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Processor Architecture Security
Part 3: Securing Caches, Buffers, 

TLBs, and Directories



Logical Isolation and Memory Hierarchy

• Programs are separated by different address spaces
• Page tables define virtual to physical mapping
• Page tables define kernel vs. user pages

Logical isolation “policy” is in the page tables,
while the processor hardware enforces the policy

• Attackers wanting to break the logical isolation 
focus on the memory hierarchy

• Hardware attacks then focus on caches, TLBs, etc.
to try to cross the isolation boundary and extract information
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Timing Channels in Memory Hierarchy

Most units in the memory hierarchy have been shown to be vulnerable to timing attacks:
• Caches
• Cache Replacement Logic
• Load, Store, and Other Buffers
• TLBs
• Directories
• Prefetches
• Coherence Bus and Coherence State
• Memory Controller and Interconnect
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Securing the Memory Hierarchy

• To prevent timing attacks, “secure” versions of different units in the memory hierarchy have been 
proposed and evaluated

• Most defenses leverage ideas of partitioning and randomization as means 
of defeating the attacks

• Of course can always turn off the different units to eliminate the attacks
• E.g. disable caches to remove cache timing attacks
• This creates possibly large impact on performance

• Some defenses use fuzzy time or add random delays
• Attacker can always get a good timing source, so fuzzy time does not work well
• Random delays simply create more noise, but don’t address root causes of the timing attacks

• Most researchers have focused on secure caches (18 different designs to date!)
• Less studied are TLBs, Buffers, Directories

• Most are related to caches, so secure cache ideas are applied to these
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Secure Processor Caches



Motivation for Design of Secure Caches

• Software defenses are possible (e.g. page coloring or “constant time” software)

• But require software writers to consider timing attacks, and to consider all possible 
attacks, if new attack is demonstrated previously written secure software may no 
longer be secure

• Root cause of timing attacks are caches themselves
• Correctly functioning caches can leak critical secrets like encryption keys when 

the cache is shared between victim and attacker
• Need to consider about different levels for the cache hierarchy, 

different kinds of caches, and cache-like structures

• Secure processor architectures also are affected by timing attacks on caches
• E.g., Intel SGX is vulnerable to some Spectre variants
• E.g., cache timing side-channel attacks are possible in ARM TrustZone
• Secure processors must have secure caches
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Secure Cache Techniques

• Numerous academic proposals have presented different secure cache architectures that aim to 
defend against different cache-based side channels.

• To-date there are 18 secure cache proposals
• They share many similar, key techniques

Secure Cache Techniques:
• Partitioning – isolates the attacker and the victim
• Randomization – randomizes address mapping or data brought into the cache
• Differentiating Sensitive Data – allows fine-grain control of secure data

Goal of all secure caches is to minimize interference 
between victim and attacker or within victim themselves
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Different Types of Interference Between Cache Accesses 

Where the interference happens
• External-interference vulnerabilities

• Interference (e.g., eviction of one party’s data from 
the cache or observing hit of one party’s data) happens 
between the attacker and the victim

• Internal-interference vulnerabilities
• Interference happens within the victim’s process itself

Memory reuse conditions
• Hit-based vulnerabilities

• Cache hit (fast)
• Invalidation of the data when the data is in the cache (slow)

• More operation needed (e.g., write back the dirty data)
• Miss-based vulnerabilities

• Cache miss (slow)
• Invalidation of the data when the data is in the cache (fast) 8
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Partitioning

• Goal: limit the victim and the attacker to be able to only access a limited set of cache blocks
• Partition among security levels: High (higher security level) and Low (lower security level) 

or even more partitions are possible
• Type: Static partitioning v.s. dynamic partitioning
• Partitioning based on:

• Whether the memory access is victim’s or attacker’s
• Where the access is to (e.g., to a sensitive or not memory region)
• Whether the access is due to speculation or out-of-order load or store, 

or it is a normal operations
• Partitioning granularity:

• Cache sets
• Cache lines
• Cache ways
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Partitioning (cont.)

• Partitioning usually targets external interference, but is weak at defending 
internal interference:

• Interference between the attack and the victim partition becomes impossible,
attacks based on these types of external interference will fail

• Interference within victim itself is still possible 
• Wasteful in terms of cache space and degrades system performance

• Dynamic partitioning can help limit the negative performance and space impacts
• At a cost of revealing some side-channel information when adjusting the 

partitioning size for each part
• Does not help with internal interference

• Partitioning in hardware or software
• Hardware partitioning 
• Software partitioning 

• E.g. page-coloring
10
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Randomization

• Randomization aims to inherently de-correlate the relationship among the address and the 
observed timing

• Randomization approaches:
• Randomize the address to cache set mapping
• Random fill
• Random eviction
• Random delay

• Goal: reduce the mutual information from the observed timing to 0
• Some limitations: Requires a fast and secure random number generator, ability to predict the 

random behavior will defeat these technique; may need OS support or interface to specify range
of memory locations being randomized; …
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Information of victim's security 
critical data's address

Observed timing from 
cache hit or miss

Observed timing of flush 
or cache coherence 

operations



Differentiating Sensitive Data

• Allows the victim or management software to explicitly label a certain range of the data of 
victim which they think are sensitive

• Can use new cache-specific instructions to protect the data and limit internal interference 
between victim’s own data

• E.g., it is possible to disable victim’s own flushing of victim’s labeled data, and therefore 
prevent vulnerabilities that leverage flushing

• Has advantage in preventing internal interference
• Allows the designer to have stronger control over security critical data

• How to identify sensitive data and whether this 
identification process is reliable are open 
research questions

• Independent of whether a cache uses 
partitioning or randomization 
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Secure Caches

18 different secure caches exist in literature, 
which use one or more of the below techniques 

to provide the enhanced security:

• Partitioning-based caches
• Static Partition cache, SecVerilog cache, SecDCP cache, Non-Monopolizable (NoMo) cache, 

SHARP cache, Sanctum cache, MI6 cache, Invisispec cache, CATalyst cache, DAWG cache, 
RIC cache, Partition Locked cache

• Randomization-based caches
• SHARP cache, Random Permutation cache, Newcache, Random Fill cache, CEASER cache, 

SCATTER cache, Non-deterministic cache

• Differentiating sensitive data
• CATalyst cache, Partition Locked cache, Random Permutation cache, Newcache, Random Fill 

cache, CEASER cache, Non-deterministic cache
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• Basic design for partition based caches
• Statically partition the cache for victim and attacker 
• Victim and attacker have different cache ways (or sets)
• No eviction of the cache line between different processes is allowed
• Data reuse can be allowed between processes
• Performance is degraded

Static Partition (SP) Cache
He, Z., and Lee, R.. "How secure is your cache against side-channel attacks?", 2017.
Lee, R., et al., "Architecture for protecting critical secrets in microprocessors,” 2005.

Set-Associative Cache

ways

sets

L   H
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• Statically partitioned but allows data sharing
• Partitioned by different ways

• Different instructions are tagged with different labels (H and L)
• H instruction can read H and L partition
• L instruction can only read L partition
• On a read or write miss, H and L instruction can only modify their own partition 

(except that data will be moved from H to L partition for L miss)

h1

1.if (h1) [H]
2.h1=0 [L]

SecVerilog Cache
Zhang, D., Askarov, A., & Myers. "Language-based control and mitigation of timing channels”, 2012.

Observe cache miss

Set-Associative Cache

ways

sets

L   H
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• Build on the SecVerilog cache
• Dynamically partitioned

• Security classes H (High) and L (Low) security, or more
• Partitioned by different ways
• Adjust the ways assigned to L

• Percentage of cache misses for L instructions ⤋ L’s partition size ⤊
• When adjusting ways

• Change from L’s to H’s 
• Cache line is flushed before reallocating

• Change from H’s to L’s 
• H lines remain unmodified 

• Reduce extra performance overhead and protect the confidentiality
• May leak timing information when changing from H’s to L’s

SecDCP Cache
Wang, Y., et al. "SecDCP: secure dynamic cache partitioning for efficient timing channel protection”, 2016.
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• Dynamically partitioned
• Process-reserved ways and unreserved ways
• 𝑁	: number of ways, 𝑀	: number of SMT threads, 𝑌 each thread’s exclusively 

reserved blocks, 𝑌 ∈ [0, 𝑓𝑙𝑜𝑜𝑟(./)]. E.g., 
• NoMo-0: traditional set associative cache
• NoMo- 𝑓𝑙𝑜𝑜𝑟(./): partitions evenly for the different threads and no non-

reserved ways
• NoMo-1:

• When adjusting number of blocks assigned to each thread, 𝑌 blocks are 
invalidated

Non-Monopolizable (NoMo) Cache
Domnitser, L., et al. “Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks”,2012.
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Partitioning-Based Secure Caches vs. Attacks

18

SP cache SecVerilog cache SecDCP cache NoMo cache

external miss-
based attacks ✓ ✓ ~ ✓

internal miss-
based attacks X X X X

external hit-
based attacks X ✓ ✓ X

internal hit-
based attacks X X X X
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• Uses both partitioning and randomization scheme
• Mainly designed to prevent eviction based attacks
• Cache block augmented with the core valid bits 

(CVB, similar to process ID)

• Replacement policy
• Cache hit is allowed among different processes
• Cache misses and data to be evicted following the order:

1. Data not belonging to any current processes
2. Data belonging to the same process
3. Random data in the cache set + an interrupt generated to the OS

• Eviction between different processes becomes random
• Disallow flush (clflush) in the R or X model

• Invalidation using cache coherence is still possible

SHARP Cache

cache line CVB

Yan, M., et al. "Secure hierarchy-aware cache replacement policy (SHARP): Defending against cache-based side channel attacks”, 2017. 
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• Sanctum
• Open-source minimal secure processor
• Provide strong provable isolation of software modules running concurrently and 

sharing resources
• Isolate enclaves (Trusted Software Module equivalent) from each other and OS

• Sanctum cache is a modified cache
• Their changes cover L1 cache, TLB, and last-level cache (LLC)

• L1 cache and TLB
• Security monitor (software) flushes core-private cache lines to achieve isolation

• LLC
• Page-coloring-based cache partitioning ensure per-core isolation between OS 

and enclaves
• Assign each enclave or OS to different DRAM address regions

Sanctum Cache
Costan, V., Ilia L., and Srinivas D., "Sanctum: Minimal hardware extensions for strong software isolation”, 2016.
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• Targets at LLC
• Uses Cache Allocation Technology (CAT) from Intel to do coarse-grained partitioning

• Available for some Intel processors
• Allocates up to 4 different Classes of Services (CoS) for separate cache ways 
• Replacement of cache blocks is only allowed within a certain CoS.
• Partition the cache into secure and non-secure parts

• Uses software to do fine partition
• Secure pages not shared by more than one VM
• Pesudo-locking mechanism pins certain page frames (immediately bring back after eviction)

• Malicious code cannot evict secure pages

CATalyst Cache
Liu, F., et al, "Catalyst: Defeating last-level cache side channel attacks in cloud computing”, 2016.
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• Defends against eviction-based timing-based attacks 
• Targets on LLC
• Cache replacement of inclusive cache

• For normal cache
• Eviction of data in the LLC will cause the same data in L1 cache to be invalidated
• Eviction-based attacks in the higher level cache possible

• Attacker is able to evict victim’s security critical cache line
• RIC cache

• Single relaxed-inclusion bit set
• Corresponding LLC line eviction will not cause the same line in the higher-level 

cache to be invalidated
• Two kinds of data with the bit set

• Read-only data
• Threat private data
• Above two should cover all the critical data for ciphers

Relaxed Inclusion Caches (RIC)
Kayaalp, M., et al, "RIC: relaxed inclusion caches for mitigating LLC side-channel attacks”, 2017. 
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• Dynamically partitioned each cache lines
• Cache line extended with process identifier (ID) and a locking bit (L)
• ID and L are controlled by extending load/store instruction

• ld.lock/ld.unlock & st.lock/st.unlock
• Replacement policy (D: brought in; R: replaced)

Original cache lineIDL

D.data=R.data

1. D.L = 0; R.L = 0
2. D.L = 1; R.L = 0
3. D.L = 1; R.L = 1; D.ID = R.ID

1. D.L = 0; R.L = 1
2. D.L = 1; R.L = 1; D.ID != R.ID

Partition Locked (PL) Cache
Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.
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Partitioning-Based Secure Caches vs. Attacks (cont.)

24

SHARP cache Sanctum cache CATalyst cache RIC cache PL cache

external miss-
based attacks ✓ ✓ ✓ ✓ ✓

internal miss-
based attacks X X ✓ ✓ X

external hit-
based attacks X ✓ ✓ X X

internal hit-
based attacks X X ✓ X X

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019
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Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Uses number of 
assumptions, such 

as pre-loading



• Uses randomization 
• De-correlates the memory address accessing and timing of the cache

• Adds process ID and protection bit (P) extended for each line
• A new permutation table (PT) is used:

• Store each cache set’s pre-computed permuted set number
• Number of tables depends on the number of protected processes

Random Permutation (RP) Cache

Original cache lineIDP

Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.
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• Replacement policy
• Cache hits

• When both process ID and the address are the same
• Cache misses (D: brought in; R: replaced)

• D and R in the same process, have different protection bits
• Arbitrary data of a random cache set S’ is evcted
• D is accessed without caching

• D and R in the different processes
• D is stored in an evicted cache block of S’
• Mapping of S and S’ is swapped

• Other cases
• Normal replacement policy is used

Random Permutation (RP) Cache (cont.)
Wang, Z., and Lee, R.B., "New cache designs for thwarting software cache-based side channel attacks”, 2007.

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 26



• Dynamically randomizes memory-to-cache mapping 
• Maintains a ReMapping Table (RMT)

• Mapping between memory address and RMT
• As direct mapped 

• Index bits of memory address used to look up 
entries in the RMT

• Each cache line has RMT ID and a protection bit (P)
• Cache Access

• Index miss
• Context RMT ID and index bit match

• Tag miss
• Tag matches

• Replacement policy similar to RP cache
• Except no normal replacement for any 

protected-data-related replacing

Newcache Cache

Mapping memory space to the physical cache

Wang, Z., and Lee, R.B., "A novel cache architecture with enhanced performance and security”, 2008.

cache architecture
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• De-correlates cache fills with the memory access 
• Targets on hit-based attacks
• Multiple types of requests

• Normal data: “normal fill”
• Demand request: “nofill”
• Random fill request

• Look up the cache
• Get forwarded to miss queue on a miss
• “random fill” the address calculated by the random fill engine

• Random Fill Engine
• Generate an access within a neighborhood
• Two range registers (RR1 and RR2)

• (LowerBound, Range) or (LowerBound, UpperBound)
• Window size can be customized

Random Fill (RF) Cache

a) block diagram
b) random fill engine

Liu, F., and Lee, R.B., "Random fill cache architecture.”, 2014.
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• Mitigates conflict-based cache attacks 
• When memory access tries to modify the cache state

• The address is encrypted using Low-Latency BlockCipher (LLBC)
• Randomize the cache set it maps
• Scatters the original, possible ordered addresses to different cache sets

• Decrease rate of conflict misses
• Encryption and decryption can be done within 2 cycles using LLBC

• Encryption key will be periodically changed to avoid key reconstruction
• Dynamically change the address remapping
• Improved work to be appeared @ISCA 2019

CEASER Cache
Qureshi, M. K, "CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping”, 2018.
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• Uses cache set randomization to prevent timing-based attacks 
• A mapping function is used to translate memory address and process information to 

cache set indices
• The mapping is different for each program or security domain 

• The mapping function also calculates a different index for each cache way, in a similar 
way to the skewed associative caches 

SCATTER Cache
“Scattercache: Thwarting cache attacks via cache set randomization,” M. Werner, et al., USENIX Security 2019
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• Uses cache access decay to randomize the relation between accessing and timing
• Counters control the decay of a cache block

• Local counter records the interval of its data activeness
• Increased on each global counter clock tick
• When reaching a predefined value

• Corresponding cache line is invalidated
• Non deterministic cache randomly sets local counter’s initial value

• Can lead to different cache hit and miss statistics
• May have larger performance degradation compared with other data-targeted 

secure caches

Non Deterministic Cache
Keramidas, G., et al. "Non deterministic caches: A simple and effective defense against side channel attacks”, 2008.
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Randomization-Based Secure Caches vs. Attacks

32

RP
cache

Newcac
he

RF 
cache

CEASER 
cache

SCATTER
cache

Non-det.
cache

external miss-
based attacks ✓ ✓ X ✓ ✓ O

internal miss-
based attacks X ✓ X ✓ ✓ O

external hit-
based attacks ✓ ✓ ✓ X ~ O

internal hit-
based attacks X X ✓ X X O
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Effectiveness of the randomization-based caches against attacks:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019



• Speculation-related cache
• MI6

• Secure Enclaves in a Speculative Out-of-Order Processor
• Isolation of enclaves (Trusted Software Module equivalent) from each other and OS

• Combination of:
• Sanctum cache’s security feature 
• Disabling speculation during the speculative execution of memory related operations

MI6 Cache
Bourgeat, T., et al. "MI6: Secure Enclaves in a Speculative Out-of-Order Processor”,2018.
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InvisiSpec Cache

• Speculation-related cache
• A speculative buffer (SB) will store the unsafe speculative loads (USL) before 

modifying the cache states 
• Mismatch of data in the SB and the up-to-date values in the cache

• Squashed 
• The core receives possible invalidation from the OS before checking of memory 

consistency model
• No comparison is needed

• Targets on Spectre-like attacks

Yan, M., et al. "Invisispec: Making speculative execution invisible in the cache hierarchy”,2018. 
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• Uses partitioning scheme
• Provides full isolation for hits, misses and metadata between the attacker and the victim
• Cache hits

• When both the cache address tag and domain_id (process ID) associated are the same
• Allows read-only cache lines to be replicated across different domains

• Cache misses
• Victim can only be chosen within the ways belonging to the same domain_id
• Replacement policy’s bits and metadata is updated within the domain selection

• Noninterference property 
• Orthogonal to speculative execution 
• Existing attacks such as Spectre Variant 1 and 2 will not work on a system equipped with 

DAWG

Dynamically Allocated Way Guard (DAWG) Cache
Kiriansky, V., et al. "DAWG: A defense against cache timing attacks in speculative execution processors”, 2018. 
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Speculation-Related Secure Caches vs. Attacks

36

MI6 cache InivisiSpec cache DAWG cache

Normal Speculative Normal Speculative Normal Speculative

external miss-
based attacks ✓ ✓ X ✓ ✓ ✓

internal miss-
based attacks X ✓ X ✓ X X

external hit-
based attacks ✓ ✓ X ✓ ✓ ✓

internal hit-
based attacks X ✓ X ✓ X X
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Effectiveness of the speculation-related caches against attacks:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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• Balance tradeoff between performance and security
• Curse of quantitative computer architecture: focus on performance, area, power numbers, but no 

easy metric for security – designers focus on performance, area, power numbers since they are 
easy to show ”better” design, there is no clear metric to say deign is “more secure” than 
another design

• Evaluation on simulation vs. real machines
• Simulation workloads may not represent real systems, performance impact of

security features is unclear
• Real systems (hardware) can’t be easily modified to add new features and

test security

• How to realize in commercial processors
• Many designs exist, but not in commercial processors

• Formal verification of the secure feature implementations
• Still limited work on truly showing design is secure
• Also, need more work on modelling all possible attacks, 

e.g. the 3-step model

Research Challenges

performance security
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• Various buffers exist in the processor which are used 
to improve performance of caches and TLBs

• Main types of buffers in caches:
• Line Fill Buffer (L1 cache ⟷ L2 cache)
• Load Buffer (core ⟷ cache)
• Store Buffer (core ⟷ cache)
• Write Combining Buffers (for dirty cache lines 

before store completes)
• … (more could be undesclosed)

• Main types of buffers in TLBs:
• Page Walk Cache

Secure Buffers
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• Various buffers store data or memory translation based on the history of the code executed 
on the processor

• Hits and misses in the buffers can potentially be measured and result in timing attacks
• This is different from recent MDS attacks, which abuse the buffers in another way: MDS attacks 

leverage the fact that data from the buffers is sometimes forwarded without proper address 
checking during transient execution

• Towards secure buffers
• No specific academic proposal (yet)
• Partitioning – can partition the buffers, already some are per hardware thread
• Randomization – can randomly evict data from the buffers or randomly bring in data,

may not be possible
• Add new instructions to conditionally disable some of the buffers

Secure Buffers
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• All timing-based channels in microarchitecture pose threats to system security, 
and all should be mitigated

• TLBs are cache-like structures, which exhibit fast and slow timing based on the request type 
and the current contents of the TLB

• Contents of the TLB is affected by past history of executions
• Can leak information about other processes

• Timing variations due to hits and misses exist in TLBs and can be leveraged to build 
practical timing-based attacks:

• TLB timing attacks are triggered by memory translation requests, 
not by direct accesses to data

• TLBs have more complicated logic, compared to caches, 
for supporting various memory page sizes

• Further, defending cache attacks does not protect against TLB attacks

Secure TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 42



• Random Fill Engine and RF TLB microarchitecture.

Secure TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.
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• Regular Set-Associative TLBs can prevent external hit-based vulnerabilities and 
vulnerabilities requiring getting hit for different processes

• Static-Partitioned TLB can prevent more external miss-based vulnerabilities than SA TLB
• Random-Fill TLB can prevent all types of vulnerabilities

• Evaluated on a 3-step model for TLBs; model and list of all attack types are in the cited paper.

Secure TLBs
Deng, S., et al., “Secure TLBs”, ISCA 2019.
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SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C* C C* C C* C
TLB Evict+Probe Vd  Vu  Ad (slow) 0 0 0 0 0 0
TLB Prime+Time Ad  Vu  Vd (slow) 0 0 0 0 0 0
TLB Flush+ Reload Ad  Vu  Aa (fast) 0 0 0 0 0 0
TLB Prime+Probe Ad  Vu  Ad (slow) 0.99 1 0.02 0 0.01 0
TLB Evict+Time Vu  Ad  Vu (slow) 1 1 0.03 0 0 0

TLB Internal Collision Ad  Vu  Va (fast) 1 1 0.98 1 0.01 0
TLB Bernstein’s A�ack Vu  Va  Vu (slow) 0.99 1 0.99 1 0.01 0
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• Directories are used for cache coherence to keep track of the state of the data in the caches
• By forcing directory conflicts, an attacker can evict victim directory entries, which in turn 

triggers the eviction of victim cache lines from private caches
• SecDir re-allocates directory structure to create per-core private directory areas used in a 

victim-cache manner called Victim Directories; the partitioned nature of Victim Directories 
prevents directory interference across cores, defeating directory side-channel attack.

Secure Directories
Deng, S., et al., “Secure TLBs”, ISCA 2019.
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Intel Directory in Skylake CPUs Secure Directory (SecDir)



Mitigation Overheads

• Performance overhead of the different secure components 
and the benchmarks used for the evaluation
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Performance Overhead Benchmark

Secure Buffers n/a n/a

Secure TLBs [S. Deng, et al., 2019] For SR TLB: IPC 1.4%, MPKI 9% SPEC2006

SecDir [M. Yan, et al., 2019] few % (some benchmarks faster 
some slower)

SPEC2006

46



• In response to timing attacks on caches, and other parts of the processor’s memory 
hierarchy, many secure designs have been proposed

• Caches are most-researched, from which we learned about two main defense techniques:
• Partitioning
• Randomization

• The techniques can be applied to other parts of the processor: Buffers, TLBs, and Directories

• Most claim modest overheads of few % on SPEC2006 workloads
• Unclear of overhead on real-life applications

• Other parts of memory hierarchy are still vulnerable: memory bus contention, for example

Summary
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Thank You!

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/
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