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Processor Architecture Security
Part 1: Processor Security

and Secure Processors



Traditional computer architecture has six principles regarding processor design:

• Caching

• Pipelining

• Predicting

• Parallelizing

• Use of indirection

• Specialization

What are principles for securing processors?

E.g. caching frequently used data in a small but fast memory helps hide data
access latencies.

Principles of Computer Architecture

E.g. predict control flow direction or data values before they are actually
computed allows code to execute speculatively.

E.g. processing multiple data in parallel allows for more computation to be
done concurrently.

E.g. virtual to physical mapping abstracts away physical details of the system.

E.g. break processing of an instruction into smaller chunks that can each be
executed sequentially reduces critical path of logic and improves
performance.

E.g. custom instructions use dedicated circuits to implement operations that
otherwise would be slower using regular processor instructions.
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Processor Security and Secure Processors

Processor security focuses on ensuring
Confidentiality, Integrity, and Availability
from attacks by intelligent adversaries
• Reliability is about random errors
• Security is about “smart” attackers

Course focus: architecture and hardware
• Many attacks exist on software
• Focus on attacks abusing hardware

Secure processors:
• Subset of processors with extra security features
• Provide extra logical isolation for software
• Vulnerable to similar attacks as regular processors
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Outline

Part 1: Processor Security and Secure Processors
• Present features of secure processors
• Contrast to conventional processors

Part 2: Side and Covert Channels
• Detail side and covert channel attacks on conventional processors and secure processors
• Focus on timing channels

Part 3: Securing Caches, Buffers, TLBs, and Directories
• Present defenses for timing channels in the memory hierarchy
• Solutions for conventional processors and secure processors

Part 4: Transient Execution Attacks and Mitigations
• Discuss attacks leveraging transient execution (and timing channels) and defenses

for conventional processors and secure processors
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Secure Processor Architectures

Secure Processor Architectures extend a processor with hardware (and related software) features 
for protection of software
• Protected pieces of code and data are now commonly called Enclaves

• But can be also Trusted Software Modules, whole Operating Systems, or Virtual Machines

• Focus on the main processor in the system
• Others focus on co-processors, cryptographic accelerators, or security monitors

• Add more features to isolate secure software from other, untrusted software
• Includes untrusted Operating System or Virtual Machines
• Many also consider physical attacks on memory

• Isolation should cover all types of possible ways for information leaks
• Architectural state
• Micro-architectural state
• Due to spatial or temporal 

sharing of hardware
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Brief History of Secure Processor Architectures

Starting with a typical baseline processor, many secure architectures have been proposed

Starting in late 1990s or early 2000s, academics have shown increased interest in secure processor 
architectures:

XOM (2000), AEGIS (2003), Secret-Protecting (2005), Bastion (2010), 
NoHype (2010), HyperWall (2012), Phantom (2013), CHERI (2014), Sanctum (2016),

Keystone (about 2017), Ascend (2017), MI6 (2018)

Commercial processor architectures have also included security features:

LPAR in IBM mainframes (1970s), Security Processor Vault in Cell Broadband Engine (2000s), 
ARM TrustZone (2000s), Intel TXT & TPM module (2000s), Intel SGX (mid 2010s), 
AMD SEV (late 2010s)
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Baseline (Unsecure) Processor Hardware

Typical computer system with no secure components nor secure processor 
architectures considers all the components as trusted:
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Baseline (Unsecure) Processor Software

Typical computer system uses ring-based protection scheme, which gives most privileges
(and most trust) to the lowest levels of the system software:
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Logical Isolation with New Privilege Levels

Modern computer systems define protections in terms of privilege level or protection rings,
new privilege levels are defined to provide added protections.

Ring 3 Application code, least privileged. 
Rings 2 and 1 Device drivers and other semi-privileged 

code, although rarely used. 
Ring 0 Operating system kernel. 
Ring -1 Hypervisor or virtual machine monitor (VMM), 

most privileged mode that a typical system 
administrator has access to.

Ring -2 System management mode (SMM), 
typically locked down by processor manufacturer 

Ring -3 Platform management engine, retroactively named “ring -3”, 
actually runs on a separate management processor. 

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Extend Linear Trust to the New Protection Levels

The hardware is most privileged as it is the lowest level in the system.

• There is a linear relationship between
protection ring and privilege (lower ring
is more privileged)

• Each component trusts all the software 
“below” it
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Security levels from a lattice:

Add Horizontal Privilege Separation

New privileges can be made orthogonal to existing protection rings.

• E.g. ARM’s TrustZone’s “normal” and “secure” worlds
• Need privilege level (ring number)

and normal / secure privilege

Image:
https://commons.wikimedia.org/wiki/File:Priv_rings.svg
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Breaking Linear Hierarchy of Protection Rings

Examples of architectures that do and don’t have a linear relationship between 
privileges and protection ring level:
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Providing Protections with a Trusted Processor Chip

Key to most secure processor architecture designs is the idea of trusted processor chip as the 
security wherein the protections are provided.
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Limitations of Secure Processors

Threats which are outside the scope of secure processor architectures:

• Bugs or Vulnerabilities in the TCB 
• Hardware Trojans and Supply Chain Attacks 
• Physical Probing and Invasive Attacks

Threats which are underestimated when designing secure processor architectures:
• Side Channel Attacks 

TCB hardware and software is prone to
bugs just like any hardware and software.

Modifications to the processor after the
design phase can be sources of attacks.

At runtime hardware can be probed to
extract information from the physical
realization of the chip.

Information can leak through timing,
power, or electromagnetic emanations
from the implementation
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TEE and TCB

The Trusted Computing Base (TCB) is the set of hardware and software that is responsible
for realizing the TEE:
• TEE is created by a set of all the components in the TCB
• TCB is trusted to correctly implement the protections
• Vulnerability or successful attack on TCB nullifies TEE protections

• TCB is trusted
• TCB may not be trustworthy, if is not verified or is not bug free

The goal of Trusted Execution Environments (TEEs) is to provide protections for 
a piece of code and data from a range of software and hardware attacks.
• Multiple mutually-untrusting pieces of protected code can run on a system at the same time
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TEEs and Software They Protect

Different architectures mainly focus on protecting Trusted Software Modules (a.k.a. enclaves) 
or whole Virtual Machines.
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Protections Offered by Secure Processor Architectures

Security properties for the TEEs that secure processor architectures aim to provide:

• Confidentiality
• Integrity

• Availability is usually not provided usually

Confidentiality and integrity protections are from attacks by other components (and hardware) not in 
the TCB.  There is typically no protection from malicious TCB.

Confidentiality is the prevention of the disclosure of secret or sensitive
information to unauthorized users or entities.

Integrity is the prevention of unauthorized modification of protected
information without detection.
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Protections Categorized by Architecture

Secure processor architectures break the linear relationship (where lower level 
protection ring is more trusted):
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Protecting State of the Protected Software

Protected software’s state is distributed throughout the processor.  All of it needs to be protected 
from the untrusted components and other (untrusted) protected software.

• Protect memory through encryption 
and hashing with integrity trees

• Flush state, or isolate state, 
of functional units in side processor cores

• Isolate state in uncore
and any security modules

• Isolate state in I/O and other subsystems
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Ideal No Side-Effects Execution

Secure processor architectures ideally have no side-effects which are visible to the untrusted 
components whenever protected software is executing.

1. System is in some state
before protected software runs

2. Protected software runs
modifying system state

3. When protected software is 
interrupted or terminates 
the state modifications
are erased
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No Protections from Protected Software

The software (code and data) executing within TEE protections is assumed to be benign
and not malicious:

• Goal of Secure Processor Architectures is to create minimal TCB that realizes a TEE
within which the protected software resides and executes

• Secure Processor Architectures can not protect software if it is buggy or has vulnerabilities

Code bloat endangers invalidating assumptions about benign protected software.

Attacks from within protected software should be defended.
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Hardware TCB as Circuits or Processors

Key parts of the hardware TCB can be implemented as dedicated circuits or
as firmware or other code running on dedicated processor

• Custom logic or hardware
state machine:

• Most academic proposals

• Code running on dedicated
processor:

• Intel ME = ARC processor 
or Intel Quark processor

• AMD PSP = ARM processor

Vulnerabilities in TCB “hardware” can lead 
to attacks that nullify the security protections
offered by the system.
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Ensuring Trustworthy TCB Execution

Trustworthiness of the TCB depends on the ability to monitor the TCB code 
(hardware and software) execution as the system runs.

TCB should be monitored to ensure it is trustworthy.

Monitoring of TCB requires mechanisms to:
• Fingerprint and authenticate TCB code
• Monitor TCB execution
• Protect TCB code (on embedded security processor)

• Virtual Memory, ASLR, …
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Root of Trust for TCB

Security of the system is derived from a root of trust.

• A secret (cryptographic key) 
only accessible to TCB components

• Derive encryption and signing keys
from the root of trust
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Root of Trust and Processor Key

Each processor requires a unique secret.

• Burn in at the factory by the manufacturer
(but implies trust issues with manufacturer
and the supply chain)

• E.g. One-Time Programmable (OTP) fuses

• Use Physically Uncloneable Functions
(but requires reliability)

• Extra hardware to derive keys from PUF
• Mechanisms to generate and distribute

certificates for the key
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Derived Keys and Key Distribution

Derived form the root of trust are signing and verification keys.

• Public key, KPK, for encrypting data 
to be sent to the processor

• Data handled by the TCB

• Signature verification key, KVK, for checking
data signed by the processor

• TCB can sign user keys

• Key distribution for PUF based
designs will be different

• Need infrastructure!
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SMM

SecE

Hypervisor (VMM)

Software Measurement

With an embedded signing key, the software running in the TEE can be “measured” to attest to 
external users what code is running on the system.
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Using Software Measurement

Trusted / Secure / Authenticated Boot:
• Abort boot when wrong measurement is obtained
• Or, continue booting but do not decrypt secrets
• Legitimate software updates will change measurements, may prevent correct boot up
Remote attestation:
• Measure and digitally sign measurements that are sent to remove user
Data sealing (local or remote):
• Only unseal data if correct measurements are obtained
TOC-TOU attacks and measurements:
• Time-of-Check to Time-of-Use (TOC-TOU) attacks leverage the delay between when a 

measurement is taken, and when the component is used
• Cannot easily use hashes to prevent TOC-TOU attacks
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Need for Continuous Monitoring of Protected Software

Continuous monitoring is potential solution to TOC-TOU:

• Constantly measure the system, e.g. performance counters, and look for anomalies
• Requires knowing correct and expected behavior of system
• Can be used for continuous authentication

Attacker can “hide in the noise” if they change the execution of the software slightly and do not affect 
performance counters significantly.
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Sources of Attacks on Memory

Memory is vulnerable to different types of attacks:
a) Untrusted software running no the processor

b) Physical attacks on the memory bus, other devices snooping on the bus, man-in-the-middle
attacks with malicious device

c) Physical attacks on the memory (Coldboot, …)

d) Malicious devices using DMA or other attacks
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Types of Attacks on Memory

Different types of attacks exist (very similar to attacks in network settings):

• Snooping

• Spoofing

• Splicing

• Replay

• Disturbance
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Confidentiality Protection with Encryption

Contents of the memory can be protected with encryption.  Data going out of the CPU is encrypted, 
data coming from memory is decrypted before being used by CPU.

a) Encryption engine (usually AES in CTR mode) encrypts data going out of processor chip
b) Decryption engine decrypts incoming data
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Integrity Protection with Hash Trees

Hash tree (also called Merkle Tree) is a logical three structure, typically a binary tree, where two 
child nodes are hashed together to create parent node; the root node is a hash that depends on 
value of all the leaf nodes.
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Integrity Protection with Hash Trees

Memory blocks can be the leaf nodes in a Merkle Tree, 
the tree root is a hash that depends
on the contents of the memory.
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Integrity Protection with Bonsai Hash Trees

Message Authentication Codes (MACs) can be used instead of hashes, and a smaller
“Bonsai” tree can be constructed.
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Integrity Protection of Selected Memory Regions

• For encryption, type of encryption does not typically depend on memory configuration
• For integrity, the integrity tree needs to consider:

• Protect whole memory
• Protect parts of memory (e.g. per application, per VM, etc.)
• Protect external storage (e.g. data swapped to disk)
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Memory Access Pattern Protection

Snooping attacks can target extracting data (protected with encryption)
or extracting access patterns to learn what a program is doing.
• Easier in Symmetric multiprocessing (SMP) due to shared bus

• Possible in other configuration if there are untrusted components
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Memory Access Pattern Protection

Access patterns (traffic analysis) attacks can be protected with use Oblivious RAM, such as Path 
ORAM.  This is on top of encryption and integrity checking.
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Leveraging 2.5D and 3D Integration

With 2.5D and 3D integration, the memory is brought into the same package as the main processor 
chip.  Further, with embedded DRAM (eDRAM) the memory is on the same chip.
• Potentially probing attacks are more difficult
• Still limited memory (eDRAM around 128MB in 2017)
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Security of Non-Volatile Memories and NVRAMs

• Non-volatile memories (NVMs) can store data even when there is no power
• Non-volatile random-access memory (NVRAM) is a specific type of NVM that is suitable to serve 

as a computer system’s main memory, and replace or augment DRAM

• Many types of NVRAMs:
• ReRAM – based on memristors, stores data in resistance of a dialectric material
• FeRAM – uses ferroelectric material instead of a dialectric material
• MRAM – uses ferromagnetic materials and stores data in resistance of a storage cell
• PCM – typically uses chalcogenide glass where different glass phases have different resistances

Security considerations
• Data remanence makes passive attacks easier (e.g. data extraction)
• Data is maintained after reboot or crash (security state also needs to be correctly restored after 

reboot or crash)
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Features of Systems using NVRAMs

Persistence:
• Data persists across reboots and crashes, possibly with errors
• Need atomicity for data larger than one memory word 

(either all data or no data is “persisted”)
• E.g. Write Pending Queue (WPQ) – memory controller

has non-volatile storage or enough stored charge to write
pending data back to the NV-DIMM or NVRAM

Granularity of persistence:
• Hide non-volatility from the system: simply use memory as DRAM replacement
• Expose non-volatility to the system: allow users to select which data is non-volatile

• Linux support through Direct Access (DAX) since about 2014
• Developed for NV-DIMMs (e.g., battery backed DRAM, but works for NVRAMs)
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Integrity Protection of NVRAMs

• For integrity, the integrity tree needs to additionally consider:
• Atomicity of memory updates for data and related security state (so it is correct after reboot or a crash)
• Which data in NVRAM is to be persisted (i.e. granularity)
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Encrypted, Hashed, Oblivious Access Memory Assumption

Off-chip memory is untrusted and the contents is assumed to be protected from the snooping, 
spoofing, splicing, replay, and disturbance attacks:

• Encryption – snooping and spoofing protection
• Hashing – spoofing, splicing, replay (counters must be used), and disturbance protection 
• Oblivious Access – snooping protection
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Multiprocessor Architectures

Symmetric Multi Processing (SMP) and Distributed Share Memory (DSM) also referred to as
Non-Uniform Memory Access (NUMA) offer two ways of connecting many CPUs together.

SMP DSM / NUMA
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SMP Protections

Encrypt traffic on the bus between processors
• Each source-destination pair can share a hard-coded key
• Or use distribute keys using public key infrastructure (within a computer)

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• Can snoop on the shared memory bus to update the tree root node 

as other processors are doing memory accesses
• Or per-processor tree
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DSM / NUMA Protections

Encrypt traffic on the bus between processors
• Again need a shared key

Use MACs for integrity of messages
• Again, each source-destination pair can share a key

Use Merkle trees for memory protection
• No-longer can snoop on the traffic (DSM is point to point usually)
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Many-core Trust Boundary

Trusted processor chip boundary is reduced in most research focusing on many-core security
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Architecture and Hardware Security Intersection

With many-core chips, the threats architects worry about start to overlap 
with hardware security researchers’ work

• Untrusted 3rd party intellectual property (IP) cores
• Malicious foundry
• Untrusted supply chain

Architecture solutions (add encryption, add hashing, etc.) complement
defenses developed by hardware security experts (split manufacturing, etc.).
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Protected Inter-processor Communication

In addition to the existing assumption about protected memory communication, 
designs with multiple processors or cores assume the inter-processor communication will be 
protected:

• Confidentiality
• Integrity
• Communication pattern protection
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Performance Challenges

Interconnects between processors are very fast:

• E.g. HyperTransport specifies speeds in excess of 50 GB/s
• AES block size is 128 bits
• Encryption would need 3 billion (giga) AES block encryptions or decryptions per second

• Tricks such as counter mode encryption can help
• Only XOR data with a pad
• But need to have or predict counters and generate the pads in time
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Principles of Secure Processor Architecture Design

Four principles for secure processor architecture design based on existing designs and also on 
ideas about what ideal design should look like are:

1. Protect Off-chip Communication and Memory
2. Isolate Processor State among TEE Execution and other Software
3. Allow TCB Introspection
4. Authenticate and Continuously Monitor TEE and TCB

Additional design suggestions:
• Avoid code bloat
• Minimize TCB
• Ensure hardware security (Trojan prevention, supply chain issues, etc.)
• Use formal verification
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Protect Off-chip Communication and Memory

Off-chip components and communication are untrusted, need protection with encryption, hashing, 
access pattern protection.

Open research challenges:
• Performance
• Key distribution
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main memory.
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Isolate Processor State among TEE Execution

When switching among protected software and other software or other protected software, need to 
flush the state, or save and restore it, to prevent one software influencing another.

Open research challenges:
• Performance
• Finding all the state to flush or clean
• Isolate state during concurrent execution
• ISA interface to allow state flushing
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E.g. flushing state helps
defend Spectre and
Meltdown type attacks.
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Allow TCB Introspection

Need to ensure correct execution of TCB, through open access to TCB design, monitoring, 
fingerprinting, and authentication.

Open research challenges:
• ISA interface to introspect TCB
• Area, energy, performance costs

due extra features for introspection
• Leaking information about 

TCB or TEE
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E.g. open TCB design can
minimize attacks on ME or
PSP security engines
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Authenticate and Continuously Monitor TEE and TCB

Monitoring of software running inside TEE, e.g. TSMs or Enclaves, gives assurances about the state 
of the protected software.
Likewise monitoring TCB ensures protections are still in place.

Open research challenges:
• Interface design for monitoring
• Leaking information about TEE
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E.g. continuous monitoring
of a TEE can help prevent
TOC-TOU attacks.
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Pitfalls and Fallacies

• Pitfall: Security by Obscurity 

• Fallacy: Hardware Is Immutable 

• Pitfall: Wrong Threat Model

• Pitfall: Fixed Threat Model

• Pitfall: Use of Outdated or Custom Crypto 

• Pitfall: Not Addressing Side Channels 

• Pitfall: Requiring Zero-Overhead Security

• Pitfall: Code Bloat

• Pitfall: Incorrect Abstraction
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E.g. recent attacks on industry processors.

Most actually realized architectures use a security
processor (e.g. ME or PSP).

E.g. original SGX did not claim side channel
protection, but researchers attacked it.

Most designs are one-size-fits all solutions.

E.g. today’s devices will be in the field for many years,
but do not use post-quantum crypto.
Most architectures underestimate side channels.

Performance-, area-, or energy-only focused designs
ignore security.

E.g. rather than partition a problem, large code pieces
are ran instead TEEs; also TCB gets bigger and
bigger leading to bugs.

Abstraction (e.g. ISA assumptions) does not match
how device or hardware really behaves.
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Pitfalls and Fallacies

• Pitfall: Focus Only on Speculative Attacks

• …
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Defending only speculative attacks does not ensure
classical attacks are also protected



Challenges in Secure Processor Design

A number of challenges remain in research on secure processor designs:
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Thank You!

Related reading…

Jakub Szefer, ”Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/

ACACES Course on Processor Architecture Security
© Jakub Szefer 2019 62


