
Leaking Information Through Cache LRU States

Wenjie Xiong
Yale University

New Haven, CT, USA
wenjie.xiong@yale.edu

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—The Least-Recently Used cache replacement policy
and its variants are widely deployed in modern processors. This
paper shows for the first time in detail that the LRU states of
caches can be used to leak information: any access to a cache
by a sender will modify the LRU state, and the receiver is able
to observe this through a timing measurement. This paper
presents LRU timing-based channels both when the sender
and the receiver have shared memory, e.g., shared library data
pages, and when they are separate processes without shared
memory. In addition, the new LRU timing-based channels are
demonstrated on both Intel and AMD processors in scenarios
where the sender and the receiver are sharing the cache
in both hyper-threaded setting and time-sliced setting. The
transmission rate of the LRU channels can be up to 600Kbps
per cache set in the hyper-threaded setting. Different from the
majority of existing cache channels which require the sender
to trigger cache misses, the new LRU channels work with
the sender only having cache hits, making the channel faster
and more stealthy. This paper also demonstrates that the new
LRU channels can be used in transient execution attacks, e.g.,
Spectre. Further, this paper shows that the LRU channels
pose threats to existing secure cache designs, and this work
demonstrates the LRU channels affect the secure PL cache. The
paper finishes by discussing and evaluating possible defenses.

Keywords-caches, side channels, covert channels, timing-
based channels, replacement policy, LRU

I. INTRODUCTION

Side channels and covert channels in processors have
been gaining renewed attention in recent years [1]. Many
of these channels leverage the timing information. To date,
researchers have shown numerous timing-based channels in
caches, e.g., [2], [3], [4], [5], [6], [7], as well as other
parts of the processor, such as the shared functional units
in simultaneous multithreading (SMT) processors, e.g., [8],
[9], [10], [11], [12], [13], [14], [15]. The canonical example
of timing channels are the channels in caches, where timing
reveals information about cache states. These side channels
and covert channels can be used to leak information, such as
cryptographic keys, e.g., [16], [17], [18], [4], [19]. Further,
many of the variants of the recent Spectre and Meltdown
attacks also use covert channels, in addition to transient
execution, to exfiltrate data, e.g., [20], [21], [22].

In processor caches, the order in which the cache lines
are evicted depends on the cache replacement policy. Nor-
mally, different variants of the Least-Recently Used (LRU)

policy are implemented in modern processors, such as Tree-
PLRU [23] or Bit-PLRU [24]. In a cache, the LRU state is
maintained for each cache set, and it is used to determine
which cache line in the cache set should be evicted when
there is a cache miss causing a cache replacement. The LRU
state is updated on every cache accesses to indicate which
cache line in the set was just accessed. Thus, both cache hits
and misses in the set cause updates to the LRU state.

The basis of the new LRU timing-based channels is the
timing of the cache accesses, as it is affected by the LRU
states. Thus, the LRU channels work even when the sender
only triggers a cache hit, and the receiver later triggers a
possible replacement and then measures the time – unlike
prior attacks, which require a cache miss to be triggered
by the sender. This makes the attacks more stealthy. It may
also allow the attacks to bypass defenses such as based on
performance counters [25] where behavior of cache missies
is monitored. Moreover, lack of required missies for the
sender benefits the transient execution attacks, as only a
small speculation window is required for the sender to
trigger a cache hit, compared to a miss.

The new LRU timing-based channels are also a threat
to many of the existing secure caches proposals, which in
turn are often included as part of secure processor architec-
tures [26]. Numerous secure caches [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37] have been presented,
and they aim to either partition or randomize the victim’s
and the attacker’s cache accesses to defend the cache timing-
based side channels. However, most of the secure caches
have not considered the LRU states and are vulnerable to
the new LRU channel. Especially, this paper demonstrates
the vulnerability to the new LRU-based attacks in the well-
known Partition-Locked (PL) cache [28], and then shows
how to mitigate the attacks in the PL cache.

In this paper, the new LRU timing-based channels are
demonstrated and evaluated in-depth for the first time. The
biggest challenge of the LRU channels is how the receiver
can accurately observe which level of cache a memory
access hits in, i.e., how to measure the timing precisely. This
paper proposes to use dedicated data structures and a pointer
chasing algorithm in the receiver’s program to allow for fine-
grained measurements of the latency of memory accesses.
Further, two algorithms are designed to build LRU timing

channels: both with and without shared memory between the
sender and the receiver, making the LRU channels practical
in a variety of attack scenarios. We evaluated the LRU
channels on a number of commercial processors, in both
hyper-threaded and time-sliced sharing settings, and as well
as a part of Spectre attack. The contributions of this work
are as follows:

• The first detailed presentation of how the LRU states in
caches can be used as a timing-based side and covert
channels for information leaks, both with and without
shared memory between the sender and the receiver.

• Detailed analysis and evaluation of the LRU channels,
including evaluation of the transmission rates and bit
error rates of the LRU covert channels on both Intel and
AMD processors and comparison of the LRU channels
with the existing cache channels from the perspective
of encoding time and cache miss rates.

• Demonstration showing the new LRU channels can be
used as a part of the transient execution attacks.

• Demonstration in gem5 simulator of how the LRU
channels break the security of PL cache [28], and how
it can be fixed.

• Proposal for, and evaluation of, mitigations of the LRU
channels in processor caches.

II. BACKGROUND

A. Timing-Based Cache Channels

There are typically two types of timing-based cache side
and covert channels. One type leverages the contention in
the cache bank [9], [11]. The other leverage the states in the
cache, e.g., tag state (if a certain address is in the cache) [2],
[3], [4], [5] or cache coherence state [7].

Like other side and covert channels leveraging port con-
tention [8], [10], [12], channels leveraging the contention in
the cache bank [9], [11] require the sender and the receiver
to execute concurrently as two hyper-threads.

Channels using cache states leverage the fact that whether
a cache line is available in the cache or not affects the timing
of the cache operations. The sender and the receiver do not
have to be two concurrent hyper-threads. They can be within
one thread or share the cache in time-sliced setting. All
these existing channels, however, require a cache miss by the
sender to change the cache state when the sender is sending
information. For example, in Flush+Reload attacks [2], the
sender will need to access the cache line that was previously
flushed to memory by the receiver. Thus, the access will
cause a cache miss. Meanwhile, any cache access, both
cache hit or miss, can trigger the new LRU attack.

B. Cache Replacement Policy

When a cache line is accessed but it is not in the cache
(i.e., a cache miss), the cache line will be fetched into the
cache set. In this case, another cache line needs to be evicted
from the cache set to make room for the incoming cache line.

The replacement policy selects a cache way from the set to
evict, known as the victim way. The replacement algorithm
uses some state to store the history of accesses to cache
ways in a given set. In L1 cache, the LRU policy and its
variants are most widely used because they give high cache
hit rate. In last level cache (LLC), due to the reduced data
locality, other replacement policies can be used [38], [39].

LRU: The LRU algorithm keeps track of the age of cache
lines. If a cache replacement is needed on a cache miss,
the least recently used cache way (i.e., oldest way) will be
selected to be the victim way and will be evicted. In an N -
way cache, log(N) bits are used per cache line per way to
store the age of the line, for a total of Nlog(N) bits for
each cache set. The “true” LRU algorithm is expensive in
terms of latency (to update LRU states) and area (to store
the age of all the cache lines). So often a variant of a Pseudo
Least-Recently Used (PLRU) is used instead.

Tree-PLRU: The Tree-PLRU [23] policy uses a binary
tree structure to keep track of the cache access history in a
cache set. Each tree node indicates whether the left sub-tree
or the right sub-tree has been less recently used. To find
the victim way, the replacement algorithm starts from the
root and always goes to the less recently used child to find
the leaf node that indicates the victim way. To update the
Tree-PLRU when a cache line in a way is accessed, all the
nodes on the path from the root to the accessed way’s leaf
node are set to point to the child that is not the ancestor of
the accessed cache way. For an N -way cache, the tree has
N − 1 nodes with each taking 1 bit, for a total of N − 1
bits for each cache set.

Bit-PLRU: The Bit-PLRU [24] policy, which is also
called Most Recently Used (MRU) policy, uses one bit to
store the history of each cache way, called MRU-bit. When a
way is accessed, its MRU-bit will be set to 1, indicating the
way is recently used. Once all the ways have the MRU-bit
set to 1, all the MRU-bits are reset to 0. To find a victim, the
way with the lowest index whose MRU-bit is 0 is chosen.
For an N -way cache set, a total of N bits are required. The
logic of the Bit-PLRU is simpler than Tree-PLRU.

III. THREAT MODEL AND ASSUMPTIONS

In this paper, we demonstrate a covert channel, and we
always use the term sender and receiver. A cache covert
channel can be extended to a side channel when the victim
has secret-dependent accesses [2], [3], [4], [5], [9].

We assume N -way set-associative caches and further
assume the cache uses an LRU, Tree-PLRU, or bit-PLRU
replacement algorithm which evicts the least recently used
cache line. Like all other side or covert channels, the LRU
timing-based channel involves two parties: the sender and
the receiver. Following techniques used in [40], [41], we
assume the two parties can be co-located on the same core
to share the L1 cache, as shown in Figure 1, either in an SMT
machine as two hyper-threads running in parallel or as two

S R
Sender Receiver

Core

L1	cache

L2	cache

Phase
Initialization:
Encoding:
Decoding:

Set	0
Set	1

Set	M-1

… … …

way	0	– way	(N-1) LRU
state

Set	LRU	state	to	a	known	state
Sender	changes	the	LRU	state
Receiver	measures	 the	LRU	state

Figure 1: Cache organization and the phases of the new LRU
timing-based side and covert channels.

threads time-sharing the core. The LRU states of the shared
cache can be influenced (by the sender) and observed (by
the receiver). Existing attacks, such as side channels [11],
[12], [13], [14], [15] or Spectre attacks using Branch Target
Buffer (BTB) or Return Stack Buffer (RSB) [20], [42], [43],
show that sharing of the same physical core is practical and
poses real threats for computer systems.

In this paper, we focus on the LRU states in L1 cache. The
LRU channels in the other levels of caches are also possible1.
Depending on the cache architecture, for the sender to update
the LRU states of the lower level of caches, a miss in the
higher cache level is required, e.g., the sender’s accesses to
L1 or L2 caches will not change the replacement state in the
LLC. Especially, L1 is directly accessed by the processor
pipeline and L1 LRU state is updated on every memory
access. Thus, attack in the LRU states of L1 is more stealthy.
And the timing channels in LRU states in L2 or LLC can
be detected or protected by the existing cache side channel
detection or protection techniques in L1 and prefetching the
secure-relevant data to L1.

For all types of attacks, we assume the receiver can extract
useful information from the memory access pattern of the
sender, which modifies the LRU states.

IV. LRU TIMING-BASED CHANNELS

Our new LRU timing-based channels leverage the LRU
states of cache sets. In this section, we discuss how the LRU
state in one cache set can be used to transfer information,
which is referred to as the target set.

The LRU state for each set contains several bits, thus it is
possible to transfer more than 1 bit per target set. However,
limited by the fact that any access to the set will change the
LRU state, we focus on letting the receiver only measure the
set once. Especially, the receiver can observe the timing of
one memory access which can only have two results: a cache
hit or a cache miss. Thus, at most one bit can be transferred

1Concurrently to this submission, a preprint paper [44] has been recently
posed on arXiv on side channels that leverage the replacement policy in
LLC. However, our work demonstrates the LRU channels both with and
without shared memory and without using clflush instruction.

per cache set at one time. To transfer information using an
LRU channel, in general, there are three phases:

Initialization Phase: First, a sequence of memory ac-
cesses is performed so that the LRU state is partially known
to the receiver.

Encoding Phase: To send information, the sender ac-
cesses one or more memory locations mapping to the target
set to change the LRU state. The pattern of memory accesses
depends on the information to be sent. Algorithms in this
paper are designed to be light-weight in the encoding phase,
where the sender only needs to do at most one memory
access to encode the data.

Decoding Phase: The receiver first accesses one or more
memory locations mapping to the target set to potentially
trigger a cache replacement and cause a cache line to be
evicted based on the LRU state. The receiver then observes
the timing of accessing the memory location to learn if the
cache line is evicted and thus infer what the LRU state was.

A. LRU Channel with Shared Memory

Algorithm 1 shows a communication protocol using the
LRU cache states assuming shared memory. The sender and
the receiver first agree on the target cache set they will use
to transfer information. We use the term line 0–N to denote
N+1 different cache lines that map to the target set. This
can be achieved by using data in N+1 different physical
addresses with the same cache index bits but different tag
bits. Note that line n (where n ∈ [0, N]) refers to a cache
line with a certain physical address and not a specific cache
entry, and the name does not imply certain literal physical
address n. The line n could be placed in any cache way in
the set.

In Algorithm 1, the sender and the receiver both need to
use the same physical address (or a physical address within
the cache line) to access cache line 0 in the cache. This
can be achieved by a memory location in a shared dynamic
linked library, as in [2]. Further, m is a 1-bit message to
be sent, and d is a parameter indicating how the receiver’s
accesses are split between the initialization and decoding
phase. Then, the sender and the receiver can build a channel
following Algorithm 1.

For example, when N = 8 and d = 8, the sequence of
memory accesses when sending m = 0 is as follows:

• Init. Phase: 0→ 1→ 2→ 3→ 4→ 5→ 6→ 7
• Encoding Phase: no access
• Decoding Phase: 8→ 0 (miss)

In this 8-way set associative cache, line 0 will be chosen by
the LRU policy as the victim way and will be evicted from
L1 when accessing line 82, and the receiver will observe L1
miss when accessing line 0 in the end.

2With PLRU replacement algorithms, line 0 is not guaranteed to be
evicted. However, as will be evaluated in Section IV-C, line 0 will be
evicted in most of the cases.

Algorithm 1: LRU Channel with Shared Memory
line 0–N : cache lines mapping to the target set
m: a 1-bit message to transfer on the channel
d: a parameter of the receiver
Receiver Operations:
// Step 0: Initialization Phase
for i = 0; i < d; i = i+ 1 do

Access line i;
end
sleep; // To allow the sender code to run here for encoding
// Step 2: Decoding Phase
for i = d; i < N + 1; i = i+ 1 do

Access line i;
end
Access line 0 and time the access;

Sender Operations:
// Step 1: Encoding Phase
if m=1 then

Access line 0;
else

Do not access line 0;
end

Meanwhile, the sequence of memory accesses when send-
ing m = 1 is as follows:

• Init. Phase: 0→ 1→ 2→ 3→ 4→ 5→ 6→ 7
• Encoding Phase: 0 (hit)
• Decoding Phase: 8→ 0 (hit)

During the encoding phase, the access to line 0 will make it
become the newest line in the LRU state, and the remaining
accesses in the decoding phase will not evict it. When
the receiver measures the time of accessing line 0 in the
decoding phase, the receiver will observe an L1 cache hit,
and the receiver can infer that the sender has sent m = 1.

Comparing Algorithm 1 with Flush+Reload attack [2],
both require shared memory, but the LRU channel does not
require explicit flush, and line 0 might always be in the
cache, i.e., the sender might only have cache hits.

B. LRU Channel without Shared Memory

In Algorithm 2, the sender and the receiver do not need
to access any shared memory location. The sender and the
receiver can map memory accesses to the target set by
using proper virtual memory addresses in their own memory
spaces. For performance, L1 cache is usually virtual-indexed
and physical-tagged (VIPT). For example, for an L1 cache
with 64 sets with a cache line size of 64 bytes, bits 6–11
of the address decide the cache set. The receiver can make
sure lines 0–(N−1) map to the same set as line N by using
memory locations with bits 6–11 of the virtual address to be
the same as line N . Then, the sender and the receiver can
build a channel following Algorithm 2.

For example, when N = 8 and d = 4, the order of
memory accesses when sending m = 0 is as follows:

Algorithm 2: LRU Channel without Shared Memory
line 0–N : cache lines mapping to the target set
m: a 1-bit message to transfer on the channel
d: a parameter of the receiver
Receiver Operations:
// Step 0: Initialization Phase
for i = 0; i < d; i = i+ 1 do

Access line i;
end
sleep; // To allow the sender code to run here for encoding
// Step 2: Decoding Phase
for i = d; i < N ; i = i+ 1 do

Access line i;
end
Access line 0 and time the access;

Sender Operations:
// Step 1: Encoding Phase
if m=1 then

Access line N ;
else

Do not access target set;
end

• Init. Phase: 0→ 1→ 2→ 3
• Encoding Phase: no access
• Decoding Phase: 4→ 5→ 6→ 7→ 0 (hit)

The order of memory accesses when sending m = 1 is:

• Init. Phase: 0→ 1→ 2→ 3
• Encoding Phase: 8 (hit, if line 8 is in cache before Init.

Phase)
• Decoding Phase: 4→ 5→ 6→ 7→ 0 (miss)

Whether the sender accesses line 8 or not will change the
LRU state, and in the decoding phase, it will decide which
line will be evicted if the sender’s access to line 7 misses in
the cache. The receiver will observe an L1 cache hit when
accessing line 0 if the sender is sending m = 0, and will
observe an L1 cache miss if the sender is sending m = 1.
Compared to Algorithm 1, there will be more noise in this
channel, as any thread accessing the target set can cause line
0 to be evicted. A miss of line 0 does not necessarily mean
that the sender accessed line 8. The noise is due to no shared
memory, and other known cache side channel attacks (e.g.,
Prime+Probe channel [3]) also have this source of noise.

Comparing Algorithm 2 with Flush+Reload attack, no
shared memory is required. Comparing Algorithm 2 with
Prime+Probe attack [3], in Prime+Probe, the receiver will
access the whole set in both the prime and the probe phases,
and the sender will have a miss between the two phases.
Meanwhile, in Algorithm 2, the receiver does not access the
whole set in either phase. The receiver only needs to measure
the time of one memory access in LRU channel rather than
the time of N memory accesses in the Prime+Probe attack.
Moreover, the sender’s line N might always be in the cache.

Table I: Probability of line 0 being evicted with PLRU.

Init.
Cond.

Num.
Loop
Iter.

LRU Tree-PLRU Bit-PLRU
Seq.
1&2

Seq.
1

Seq.
2

Seq.
1

Seq.
2

R
an

do
m 1 100% 50.4% 62.7% 38.5% 55.5%

2 100% 82.8% 65.6% 55.6% 69.7%
3 100% 99.2% 64.2% 67.3% 80.1%

>= 8 100% 100% ∼62% 100% ∼99%

Se
qu

en
tia

l 1 100% 90.9% 75.6% 60.4% 61.0%
2 100% 100% 65.9% 63.0% 64.1%
3 100% 100% 64.0% 67.3% 70.3%

>= 8 100% 100% ∼62% 100% ∼99%

Table II: Latency of cache access (cycles).

Microarchitecture L1D L2
Intel Sandy Bridge 4-5 12

Intel Skylake 4-5 12
AMD Zen 4-5 17

C. PLRU vs. LRU Replacement Policy

In true LRU, the least recently used way is always chosen
as the victim. Consider the following two memory accesses
sequences in an 8-way cache, with each number representing
accessing a cache line in the set:

• Sequence 1 (access in order): 0→ 1→ 2→ 3→ 4→
5→ 6→ 7→ 8.

• Sequence 2 (access in order with random insertion): 0
(→ x) → 1 (→ x) → 2 (→ x) → 3 (→ x) → 4
(→ x) → 5 (→ x) → 6 (→ x) → 7. Here, line
x is a cache line that maps to this cache set and is
different from lines 0–7. The parentheses indicate the
access might happen or not, and we assume line x will
be accessed at least once.

If true LRU is used, line 0 will be evicted in both sequences.
However, in PLRU, line 0 is not guaranteed to be evicted.
Because PLRU uses fewer state bits to track the memory ac-
cess history, the cache LRU state before the access sequence
could still affect the choice of victim way, and longer history
should be considered when analyzing the PLRU. Consider
the following initial conditions of the cache before being
accessed using the above sequence:

• Random: The cache contains some of the lines 0–7 and
probably other lines, and the initial access order of lines
0–7 is random (e.g., the lines in the set are accessed in
a random order, and probably lines other than 0–7 are
accessed at the same time).

• Sequential: The cache contains some of the lines 0–7
and probably other lines, and the initial access of lines
0–7 is in sequential order (e.g., the set is accessed in
order with the random insertion of lines other than lines
0–7 like Sequence 2).

We implemented an in-house simulator to simulate the
Tree-PLRU [23] and Bit-PLRU [24] replacement policies

r d t s c p
movl %eax , %e s i
movq (% rbx) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / L1 h i t
movq (% r a x) , %r a x / / t a r g e t a d d r e s s t o measure
r d t s c p
s u b l %e s i , %eax

Figure 2: Pointer chasing algorithm used to measure time.

Figure 3: Histogram of the access latencies of seven L1 hits and
the 8th access being an L1 hit or miss when measuring one target
address with pointer chasing on (left) Intel Xeon E5-2690 and
(right) AMD EPYC 7571.

in an 8-way set. First, in the warm-up phases, we create
accesses to the set for each of the possible initial conditions.
Then, Sequence 1 or Sequence 2 is accessed in a loop,
and whether line 0 is in the cache after each sequence is
recorded for each loop iteration. We repeat the above test in
the simulator for 10, 000 times for each configuration, and
present results in Table I.

As shown in Table I, under random initial condition, line
0 might still be kept in the cache with a high probability.
Meanwhile, sequential initial condition gives a high prob-
ability of line 0 being evicted after several loop iterations,
especially for sequence 1 and the Bit-PLRU. Note that true
LRU will always evict line 0. Thus, to build a covert channel
through the LRU states under PLRU policy, the receiver
should ensure the sequential initial condition by placing
line 1–7 in the receiver’s address space and then always
accessing them in order to maximize the success rate.

D. Challenge: Measuring the Latency of L1 Hit and Miss

The major challenge for the receiver is to measure the
memory access time precisely and to distinguish an L1
cache hit and an L1 cache miss (an L2 cache hit or longer).
Table II shows the access latency of L1 hit and L1 miss on
the microarchitectures we tested. L1 hit takes less than 5
CPU cycles, and L2 hit takes about 10–20 CPU cycles. Due
to the noise caused by the serializing and the granularity
of time stamp counter, using rdtscp instruction (or lfence
and rdtsc instructions) to measure the latency of a memory
access cannot distinguish L1 hit from L2 hit.

Thus, we use pointer chasing algorithm and a dedicated
data structure to measure one memory access precisely. In
the pointer chasing algorithm in Figure 2, a linked list, where
each element stores the address of the next elements, is
required. In the code listed, the rbx points to the head of the
linked list. Since the address of the mov instruction depends
on the data fetched from the previous mov instruction, all the
eight accesses are serialized. However, in a side and covert
channel scenario, it is not practical to use Algorithm 1 to
build a linked list containing the sender’s memory access
destination in a read-only shared library.

Instead of a linked list in the shared library, we use a
linked list of 7 elements3 in the receiver’s own memory
space, and let the 7th element contain the memory address
to be measured. In this way, when measuring latency with
the pointer chasing algorithm in Figure 2, it will first access
7 local elements and the target address at the end. Before
running the measurement, the receiver can fetch the first
7 local elements to L1 cache, so the first 7 accesses will
always hit in L1 and the total time depends on whether
the 8th element is in L1 cache or not. To avoid the first
7 elements polluting the LRU state of the target set, the 7
elements can be in one cache set and any other set can be
the target set. Figure 3 shows the result of this measurement
strategy (L1 hit of the first 7 elements and the 8th element
being L1 hit or miss). The difference between an L1 hit and
an L1 miss of the 8th element is distinguishable on the Intel
processors. The latency of L1 hit and L1 miss show different
distributions on the AMD processor.

V. EVALUATION

To evaluate the transmission rate of the LRU channel,
we evaluate it as a covert channel using one target set in
the L1 data cache. As shown in Algorithm 3, the sender
sends each bit of message m for Ts CPU cycles, by running
the sender’s operations (in Algorithm 1 or 2) for Ts in a
loop for each bit in the message that the sender wants to
send. Ts decides the transmission rate. We calculate the
transmission rate with the total number of bits sent divided
by the time (measured by time in Linux). The receiver runs
the receiver’s operations (in Algorithm 1 or 2) every Tr

CPU cycles in a loop and measures the latency using pointer
chasing discussed in Section IV-D.

The evaluation is conducted on both Intel and AMD
processors. The specifications of the tested CPU models
are listed in Table III. We evaluated both LRU Channel
with shared memory and without shared memory presented
in Section IV under both hyper-threaded sharing and time-
sliced sharing settings.

3The size of the linked list does not have to be 7. However, if the size
is small, the noise due to lfence will affect the measurements. If the size
is large, there will be noise in accessing the elements in the linked list.

Algorithm 3: Covert Channel Protocol
m: k-bit message to be sent on the channel
Ts: sender’s sending period
Tr: receiver’s sampling time
TSC: current time stamp counter, obtained by rdtscp
Sender Code:
for i = 0; i < k; i = i+ 1 do

for an amount time Ts do
Step 1: Encoding Phase, encoding m[k]

end
end
Receiver Code:
while True do

Step 0: Initializion Phase
while TSC < Tlast + Tr do

nothing;
end
Tlast =TSC
Step 2: Decoding Phase

end

Table III: Specifications of the tested CPU models.

Model Intel
Xeon
E5-2690

Intel
Xeon
E3-1245
v5

AMD
EPYC
7571

Microarchitecture Sandy
Bridge

Skylake Zen

Number of cores 8 4 N/Aa

L1D size of each core 32KB 32KB 32KB
L1D associativity 8-way 8-way 8-way
Frequency 3.8GHz 3.9GHz 2.5GHz
OS 16.04.1 Ubuntu

aWe use the AMD processor on Amazon AWS EC2 platform. The
CPU model is specific for Amazon AWS. One core was leased
for our experiments.

A. LRU Covert Channels in Intel Processors

1) LRU Channels in Hyper-Threaded Sharing: For the
hyper-threading case, we tested the covert channel when the
sender and the receiver are sharing the same physical core
as two hyper-threads. Each of the sender and the receiver is
a process (i.e., a separate program) in Linux.

LRU Channel with Shared Memory: In Algorithm 1,
shared memory is needed among the sender and the receiver
processes, e.g., achieved by a shared library. Figure 4 (top)
shows the traces observed by the receiver when the sender
is sending 0 and 1 alternatively. When the sender is sending
bit 1, the access time of line 0 by the receiver is shorter, as
is discussed in Section IV-A. Due to the space limit, only
the results on Intel Xeon E5-2690 are shown in Figure 4.
Evaluation on E3-1245 v5 shows similar results, except that
the two processors have different thresholds for L1 hit and
miss latencies. This is due to different latencies for L1 or
L2 cache access on the two. Also, the two processors are
running at different frequencies, and thus, even with the

Figure 4: Example sequences of the receiver’s observation when
the sender is sending 0 and 1 alternatively on Intel Xeon E5-
2690 with a transmission rate of 480Kbps using (top) Algorithm 1
with Tr=600, Ts=6000, and d=8 and (bottom) Algorithm 2 with
Tr=600, Ts=6000 and d=4. The blue dots show the latencies
observed by the receiver, and the red dot line shows the threshold
of the L1 cache hit.

same Ts = 6000, the transmission rate is 480Kbps for E5-
2690 and 580Kbps for E3-1245 v5.

In the evaluation, the sender process sends a random
128-bit binary string repeatedly. There are 3 types of er-
rors in the channel: 1) bit flips, 2) bit insertions, or 3)
bit loss. To evaluate the error rate of the channel, the
edit distance between the sent string and the received
string is calculated using the Wagner-Fischer algorithm [45].
We evaluate Tr = {600, 1000, 3000} cycles, and Ts =
{4500, 6000, 12000, 30000} cycles. The receiver’s opera-
tions of Algorithm 1 in total takes about 560 cycles, includ-
ing logging of the results, and thus, Tr>560. Because the
CPUs have 8-way set-associative caches and the maximum
possible d is 8, we test parameter d = {1, 2, 3, 4, 5, 6, 7, 8}.
Also, the 128-bit string is sent at least 30 times to obtain
the average errors.

Figure 5 (top) shows the error rate of the channel versus
the different transmission rates (i.e., different values of Ts).
As shown in the figure, d does not affect the error rate
much on the E5-2690. This is because, in hyper-threaded
sharing, the sender process and the receiver process execute
in parallel. The sender operation can happen when the
receiver is executing any part of his or her operation, and
d only makes the sender operation more likely to happen
in the sleep part of the receiver’s operation. Tr = 1000
gives a slightly better error rate than Tr = 600. This might
be because more interleaving between the two threads due
to greater Tr and the receiver can observe more sender’s
activity in one measurement. As Tr increases to 3000 cycles,
the error rate increases. In general, the error rate increases
as the transmission rate increases (i.e., Ts decreases). This

is because a greater Ts or a smaller Tr will result in
more measurements for each of the bit transmitted, and
the noise can be canceled out by taking the average of the
measurement results.

LRU Channel without Shared Memory: In Algorithm 2,
shared memory between the sender and the receiver is not
required. Figure 4 (bottom) shows the traces observed by
the receiver. When the sender is sending bit 1, the access
time of line 0 by the receiver is longer, due to the sender’s
access to the same set.

For Algorithm 2, we also evaluate the same set of values
of Tr, Ts, and d. Figure 5 (bottom) shows the error rate
versus the different transmission rates (different values of
Ts) on E5-2690. Compared to LRU channel with shared
memory, the LRU channel without shared memory has more
noise. As indicated in the simulation result of accessing
sequence 2 in Section IV-C, in Tree-PLRU, when the sender
accesses the set, the receiver may not observe a miss in the
end, resulting in a false 0. Also, any access to the same set
(by the other part of the program or other processes on the
core) may result in a false 1. However, these errors usually
occur consecutively in time. So the receiver can detect the
noise if observing a long sequence of all 1 or all 0. We
exclude those traces to obtain Figure 5.

When d = {2, 4, 6}, the error rate is large on E5-2690,
especially for large Tr. This is because even d makes the
Tree-PLRU point to another side of the sub-tree, and the
receiver will not evict line 0 during decoding.

2) LRU Channels in Time-Sliced Sharing: When the
sender and receiver are sharing the same core in a time-
sliced sharing setting, the two processes still share the same
L1 cache. To evaluate the covert channel in a time-sliced
sharing setting, we programmed the sender process to always
send 1 or 0, and the receiver to measure the time of accessing
line 0 every Tr. Figure 6 shows the percentage of cache hit
received for different d and Tr when the sender is sending
0 or 1 using Algorithm 1 on both CPUs tested. Each data
point comes from 1000 measurements.

As is shown in Figure 6, with proper parameters, the
receiver can distinguish between the sender sending 0 and
1. For example, if d = 8 and Tr = 108 cycles, the receiver
will observe almost 100% of L1 cache misses when the
sender is sending 0, and the receiver will observe about
30% of L1 cache hits when the sender is sending 1 on both
Intel processors. The receiver does not observe hits with
a higher probability, because in time-sliced sharing, each
process uses the core for a certain period of time. When
the receiver monitors the sender in a loop, multiple loop
iterations will run within a time-slice period, and only the
first iteration will reflect the sender’s behavior, the other
iterations in the time period run without interleaving with
the sender. Nevertheless, the receiver can still recognize the
message the sender is sending by the percentage of cache
hit received. Assuming 10 measurements are needed when

Figure 5: Transmission error rate (evaluated by edit distance) as a function of the transmission rate (different Ts) for different Tr on
Intel Xeon E5-2690 using (top) Algorithm 1 and (bottom) Algorithm 2.

Figure 6: Percentage of cache hits observed by the receiver on
Intel Xeon E5-2690, when the sender is sending (left) 0 and
(right) 1 using Algorithm 1 under time-sliced sharing.

Tr = 108 to differentiate 30% from <5%, the transmission
rate is about 2.4 bit/s.

Compared to hyper-threaded sharing, much larger Tr is
needed here to have interaction between the two threads
(about 108 cycles for both processors tested). However, if
Tr is too large, the distinguishability decreases, as other
processes might be scheduled during Tr. As is shown in
Figure 6, d = 8 and d = 7 gives the best distinguishability
between the sender sending 0 and 1. This is because Tr

is large, and the time for the receiver’s operations becomes
small compared to the sleep time. Thus, the context switch is
more likely to happen during the sleep time. In Algorithm 1,
a greater d leads to fewer accesses to the target set after the
sleep, and thus, line 0 is less likely to be evicted during
decoding. Such evicted line 0 may result in a false 0.

We also tried to demonstrate Algorithm 2 but failed to
observe any signal from the measurement. We think the
reason is that the Tr should be large to allow interference

between the sender and the receiver, however, any other
processes running during Tr could pollute the target set and
introduce a lot of noise.

B. LRU Covert Channels in AMD Processors

For power-savings, AMD L1 cache has a special linear
address utag and way-predictor (see 2.6.2.2 in [46]). The
utag is a hash of the linear address. For a load, while the
physical address is looked up in TLB, the L1 cache uses the
hash of the linear address to match the utag and determines
which cache way to use in the cache set. When the physical
address is available, only that cache way will be looked up
instead of all 8 ways. So, when the physical address of a
load matches a cache line in the cache, if the utag of that
way is of a different linear address unless the hash of two
linear addresses conflicts, a latency of an L1 miss will be
observed, even though the physical address matches and data
is in L1.

This makes our Algorithm 1 across processes using differ-
ent address spaces limited. If the sender process accesses line
0, the utag of line 0 will be updated with the linear address
of line 0 in the sender’s address space. When the receiver
accesses line 0 and measures the time, unless the hash of
the linear address of line 0 in the sender’s process and in the
receiver’s process conflicts, the receiver will always observe
an L1 cache miss latency no matter if the line 0 is in L1 or
not. However, the hash of utag is not designed for security
and is possible to be reverse-engineered. Furthermore, as
long as the sender and the receiver are in the same address
space, the LRU channel using Algorithm 1 still exists. For
example, it can be used to transfer information in the case
of escaping sandbox in JavaScript [20].

Figure 7: Example sequences of receiver’s observation when the
sender is sending 0 and 1 alternatively using (top) Algorithm 1
and (bottom) Algorithm 2 on AMD EPYC 7571. For Algorithm
1, Tr = 1000, Ts = 105, d = 8, and the transmission rate is
22Kbps. For Algorithm 2, Tr = 1000, Ts = 105, d = 4, and
the transmission rate is 25Kbps. The light blue dot line shows the
moving average.

Figure 8: Percentage of cache hits observed by the receiver on
AMD EPYC 7571, when the sender and receiver are sharing a
core in a time-slice setting and the sender is sending (left) 0 and
(right) 1 using Algorithm 1.

We evaluate the characteristics of the LRU covert channel
on AMD EPYC 7571 processor on Amazon AWS EC2
platform. Figure 7 (top) shows the trace observed by the
receiver, when the receiver and the sender are two threads
in the same address space (using pthreads in C) running
in a hyper-threaded sharing using Algorithm 1. Due to the
coarse granularity of the readout value of the time stamp
counter in AMD, it is hard to identify the signal from the
raw measurements (blue dots). The light blue dot line in
Figure 7 shows the moving average of the latency of 97
measurements, where the 97 is the best fit period of sending
one bit for this trace4. When the sender is sending 0 and

4The fact that the period does not equal to Ts/Tr indicates that threads
do not get scheduled evenly. This might be due to the Amazon EC2
platform, as we observe similar phenomenon on Intel processors on EC2.

1 alternatively, the moving average is a wave-like pattern,
meaning the receiver can receive the message from the
sender. By measuring the total time taken by the receiver
to gather the trace and the period of each bit received, the
effective transmission rate is 22Kbps. Due to the coarser-
granularity of the AMD time stamp counter and lower
frequency, the transmission rate of the channel is about one
order of magnitude lower than that in Intel processors.

We also tested Algorithm 2 under hyper-threaded sharing
on AMD EPYC 7571. Figure 7 (bottom) shows a trace
observed by the receiver. The receiver and the sender are
two programs (in different memory space). Similarly, the
light blue dot line shows the moving average of the latency
of 85 measurements, where the 85 is the best fit, resulting in
an effective transmission rate of 25Kbps. When the sender is
sending 0 and 1 alternatively, the moving average is a wave-
like pattern, meaning the receiver can receive the message
from the sender. The measured latency in Figure 7 (top) and
(bottom) are quite different. This might due to the processor
running at a different frequency for power saving at the time
of measurement.

We further tested Algorithm 1 under time-sliced sharing
setting using pthreads. Figure 8 shows the different results
observed by the receiver when the sender is sending 0 and 1.
The thresholds to decide whether a latency represents hit and
miss are selected such as to maximize the difference between
0 and 1. As shown in Figure 8, when Tr = 108 cycles, the
receiver will receive about 70% of L1 cache hits when the
sender is sending 0, and about 77% of L1 cache hits when
the sender is sending 1. This is enough to differentiate 0
and 1, by examining if percentage of cache hit is below or
above the threshold. The transmission rate is about 0.2 bits
per second. When increasing Tr, more interleaving between
the sender thread and the receiver thread happens during
each measurement taken by the receiver, and the difference
between 0 and 1 gets greater indicating less noise. The
parameter d does not play a significant role. We do not
observe any signal using Algorithm 2 in time-sliced sharing,
similar to the case for Intel.

C. Comparing the Evaluated LRU Channels

Table IV compares the transmission rate per cache set
of the channels tested with different configurations. Hyper-
threading gives a much higher transmission rate than time-
sliced sharing because of more interference between the
sender and the receiver. Under hyper-threading, Algorithm 1
and Algorithm 2 have similar transmission rate. The trans-
mission rate is comparable to other timing channels in
caches [5], [7]. However, recall that Algorithm 2 is easily
affected by noise due to activities of other programs, but
the noise is easy to filter, because the noise activity is
usually of a different frequency. The LRU channel on AMD
processors is about one order of magnitude slower than on

Table IV: Transmission rate of the evaluated LRU channels.

Intel AMD

Hyper-Threaded Algorithm 1 ∼500Kbps ∼20Kbps
Algorithm 2 ∼500Kbps ∼20Kbps

Time-Sliced Algorithm 1 ∼2bps ∼0.2bps
Algorithm 2 – –

Intel processors, due to the coarser-granularity of readout
value of timestamp counter and lower clock frequency.

VI. STEALTHINESS OF LRU CHANNELS

In most of the existing cache side channels, the receiver
measures whether certain cache line exists in the cache
directly. For example, in the Flush+Reload attack [2], the
sender fetches a cache line into the cache, and the receiver
measures directly whether a certain cache line is in the
cache. To build a channel, the cache replacement should
happen due to the sender’s access. Meanwhile, in our LRU
cache channel, the sender’s operations does not need to
cause any cache replacements, because the LRU states are
updated on both cache hits and misses. Instead, the cache
replacement happens when the receiver wants to measure
the LRU state during the decoding phase. This makes the
LRU channel more stealthy on the sender’s side.

Table V shows the encoding time of the sender. The
encoding times in the table include the time to calculate
the victim address. For LRU channels, it is assumed that
the victim line is already in the cache before the attack.
The LRU channels are compared with the Flush+Reload
channels. We implemented two variants, the one denoted
by F+R (mem) uses clflush instruction to flush the data all
the way down to memory, while the on denoted by F+R
(L1) uses eight accesses to the L1 cache set to evict the
data from L1. As is shown in the table, both LRU channels
require less encoding time than F+R channels. Because for
the LRU channels, the sender can encode the message with
cache hits, while the Flush+Reload channels always require
the sender to have cache misses in the target cache level.

Table VI shows the cache miss rate of the sender process
measured using Linux Perf tool from hardware performance
counters5. The results show that the sender of LRU Algo-
rithm 1 and Algorithm 2 have smaller L1 cache miss rate
than the Flush+Reload. To provide a baseline of no attack,
we also show the results when there is only the sender
process running on the physical core (denoted by sender
only) and the results with the sender sharing the physical
core with a benign gcc workload (denoted by sender &
gcc). When there is only the sender process, it has the
smallest L1 miss rate6. When it is sharing the core with

5We do not have access to the hardware performance counter on AMD
machines on Amazon AWS, so only result from local Intel machines are
shown in Table VI.

6The sender only case still has a relatively high L2 and LLC miss rate
due to fewer references to the L2 and LLC.

a benign program, the benign program, e.g., the gcc, will
cause contention in the cache, similar or even bigger to the
contention due to the receiver in the LRU channel. Hence,
if a victim wants to detect a potential cache side channel
attacks using performance counters [47], [48], [49], the LRU
channel is difficult to detect as it may not be distinguished
from the contention due to benign programs.

VII. LRU CHANNELS IN TRANSIENT EXECUTION
ATTACKS

Transient execution attacks, e.g., Spectre, leverage tran-
sient execution to access secret and a covert channel to pass
the secret to the attacker [20], [21], [22]. Currently, most
proof-of-concept codes of transient execution attacks use the
cache Flush+Reload covert channel. Here we demonstrate
that our LRU covert channel also works with Spectre to
retrieve the secret.

Note that here the secret contains more than 1 bit, and
multiple cache sets are used to encode the secret. In practice,
63 cache sets are used (both Intel and AMD processors
tested have 64 sets, remaining one set is for the 7 elements in
the pointer chasing algorithm as discussed in Section IV-D).

The Flush+Reload covert channel needs one memory
access depending on the secret as the sender’s operation.
Meanwhile, as shown in both algorithms in Section IV, the
sender’s operation in the LRU channels also only need one
memory access whose target set depends on the secret. Thus,
the victim code using the LRU channel can be identical to
the disclosure gadget in the Flush+Reload channel. Thus,
when demonstrating transient execution attack using the
LRU channels, we take the Spectre variant 1 attack sample
code [20] and keep the victim (sender) code to be the same,
and change the attacker (receiver) code to use the L1 LRU
channels as the disclosure primitive instead. We are able
to launch the Spectre attack using the LRU channels (both
Algorithm 1 and 2) to observe the secret. Also, Table VII
shows the cache miss rate (including both the victim and
the attacker) during a Spectre attack.

Comparing to the Flush+Reload channel, the advantage
of the LRU disclosure primitive is the short encoding time
(i.e., the sender’s operations), and thus, a smaller speculative
window is required, which may make the attack more
dangerous and harder to defend.

VIII. LRU ATTACK AND SECURE CACHES

Several designs have been proposed to defend the conven-
tional and transient execution attacks, using partitioning or
randomization. Some defenses of transient execution attacks
that stop the transient execution but leave the covert channel
open, such as [50], are not the focus of this paper.

Partitioning: Many secure caches partition the cache (tag
and data) between the victim and the attacker [27], [28],
[29], [30], [51], but the replacement policy is not considered
or specified.

Table V: Latency of Encoding (cycles).

F+R
(mem)

F+R
(L1)

L1 LRU
(Alg.1&2)

Intel Xeon
E5-2690

336 35 31

Intel Xeon
E3-1245 v5

288 40 35

AMD EPYC
7571

232 56 52

Table VI: Cache Miss Rate of the Sender Process.

F+R
(mem)

F+R
(L1)

L1 LRU
Alg.1

L1 LRU
Alg.2

sender
& gcc

sender
only

Intel Xeon
E5-2690

L1D 0.07% 0.04% 0.03% 0.03% 0.03% 0.01%
L2 62% 6.67% 9.59% 15.6% 31% 8.32%
LLC 88% 0.77% 0.71% 1.07% 61% 1.46%

Intel Xeon
E3-1245 v5

L1D 0.06% 0.02% 0.01% 0.01% 0.01% 0.00%
L2 63% 11% 17% 14% 48% 26%
LLC 92% 8.12% 8.15% 7.42% 70% 27%

Table VII: Cache Miss Rate of Spectre V1 Attack.

F+R
(mem)

F+R
(L1)

L1 LRU
Alg.1

L1 LRU
Alg.2

Intel Xeon
E5-2690

L1D 2.75% 4.73% 4.19% 4.75%
L2 7.58% 0.07% 0.11% 0.09%
LLC 98.15% 0.87% 0.72% 0.87%

Intel Xeon
E3-1245 v5

L1D 2.86% 4.84% 4.13% 4.86%
L2 7.39% 0.49% 0.71% 0.45%
LLC 91.17% 1.83% 0.74% 0.96%

!"#$%&$'()
*+

,%-

!$++-%&.'#('/&0"-%1&

+2&3%45"#%/%2(&4+5'#6

.'#('/&5+#7%1)

518-(9'($+:(&

3%45"#%/%2(

;41"(%&3%45"#%/%2(&

-("(%&+<&.'#('/

*+3/"5&518-(=

;41"(%&5+#7 0'(

'< '(&'- " 5+#7&3%>

*+3/"5&$'(=

;41"(%&5+#7 0'('< '(&

'- " 5+#78:25+#7&3%>

5+#7%1)
,%-

*+

,%-

*+

*+3/"5&$'(=

!"#$"%#&'()%*#

+*',)-*.*$%#/%)%*0

;41"(%&5+#7 0'('< '(&

'- "2&:25+#7&3%>

%21

Figure 9: PL cache replacement logic flow-chart. White boxes
show the original PL cache design in [28]. Blue boxes show the
new PL logic added in our simulation to defend the LRU attack.

For example, in Partition-Locked (PL) cache [28], each
cache line is extended with one lock bit. When a cache
line is locked, the line will not be evicted by any cache
replacement until unlocking to protect the line, as shown in
Figure 9. If a locked line is chosen as victim to be replaced,
the replacement will not happen, and the incoming line will
be handled uncached. PL cache is shown to be effective
against Flush+Reload, Prime+Probe, and other attacks.

But the LRU state will still be updated on accesses to the
locked cache line, and the update will affect the LRU states
of other lines. We implemented the PL cache using PLRU
replacement algorithm in the gem5 simulator, and tested
the LRU attack. During the test, line N (the line accessed
by the sender) is first locked by the sender, and Algorithm 2
is used to build a channel7. As shown in Figure 10 (top),
with the original design, the receiver can still receive the
secret by observing the time of accessing line 0. This is

7Algorithm 1 is protected by PL cache when line 0 is locked. Because
line 0 will not be evicted in the decoding phase, and the receiver will always
get a cache hit no matter what the sender is sending.

Figure 10: Simulation result of the LRU attack with Algorithm 2
in gem5 with (top) original PL cache design and (bottom) new PL
cache design which locks the LRU state to defend the LRU attack.

because the sender’s access to the locked line will change
the eviction order of lines that are not locked, which can be
observed by the receiver later. To mitigate the LRU channel,
the LRU state should be locked as well. We add the blue
boxes in Figure 9 to PL cache design. In this way, the
receiver will always observe a cache hit, and thus not learn
any information, as shown in Figure 10 (bottom).

Other work, such as DAWG [32], also proposes to parti-
tion the cache and the PLRU states in a cache set between
protection domains. And the LRU channel can be mitigated.
We are unaware of any other designs that partition the LRU
states, and secure cache designers need to be careful to
consider LRU based attacks.

To mitigate transient execution cache side-channel attacks,
InvisiSpec [36] proposes to only update micro-architectural
states (including the LRU state) after the access is not
speculative. So the LRU channels cannot be used in transient
execution attacks, if InvisiSpec defense is applied.

Randomization: Other secure cache designs use random-
ization. For example, Random fill cache [33] decouple the
access and the cache line brought into the cache, by fetching
a random cache line instead of the cache line being accessed.
However, if the cache line is already in the cache, on a
cache hit, the replacement state will still be updated, and
the LRU channel could still work. Meanwhile, some designs
randomize the mapping between the addresses and the cache
sets, such as New cache, RP cache, or CEASER cache [28],
[34], [52]. So the receiver (and the sender) cannot map the
addresses to the target cache set to build a channel.

Figure 11: (top) Cache miss rate of L1 Data cache and (bottom) normalized CPI when different cache replacement policies (Tree-PLRU,
FIFO, random) are used in the L1 Data cache. The results are normalized with the result of Tree-PLRU policy.

IX. DEFENDING THE LRU CHANNELS

The LRU timing-based channels leverage the fact that the
sender and the receiver share the LRU states in caches. Thus,
there could be several approaches to defend the LRU timing-
based channels. Other than the secure caches mentioned
in Section VIII, another mitigation is to use another cache
replacement policy instead of LRU or PLRU. In this way,
no more LRU state exists, and the channel is removed.

Random Replacement Policy: Random replacement pol-
icy does not need any states in the cache. Every time a
replacement is needed, a random cache way in the cache
set will be evicted. For simplicity, most ARM processors
use a pseudo-random replacement policy [53], and naturally
defend the LRU attack.

FIFO Replacement Policy: First-In First-Out (or Round-
Robin) replacement policy selects the oldest cache line that
is fetched into the cache to be the victim. States are still
required to store the history of cache lines fetched into
cache. And thus, FIFO state still contains extra information
than which cache line is presented in the cache. However,
different from LRU, the FIFO states are only updated when
a new cache line is brought into the cache on cache misses.
Thus, it would require the sender to trigger a cache miss to
let the FIFO state be able to be observed by the receiver,
similar to the existing cache channels.

Performance Evaluation of Random and FIFO Poli-
cies: LRU replacement policy is widely used in processors
because of its performance. In this section, we evaluate the
performance of different replacement policies in the gem5
simulator [54]. We simulated a single out-of-order CPU core
and a memory system with 2-level caches (32KiB 4-way
L1I, 64KiB 8-way L1D with a latency of 4 cycles, 2MiB
16-way L2 with a latency of 8 cycles, and main memory
latency of 50 ns). SPEC 2006 int and float benchmarks were
tested [55]. Since we focus on the LRU channels in the L1
data cache, we tested different replacement policies in L1.

As shown in Figure 11 (top), compared to Tree-PLRU,
the FIFO and Random replacement policies give small
degradation on L1 data cache miss rate overall. Depending
on the benchmark, FIFO and Random replacement policy
sometimes have an even lower cache miss rate than Tree-
PLRU. Since an L1 miss can still hit in L2, the overall CPU
performance, indicated by cycles per instruction (CPI) in
Figure 11 (bottom), is only changed less than 2% compared
to the baseline. Thus, using a different replacement policy
in the L1 data cache to mitigate the LRU side and covert
channel only gives small overhead – while increasing secu-
rity. Similarly, if the channels in all the levels of cache are
to be mitigated, the replacement policies of all the levels of
caches need to be changed.

X. CONCLUSION

We presented novel timing-based channels leveraging the
cache LRU replacement states. We designed two protocols to
transfer information between processes using the LRU states
for both cases when there is shared memory between the
sender and the receiver and when there is no shared memory.
We also demonstrated the LRU channels on real-world
commercial processors. The LRU channels require access
(cache hit or miss) from the sender, while all the existing
state-based timing-based cache side and covert channels
always need the sender to trigger a cache replacement (a
cache miss). Thus, the LRU channel has shorter encoding
time, lower cache miss rate for the sender, and requires a
smaller speculation window in transient attack scenarios. We
show the new LRU channels also affect the current secure
cache designs. In the end, we proposed several methods to
mitigate the LRU channel and evaluated them, including a
modified design of a secure PL cache.

ACKNOWLEDGEMENT

We would like to thank the authors of InvisiSpec [36],
especially Mengjia Yan, for their open-source code and

scripts. Special thanks to Linbo Shao and Junwen Shao
for helping with gem5 simulation. We would like to ac-
knowledge Amazon for providing AWS Cloud Credits for
Research. This work was supported by NSF 1651945 and
1813797, and through SRC award number 2844.001.

REFERENCES

[1] J. Szefer, “Survey of microarchitectural side and covert chan-
nels, attacks, and defenses,” Journal of Hardware and Systems
Security, vol. 3, no. 3, pp. 219–234, Sept. 2019.

[2] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high reso-
lution, low noise, L3 cache side-channel attack,” in USENIX
Security Symposium (USENIX), 2014, pp. 719–732.

[3] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” in Cryptographers’ Track
at the RSA Conference, 2006, pp. 1–20.

[4] J. Bonneau and I. Mironov, “Cache-collision timing attacks
against AES,” in International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2006, pp. 201–
215.

[5] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in Symposium
on Security and Privacy (S&P), 2015, pp. 605–622.

[6] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell,
and J. Torrellas, “Attack directories, not caches: Side channel
attacks in a non-inclusive world,” in Symposium on Security
and Privacy (S&P), 2019.

[7] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Co-
herence Protocol States Vulnerable to Information Leakage?”
in International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 168–179.

[8] Z. Wang and R. B. Lee, “Covert and side channels due to
processor architecture,” in Annual Computer Security Appli-
cations Conference (ACSAC), 2006, pp. 473–482.

[9] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a
timing attack on OpenSSL constant-time RSA,” Journal of
Cryptographic Engineering, vol. 7, no. 2, pp. 99–112, 2017.

[10] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in Eu-
ropean Symposium on Research in Computer Security (ES-
ORICS), 2019, pp. 279–299.

[11] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar,
“Memjam: A false dependency attack against constant-time
crypto implementations,” International Journal of Parallel
Programming, vol. 47, no. 4, pp. 538–570, 2019.

[12] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port contention for fun and profit,” in Symposium
on Security and Privacy (S&P), 2019, pp. 870–887.

[13] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus, “SMoTh-
erSpectre: exploiting speculative execution through port con-
tention,” arXiv preprint arXiv:1903.01843, 2019.

[14] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev
et al., “Branchscope: A new side-channel attack on directional
branch predictor,” in ACM SIGPLAN Notices, vol. 53, no. 2.
ACM, 2018, pp. 693–707.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump
over ASLR: Attacking branch predictors to bypass ASLR,”
in International Symposium on Microarchitecture (MICRO),
2016, p. 40.

[16] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–
Bringing access-based cache attacks on AES to practice,” in
Symposium on Security and Privacy (S&P), 2011, pp. 490–
505.

[17] C. Percival, “Cache missing for fun and profit,” 2005.

[18] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[19] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on
AES (short paper),” in International Conference on Informa-
tion and Communications Security, 2006, pp. 112–121.

[20] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre Attacks: Exploiting Speculative Exe-
cution,” in Symposium on Security and Privacy (S&P), 2019.

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading Kernel
Memory from User Space,” in USENIX Security Symposium
(USENIX), 2018, pp. 973–990.

[22] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A
systematic evaluation of transient execution attacks and de-
fenses,” in USENIX Security Symposium (USENIX), 2019, pp.
249–266.

[23] K. So and R. N. Rechtschaffen, “Cache operations by MRU
change,” IEEE Transactions on Computers, vol. 37, no. 6, pp.
700–709, 1988.

[24] A. Malamy, R. N. Patel, and N. M. Hayes, “Methods and
apparatus for implementing a pseudo-LRU cache memory
replacement scheme with a locking feature,” 1994, US Patent
5,353,425.

[25] J. Nomani and J. Szefer, “Predicting program phases and
defending against side-channel attacks using hardware per-
formance counters,” in Workshop on Hardware Support for
Security and Privacy (HASP), June 2015.

[26] J. Szefer, “Architectures for secure cloud computing servers,”
Ph.D. dissertation, 2013.

[27] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and
Z. Wang, “Architecture for protecting critical secrets in micro-
processors,” in ACM SIGARCH Computer Architecture News,
vol. 33, no. 2, 2005, pp. 2–13.

[28] Z. Wang and R. B. Lee, “New cache designs for thwart-
ing software cache-based side channel attacks,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2, 2007,
pp. 494–505.

[29] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 8, no. 4,
p. 35, 2012.

[30] D. Zhang, A. Askarov, and A. C. Myers, “Language-based
control and mitigation of timing channels,” ACM SIGPLAN
Notices, vol. 47, no. 6, pp. 99–110, 2012.

[31] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Se-
cure Hierarchy-Aware Cache Replacement Policy (SHARP):
Defending Against Cache-Based Side Channel Attacks,” in
Annual International Symposium on Computer Architecture
(ISCA), 2017, pp. 347–360.

[32] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “DAWG: A defense against cache timing attacks
in speculative execution processors,” in International Sympo-
sium on Microarchitecture (MICRO), 2018, pp. 974–987.

[33] F. Liu and R. B. Lee, “Random fill cache architecture,”
in International Symposium on Microarchitecture (MICRO),
2014, pp. 203–215.

[34] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Se-
cure cache architecture thwarting cache side-channel attacks,”
IEEE Micro, vol. 36, no. 5, pp. 8–16, 2016.

[35] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxi-
ras, “Non deterministic caches: A simple and effective de-
fense against side channel attacks,” Design Automation for
Embedded Systems, vol. 12, no. 3, pp. 221–230, 2008.

[36] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher,
and J. Torrellas, “InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy,” in International Symposium
on Microarchitecture (MICRO), 2018, pp. 428–441.

[37] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “Safespec: Banishing
the spectre of a meltdown with leakage-free speculation,” in
Design Automation Conference (DAC), 2019, pp. 1–6.

[38] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval
prediction (RRIP),” in ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 3. ACM, 2010, pp. 60–71.

[39] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,”
ACM SIGARCH Computer Architecture News, vol. 35, no. 2,
pp. 381–391, 2007.

[40] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in Conference on Computer and
Communications Security (CCS), 2009, pp. 199–212.

[42] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the
return stack buffer,” in 12th USENIX Workshop on Offensive
Technologies (WOOT), 2018.

[41] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
tenant side-channel attacks in PaaS clouds,” in Conference
on Computer and Communications Security (CCS), 2014, pp.
990–1003.

[43] G. Maisuradze and C. Rossow, “ret2spec: Speculative execu-
tion using return stack buffers,” in Conference on Computer
and Communications Security (CCS), 2018, pp. 2109–2122.

[44] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: Abusing Cache Replacement Poli-
cies to Perform Stealthy Cache Attacks,” arXiv preprint
arXiv:1904.06278, 2019.

[45] G. Navarro, “A guided tour to approximate string matching,”
ACM computing surveys (CSUR), vol. 33, no. 1, pp. 31–88,
2001.

[46] Software Optimization Guide for AMD Family 17h
Processors, https://developer.amd.com/wordpress/media/
2013/12/55723 SOG Fam 17h Processors 3.00.pdf,
accessed Feb. 2019.

[47] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,” in
International Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), 2016, pp. 118–140.

[48] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware perfor-
mance counters,” Applied Soft Computing, vol. 49, pp. 1162–
1174, 2016.

[49] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhat-
tacharya, “Performance Counters to Rescue: A Machine
Learning based safeguard against Micro-architectural Side-
Channel-Attacks,” IACR Cryptology ePrint Archive, vol.
2017, p. 564, 2017.

[50] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive
fencing: Securing speculative execution via microcode cus-
tomization,” in International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2019, pp. 395–410.

[51] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Mini-
mal hardware extensions for strong software isolation,” in
USENIX Security Symposium (USENIX), 2016, pp. 857–874.

[52] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2018, pp.
775–787.

[53] ARM1176JZF-S Technical Reference Manual,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ddi0301h/ch07s02s01.html, accessed Aug. 2019.

[54] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The GEM5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[55] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

