It mitigates the recently found MDS attacks on processor
buffers, such as fill buffers:

• Secret data is ‘tagged’ in memory using extra page table entry
bits to indicate the secure data

• Extra tag bits are added to registers to indicate they contain the
secret data

• The tagged secret data cannot be used during transient
execution

Mitigations in Micro-architecture: Conditional Speculation

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

“Conditional Speculation: An Effective Approach to Safeguard Out-of-OrderExecution Against Spectre Attacks”, Peinan Li et al., HPCA 2019

37

• Introduces security dependence, a new dependence used to
depict the speculative instructions which leak micro-architecture
information

• Security hazard detection was introduced in the issue queue to
identify suspected unsafe instructions with security dependence

• Performance filters:
• Cache-hit based Hazard Filter targets at the speculative

instructions which hit the cache – but there are now leaks via LRU!
• Trusted Page Buffer based Hazard Filter targets at the attacks

which use Flush+Reload type channels or other channels using
shared page, others are assumed safe – but there are many other
channels in the caches, and beyond!

Mitigations in Micro-architecture: EISE

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

“Efficient Invisible Speculative Execution throughSelective Delay and Value Prediction”, Christos Sakalis, et al., ISCA 2019.

38

• Efficient Invisible Speculative Execution (EISE acronym added by course author) through
selective delay and value prediction proposes to:

a) (naïve) delay loads until they reach the head of ROB
or (eager) until they will no longer be squashed

b) allow only accesses that hit in the L1 data cache to
proceed – LRU channel issues!

c) prevent stalls by value predicting the loads that miss
in the L1 – value prediction can leak data values as
well, security of value prediction is not well studied

Mitigation Overheads

A summary of overheads has been compiled by Canella, et al.:
• No clear trend in mitigation overheads

• From small negative to upwards of 80% overheads

• There exists lack of standard benchmarks
and platforms for evaluation

• Overheads are application and
micro-architecture specific

Ultimate mitigation: properly clean up
all architectural and micro-architectural state
following transient execution

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 39

Image and reference:
“A Systematic Evaluation of Transient Execution Attacks and Defenses”, https://arxiv.org/pdf/1811.05441.pdf

Mitigation Overheads: Hardware-Only Schemes

• Performance overhead of hardware mitigations of at the micro-architecture level

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

Performance Loss Benchmark

Fence after each branch (software) 88% SPEC2006

InvisiSpec [M. Yan, et al., 2018] 22% SPEC2006

SafeSpec [K. N. Khasawneh, et al., 2018] 3% improvement
(due to larger effective cache size)

SPEC2017

SpecShield [K. Barber, et al., 2019] 55% (conservative)
18% (ERP)

SPEC2006

ConTExT [M. Schwarz, et al., 2019] 71% (security critical applications)
1% (real-world workloads)

n/a

Conditional Speculation [P. Li, et al., 2019] 6% - 10% (when using their filters) SPEC2006

EISE [C. Sakalis, et al., 2019] 74% naïve, 50% eager, 19% delay-
on-miss, or 11% delay-on-miss +
value prediction

SPEC2006

40

Industry Perspective and Solutions

Solutions from industry are not covered in these slides

Likely or already implemented solutions:
• Architecture fixes for Meltdown type bugs
• Architectural fixes for MDS type attacks

(new processors since 2019 already not vulnerable?)
• SGX related fixes (don’t share speculative state

between SGX and outside world)
• Mitigations for L1 cache related timing channels
• InvisiSpec-like Spectre solutions leveraging

ROB information about instruction state

Unlikely or not coming soon solutions:
• New ISA that allows for deeper control of speculation
• New ISA that exposes micro-architectural state
• Tagging of secret data in hardware, information flow approaches

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 41

Available Today:

• Disable or don’t use SMT so state can’t
be shared between two threads

• Use simple processors such as RISC-V
that don’t have performance enhancing
features leading to these attacks

• Don’t run sensitive code on share
hardware

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 42

Transient Attacks and Secure Processors

Transient Execution Attacks on SGX: SgxPectre

• Spectre can attack current secure architectures!

• E.g., Spectre v2 on SGX

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

G. Chen, et al., “SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via Speculative Execution”, 2018

1.	Poison	BTB
(Speculation	Primitive)

2.	Flush	the	victim’s	
branch	target	address	
and	deplete	the	RSB
(Windowing	Gadget)

3.	Set	secret	address	
and	probe	array	address	

4.	Execute	victim	code
(Disclosure	Gadget)

5.	Obtain	secret	from	
covert	channel	
(Disclosure	Primitive)

43

Transient Execution Attacks on SGX: Foreshadow

• Meltdown-type attack can attack current secure architectures!

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

J. Van Bulck, et al., “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, 2018

44

Summary

Prediction is one of the six key features of modern processor
• Instructions in a processor pipeline have

dependencies on prior instructions which
are in the pipeline and may not have finished yet

• To keep pipeline as full as possible,
prediction is needed if results of prior instruction
are not known yet

• Prediction however leads to transient execution

• Contention during transient execution, or improperly cleaned up architectural or micro-
architectural state after transient execution can lead to security attacks.

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 45

Thank You!

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 46

