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Processor Architecture Security
Part 2: Side and Covert Channels



Side and Covert Channels in Processors

A covert channel is an intentional communication between a sender and a receiver via a medium
not designed to be a communication channel.

In a side channel, the “sender”
in an unsuspecting victim and
the “receiver” is the attacker.
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Side and Covert Channels

Covert Channel – a communication channel that was not intended or designed to transfer 
information, typically leverage unusual methods for communication of information

Side Channel – is similar to a covert channel, but the sender does not intend to communicate 
information to the receiver, rather sending (i.e. leaking) of information is a side effect of the 
implementation and the way the computer hardware or software is used.

• Covert channel is easier to establish, a precursor to side-channel attack
• Differentiate side channel from covert channel depending on who controls the “sender”

Means for transmitting information:
• Timing
• Power
• Thermal emanations
• Electro-magnetic (EM) emanations
• Acoustic emanations 
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Goals of Side and Covert Channels

Goal of side or covert channels is to break the logical protections of the computer system 
and leak confidential or sensitive information.

• Typically attacks on confidentiality (leak data from secure to insecure)
• All attacks fall in this category, they establish a channel to exfiltrate information

• Could be used in “reverse” to attack integrity (insecure data leaks to, and affects secure data)
• Power, thermal, or EM fault attacks can also fall in this category

• Beyond leaking data:
• Leak control flow or execution patterns
• Leak memory access patterns
• Leak hardware usage patterns

• For timing channels, goal is to break the logical isolation of the memory protection system, 
e.g. leak information between two processes
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Channels: Victim-to-Attacker and Attacker-to-Victim

Typically a channel is from an unsuspecting victim to an attacker:
• Goal is to extract some information from victim
• Victim does not observe any execution behavior change

A channel can also exist from attacker to victim:
• Attacker’s behavior can ”send” some information to the victim
• The information, in form of processor state for example, affects

how the victim behaves unbeknownst to them
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E.g. modulate branch predictor state 
to affect execution of the victim



Distance: small
(0m or Physical Connection)

Power channels require physical connection to
measure the power consumed by the CPU (assuming
there is no on-chip sensor that can be abused to get
power measurements).

Side and Covert Channels and Physical Proximity
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Distance: medium
(emanations signal range)

Thermal, acoustic, and EM emanation based
channels allow for remote signal collection, but
depend on strength of the transmitter and type of
emanation.

Distance: infinity
(assuming network connection)

Timing channels don’t require
measurement equipment, only
attacker can run code on victim
(not even always needed, c.f.
AVX-based channel used in
NetSpectre) and have network
connection.



Sources of Timing Side Channels

Six source of timing channels that can lead to attacks:
1. Instruction with Different Execution Timing – Execution of different instructions takes 

different amount of time (e.g. ADD vs. FPMUL)

2. Variable Instruction Timing – Execution of a specific instruction takes different time (e.g. AVX 
instructions are fast or slow when AVX is powered on and off, respectively)

3. Functional Unit Contention – Sharing of hardware leads to contention, whether a program can 
use some hardware leaks information about other programs

4. Stateful Functional Units – Program’s behavior can affect state of the functional units, and 
other programs can observe the output (which depends on the state)

5. Prediction Units – Prediction units can be used to build timing channels, this is different from 
prediction units being used as part of transient attacks

6. Memory Hierarchy – Data caching creates fast and slow execution paths, leading to timing 
differences depending on whether data is in the cache or not
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Timing Channels Inside a Processor

Many components of a modern processor pipeline can contribute to timing channels.
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Instruction with Different Execution Timing

Computer architecture principles of pipelining and making common case fast drive processor 
designs where certain operations take more time than others – program execution timing may reveal 
which instruction was used.
• Multi-cycle floating point operations vs. single cycle addition
• Execution time of a piece of code depends on the types of instructions it uses, especially, between 

different runs of software can distinguish from timing if different instructions were executed

Constant time software implementations strive to choose instructions to try to make software run in 
constant time independent of any secret values
• Instructions with different execution timing are easiest to deal with
• Other sources of timing differences make it more difficult or even not possible to make software 

run in constant time
• Note, ”constant time” is not always same time, just that time is independent of secret values
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Variable Instruction Timing

For a specific instruction, its timing depends on the state of the processor.  Different state, or 
different execution history of instructions, affect timing of certain instructions:
• Memory loads and stores: memory access hitting in the cache vs. 

memory access going to DRAM
• Multimedia instructions: whether AVX unit is powered on or not affects timing
• Reading from special registers such as RNG: random number generator slows down if it is used 

a lot and entropy drops
• Instructions that trigger some state cleanup, e.g. interrupt latency for SGX enclaves depends 

on amount of data processor has to clean up and secure before handling the interrupt
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Functional Unit Contention

Functional units within processor are re-used or shared to save on area and cost of the processor 
resulting in varying program execution.
• Contention for functional units causes execution time differences

Spatial or Temporal Multiplexing allows to dedicate part of the processor for exclusive use by an 
application
• Negative performance impact or need to duplicate hardware
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Stateful Functional Units

Many functional units inside the processor keep some history of past execution and use the 
information for prediction purposes. 
• Execution time or other output may depend on the state of the functional unit
• If functional unit is shared, other programs can guess the state (and thus the history)
• E.g. caches, branch predator, prefetcher, etc.

Flushing state can erase the history.
• Not really supported today
• Will have negative performance impact
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Prediction Units

Prediction units can be used to build timing channels, this is different from prediction units being 
used as part of transient attacks.

• The prediction units make prediction based on history of executed instructions 
and the processor’s state

• The prediction units are often shared between threads running on the same core
• Victim’s or sender’s execution history can affect the prediction observed by the attacker 

thread, and the attacker observe the timing difference
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Memory Hierarchy

Memory hierarchy aims to improve system performance by hiding memory access latency 
(creating fast and slow executions paths); and most parts of the hierarchy area a shared resource.
• Caches

• Inclusive caches, Non-inclusive caches,
Exclusive caches

• Different cache levels: L1, L2, LLC

• Cache Replacement Logic
• Load, Store, and Other Buffers
• TLBs
• Directories
• Prefetches
• Coherence Bus and Coherence State
• Memory Controller and Interconnect
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Timing Channels in Caches



Cache Timing Attacks Continue to Raise Concerns
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• Cache timing attacks have a long history, but the research on attacks and defenses
is still a very active field

• Timing attacks using caches, and
other cache-like structures, often
target cryptographic software

• Very difficult to write “constant time”
software, so attacks are still potent

• Attacks can achieve quite high
bandwidth in idealized settings,
about 1Mbps or more



Cache Timing Attacks Continue to Raise Concerns
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• There is renewed interest in timing attacks due to Transient Execution Attacks
• Most of them use transient executions and leverage cache timing attacks
• Variants using cache timing attacks (side or covert channels):

Variant 1: Bounds Check Bypass (BCB) Spectre
Variant 1.1: Bounds Check Bypass Store (BCBS) Spectre-NG
Variant 1.2: Read-only protection bypass (RPB) Spectre
Variant 2: Branch Target Injection (BTI) Spectre
Variant 3: Rogue Data Cache Load (RDCL) Meltdown 
Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
Variant 4: Speculative Store Bypass (SSB) Spectre-NG
(none) LazyFP State Restore Spectre-NG 3
Variant 5: Return Mispredict SpectreRSB

NetSpectre, Foreshadow, SGXSpectre, or SGXPectre
SpectrePrime and MeltdownPrime (both use Prime+Probe instead of original Flush+Reload cache attack)

And more…



Cache Timing Attacks

• Attacker and Victim
• Victim (holds security critical data)
• Attacker (attempts to learn the data)

• Attack requirement
• Attacker has ability to monitor timing of cache operations made by the victim or by self
• Can control or trigger victim to do some operations using sensitive data

• Operations having timing differences
• Memory accesses: load, store
• Data invalidation: different flushes (clflush, etc.), cache coherence

• Side-Channel vs. Covert-Channel Attack
• Side channel: victim is not cooperating
• Covert channel: victim (sender) works with attacker – easier to realize and higher bandwidth

• Many Known Attacks: Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision Attack
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Cache Eviction Sets

• Eviction Set: groups of virtual addresses that map to the same cache set

• Many micro-architectural attacks rely on the capability of an attacker to efficiently find eviction 
sets (cache timing channels, Rowhammer attacks, and transient execution attacks, which often 
use cache timing attacks)

• Cache designs affecting eviction sets:
• Cache is divided into number of sets, each set has way number of cache blocks (also called lines)
• Each set uses a replacement policy, LRU, PseudoLRU, FIFO, or even dynamic policies in Intel chips
• Caches can be inclusive, exclusive, or non-inclusive
• Virtually or physically indexed
• Caches can be sliced, LLC is divided into slices distributed among cores, cache set to slice mapping is 

undocumented
• Academic proposals for randomized caches or skewed caches don’t have usual set-associative designs

• Tool for finding eviction sets: https://github.com/cgvwzq/evsets
• Have not used the tool, but want to promote development and use of such tools

19ACACES Course on Processor Architecture Security
© Jakub Szefer 2019

“Theory and Practice of Finding Eviction Sets”, P. Vila, et al., arXiv 2018.



Prime-Probe Attacks
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L2

Attacker
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Data sharing 
is not needed
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Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006. 



Flush-Reload Attack
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Yarom, Y., & Falkner, K. “FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack”, 2014. 



Evict-Time Attack
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is not needed
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Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006. 



Cache Collision Attack
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Data sharing 
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Bonneau, J., & Mironov, I. “Cache-collision timing attacks against AES”, 2006. 



Similar Attacks on Cache-Like Structures

Timing attacks do not only leverage caches, but any cache-like structure with varying timing (due to 
hits or missies in the structure) can be vulnerable to timing attacks

Instruction or Translation Look-aside
Data Cache Buffer (TLB)

Branch Target Buffer Return Stack Buffer
(BTB) (RSB)

24

Typical attacks:
Cache: Bonneau, J., & Mironov, I, “Cache-collision timing attacks against AES”, 2006
TLB: Gras, B., Razavi, K., Bos, H., & Giuffrida, C, “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with {TLB} Attacks”, 2018
BTB: Evtyushkin, D., Riley, R., Abu-Ghazaleh, N. C., & Ponomarev, D, “Branchscope: A new side-channel attack on directional branch predictor”, 2018
RSB: Koruyeh, E. M., Khasawneh, K. N., Song, C., & Abu-Ghazaleh, N., “Spectre returns! speculation attacks using the return stack buffer”, 2018
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All Possible Timing Attacks in Caches



A Three-Step Model for Cache Timing Attack Modeling

Observation:
• All the existing cache timing attacks within three memory operations à three-step model
• Cache replacement policy the same to each cache block à focus on one cache block

The Three-Step Single-Cache-Block-Access Model

• Analyzed possible states of the cache block + used cache three-step simulator and reduction rules 
derive all the effective vulnerabilities

• There are 72 possible cache timing attack types

𝑆𝑡𝑒𝑝1												 ⇝ 													𝑆𝑡𝑒𝑝2										 ⇝ 				𝑆𝑡𝑒𝑝3 (fast/slow)
The initial state of 
the cache block 
set by a memory 

operation

Memory 
operation alters 
the state of the 

cache

Final memory 
operations and 
timing observation
(fast/slow)

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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A Three-Step Model for Cache Timing Attack Modeling

There are 17 possible states for each step in the model:

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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A Three-Step Model for Cache Timing Attack Modeling

• Exhaustively evaluate all 17 (step1) * 17 (step2) * 17 (step3) = 4913 three-step patterns
• Used cache three-step simulator and reduction rules to find all the strong effective vulnerabilities 
• In total 72 strong effective vulnerabilities were derived and presented

“Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, S. Deng, et al., 2019
“Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic”, S. Deng, et al., 2018
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Exhaustive List of Cache Timing Side- Channel Attacks

Prime+
Probe

Flush+
Reload

Evict+
Time

Cache 
Collision
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Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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Understanding All Possible Timing Attacks

• The Prime+Probe, Flush+Reload, Evict+Time, or Cache Collision attacks are just 
some of the possible timing attacks

• Defenders need to understand all possible types of attacks, as attacker just 
needs to find out that works – but defenders need to protect all types of attacks

• A recent 3-step model can be used to understand timing attacks…

…most attacks have been known in literature under various names, but:

• Possible new, untested attacks exist

• Systematic approach to checking for attacks is necessary, not just for caches, but 
TLBs and other cache-like structures.
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Security Micro-Benchmarks for Cache Timing Attacks

• On-going research in Prof. Szefer’s group looks into development of open-source 
benchmarks for quantifying cache timing attacks
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Beyond Classical Cache Channels



Timing Channels due to Other Components

• Cache Replacement Logic – LRU states can be abused for a timing channel, especially cache 
hits modify the LRU state, no misses are required

• Load, Store, and Other Buffers – different buffers can forward data that is in-flight and not in 
caches, this is in addition to recent Micro-architectural Data Sampling attacks

• TLBs – Translation Look-aside Buffers are types of caches with similar vulnerabilities
• Directories – Directory used for tracking cache coherence state is a type of a cache as well
• Prefetches – Prefetchers leverage memory access history to eagerly fetch data and can create 

timing channels
• Coherence Bus and Coherence State – different coherence state of a cache line may affect 

timing, such as flushing or upgrading state
• Memory Controller and Interconnect – memory and interconnect are shared resources 

vulnerable to contention channels
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Classical vs. Speculative Side-Channels

Side channels can now be classified into two categories:
• Classical – which do not require speculative execution
• Speculative – which are based on speculative execution

Difference is victim is not fully in control of 
instructions they execute (i.e. some instructions are
executed speculatively)

Root cause of the attacks remains the same

Defending classical attacks defends speculative
attacks as well, but not the other way around
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State of functional unit is modified by victim
and it can be observed by the attacker via
timing changes

Focusing only on speculative attacks does
not mean classical attacks are prevented,
e.g. defenses for cache-based attacks



Timing Channel Bandwidths

The Orange Book, also called the Trusted Computer System Evaluation Criteria (TCSEC), specifies 
that a channel bandwidth exceeding a rate of 100 bps is a high bandwidth channel. 
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Timing Channel Defense Strategies

Hardware and software based defenses are possible.  Most will result in performance degradation.
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Side Channels as Attack Detectors

Side channels can be used to detect or observe system’s operation
• Measure timing, power, EM, etc. to detect unusual behavior
• Similar to using performance counters
• Attacker doesn’t have a way to prevent the side channels, otherwise the problem of side channels 

would have been solved

Tension between side channels as attack vectors vs. detection tools.
• Side channels are mostly used for attack today
• Desire to eliminate side (and covert) channels – but it precludes use of the channels for defense
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Industry Standards for Evaluating System’s Security

Orange Book or the Trusted Computer System Evaluation Criteria (TCSEC)
• Replaced by Common Criteria
• Standard for assessing the effectiveness of a computer system’s security controls

Common Criteria
• Standard for computer security certification

FIPS 140-2
• Standard defining security levels for cryptogrphic modules
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Timing Side Channels which Use Speculation

• Modern computer architectures gain performance by using prediction mechanisms:
• Successful prediction = fast execution and performance gain
• Mis-prediction = slow execution and performance loss

• The prediction units (e.g., branch predictor, prefetcher, memory disambiguation prediction, etc.) 
make prediction based on prior history of executed instructions and data

• The prediction units are often shared between threads in SMT cores
• Victim’s execution history can affect the prediction observed by the attacker thread, 

and the attacker can observe the timing difference

• This type of side channels are different from the transient executions attacks
• In transient execution attacks, secrets are accessed during mis-prediction
• In timing side channels using speculation victim’s behavior is leaked to the attacker through the mis-

prediction (or lack there of) by the attacker
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Pattern History Table (PHT) : BranchScope

• PHT is shared among all processes on core, 
and is not flushed on context switches

• The branch predictor stores its history in the 
form of a 2-bit saturating counter in a pattern 
history table (PHT)

• The PHT entry used is a simple function of 
the branch address

• Prime+Probe Strategy
• Attacks:

• Covert channels
• Attack SGX enclave code
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D. Evtyushkin, et al., “BranchScope: A New Side-Channel Attack on Directional Branch Predictor”, 2018
D. Evtyushkin, et al., “Covert Channels Through Branch Predictors: A Feasibility Study”, 2015

Code	1.	Pseudo-code	of	the	victim. Code	2.	Pseudo-code	of	the	attacker.
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Branch Target Buffer (BTB): Jump Over ASLR

• The BTB stores target addresses of recently executed branch 
instructions, so that those addresses can be obtained directly 
from a BTB lookup

• Same-Domain Collisions (SDC)
• BTB collisions between two processes executing in the same 

protection domain

• Attacks:
• Attack KASLR (Kernel address space layout randomization)
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D. Evtyushkin, et al., “Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR”, 2016
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Memory Disambiguation: Spoiler Attack

• The processor executes the load speculatively before 
the stores, and forwards the data of a preceding store to 
the load if there is a potential dependency

• The finenet check may be implemented based on 
checking the partial physical address bits

• 1MB aliasing in Intel processors

• Attacks: Leakage of the Physical Address Mapping
• Efficient eviction set finding for Prime+Probe attacks in 

LLC
• Helps to conduct DRAM row conflicts
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S. Islam, et al., “SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks”, 2019
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Related Attacks

Prefetchers have been abused for timing attacks
• E.g. IP-based stride prefetcher, has been used to break

cryptographic algorithm implementations
• Any cryptographic algorithm implementation

that utilizes a lookup table is subject to the attack
• Pattern of accesses in the table will be revealed 

by the data that is prefetched

• Prefetching is a type of prediction or speculation
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Prefetchers in Intel processors

“Unveiling Hardware-based Data Prefetcher, a Hidden Source of Information Leakage”, Y. Shin, et al., CCS 2018



Summary

• Side and covert channels continue to pose danger to processors
• Timing channels don’t require physical access to the machine
• Among others, shared components or ones with behavior based

on prior execution history contribute a lot to timing channels
and are not easy to eliminate (without performance penalty)

• Most units in a processor somehow contribute
to timing channels

• Channels are both classical and ones used
as part of transient execution attacks
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Thank You!

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/
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