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Software Protection using Dynamic PUFs
Wenjie Xiong, André Schaller, Stefan Katzenbeisser, and Jakub Szefer

Abstract—Low-end computing devices are becoming increas-
ingly ubiquitous, especially due to the widespread deployment
of Internet-of-Things products. There is, however, much concern
about sensitive data being processed on these low-end devices
which have limited protection mechanisms in place. This paper
proposes a Hardware-Entangled Software Protection (HESP)
scheme that leverages hardware features to protect software code
from malicious modification before or during run-time. It also
enables implicit hardware authentication. Thus, the software will
execute correctly only on an authorized device and if the timing
of the software, e.g., control flow, was not changed through
malicious modifications. The proposed ideas are based on the
new concept of Dynamic Physically Unclonable Functions (PUFs).
Dynamic PUFs have time-varying responses and can be used
to tie the software execution to the timing of software and the
physical properties of a hardware device. It is further combined
with existing approaches for code self-checksumming, software
obfuscation, and call graph and register value scrambling to
create the HESP scheme. HESP is demonstrated on commodity,
off-the-shelf computing devices, where a DRAM PUF is used as
an instance of a Dynamic PUF. The protection scheme can be
applied automatically to LLVM Intermediate Representation (IR)
code through an AutoPatcher written in Python. For a sample
program containing AES encryption and decryption routine,
HESP introduces 48% execution time overhead and increases
the binary file size by 32.5%, which is moderate compared to
other schemes such as software obfuscation. It takes about 2.6
seconds on average for the tested programs to be patched and
compiled through the modified compilation flow and scripts.

Index Terms—Physically Unclonable Functions (PUFs), Soft-
ware Protection, DRAM, Hardware-Software Binding

I. INTRODUCTION

The number of low-end embedded computing devices is
continuously growing, and this growth is expected to accel-
erate further due to the popular interest in the Internet-of-
Things (IoT). These low-end devices are being deployed in a
variety of settings from healthcare to industrial environments,
where the integrity and tamper resistance of the software is
critical. For example, in an industrial control system, compro-
mising the integrity can lead to life-threatening hazards and
economic loss. Yet, today, these systems still lack advanced
security features, mostly due to cost constraints.

In the past decades, researchers have developed software
schemes to make software tamper-resistant, which could be
used in IoT devices deployed today. For example, code self-
checking schemes [1], [2], [3] were proposed to verify the
integrity of software statically or at runtime. In such ap-
proaches, a hash value or a checksum of a certain code block
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is computed. If the computed hash value matches an expected
reference value, the code block is regarded as unmodified and
can be executed normally. Moreover, the code that computes
the hash value and the reference value can be included in
a code block that is checked by another hash, which is a
part of another code block that is hashed and checked, and
thus hash functions will check each other mutually. In another
branch of research, software obfuscation focuses on protecting
software from reverse engineering [4], [5], making it difficult
for the attacker to change the software to perform some
malicious functionality. Software obfuscation can thus provide
some protection from malicious modification. There are many
obfuscation techniques, such as using aliases [6], reordering
instructions [7], converting static data to procedures [4] and
flattening the control flow graph [8], [9], [10]. Meanwhile,
software diversity has been proposed to add randomness to
each instance of an executable, so that an attack which targets
one instance cannot be applied to other instances [11].

In a parallel research area, hardware support in the form
of Physically Unclonable Functions (PUFs) can be readily
used in low-end devices [12], [13], [14], [15], [16]. PUFs
extract unique and stable physical features from the underlying
hardware modules. These features emerge from fabrication
variations of the hardware, are expected to be unique to each
device, and are extremely difficult to replicate physically.
Among the different PUF types, intrinsic PUFs leverage
hardware already found on a computing platform, e.g., SRAM
PUFs [15] and DRAM PUFs [17], [18]. Prior research [19]
has shown that PUFs combined with self-checking schemes
can protect software from modification and from running on
unauthorized devices.

Meanwhile, in this work, we bind software execution to
hardware with Dynamic PUFs. Especially, a Dynamic PUF
can generate responses at device runtime, and the responses
depend on the timing of the queries to the Dynamic PUF. This
is different from existing types of PUFs which we call Static
PUFs. We then propose the Hardware-Entangled Software
Protection (HESP) scheme, which protects software from
unauthorized modifications and from running on unauthorized
platforms. To verify whether the software is running on an
authorized device, the HESP leverages the unique output
of a Dynamic PUF. In addition, due to the time-dependent
Dynamic PUF responses and self-checksumming functions,
the behavior of software is tied to the execution time of
the software. Malicious modifications, such as changes to the
control flow, will affect the execution time, causing queries
to the Dynamic PUF to be triggered at unexpected times,
resulting in wrong Dynamic PUF responses, thus making the
software execute incorrectly.
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A. Contributions
This paper is an expanded version of our conference publi-

cation [20], which introduced the concept of Dynamic PUFs.
This work extends the prior paper with the following new
contributions:
• We propose a new Hardware-Entangled Software Protection

(HESP) scheme.
• We implement a fully automatic framework that deploys

the HESP to C source code through a framework called
AutoPatcher written in Python, which patches LLVM Inter-
mediate Representation (IR) to apply the protection code.

• We develop a practical decay-based Dynamic DRAM PUF
with a controlled PUF interface and DRAM cells on Intel
Galileo Gen 2 platforms and evaluate programs protected
by HESP on them.

• The HESP framework and the Dynamic PUF code de-
veloped in this project will be made available under an
open-source license at https://caslab.csl.yale.edu/code/puf-
software-protection/.

II. DYNAMIC PUFS

The proposed HESP protection scheme leverages Dynamic
PUFs [20], which were introduced in our prior conference
paper, to provide time-dependent PUF responses. With the
time-dependent Dynamic PUF behavior, the software can
execute correctly only with correct Dynamic PUF responses.
This ensures that if the program does run, it is running on
the authorized device and not modified as the Dynamic PUF
instances are queried at the correct time.

Dynamic PUFs are a type of PUF. Generally, PUFs extract
unique and stable physical features from physical objects [14],
[15]. Silicon PUFs exploit unique features that emerge due to
fabrication variations of integrated circuits and are regarded
to be extremely difficult to be cloned physically. Given a
challenge, a PUF can generate a stable response, which is
a function of both the challenge and the physical features of
the PUF, known as a challenge-response pair (CRP). Ideally,
for the same challenge, each physical object used as a PUF
will generate a unique PUF response.

Most existing PUFs are static: for each challenge, there is a
noisy but stable response, dependent on the physical features
of the hardware and independent of the timing of the PUF
challenge. Delay-based PUFs [14] and most memory-based
PUFs [15] are examples of Static PUFs.

Meanwhile, this work presents the notion of a Dynamic
PUF and uses it for software protection. Different from the
usual Static PUFs, Dynamic PUFs provide a time-dependent
PUF response, i.e., the response depends not only on the
challenge but also on the timing of the PUF query. Since the
response depends on time, the Dynamic PUF has an extra
query called Dynamic PUF Reset. A Dynamic PUF gives
different responses even if queried with the same challenge,
but at a different time relative to the most recent Dynamic
PUF Reset.

A. Helper Data System (HDS) for Dynamic PUFs
The ideal Dynamic PUF responses should have two features:

First, the responses at different times should be independent of

each other, i.e., the response at time Tx should be independent
of the response at time Ty , where |Ty−Tx| > δt and δt is the
time resolution; Second, the responses should be stable. Since
noise exists in raw Dynamic PUF responses, error correction
needs to be performed on the extracted PUF responses.

To achieve both features, a set of Helper Data System
(HDS) [21], [22] is needed to extract a PUF response that
is specific to the query time from the raw PUF response, i.e.,
each query time Tx should have its own HDS entry.

To retrieve the PUF response for a certain query time, the
query should indicate which helper data to use, by specifying
an index idx to the HDS. If the wrong HDS entry is used,
a wrong PUF response will be returned. Each Dynamic PUF
query time Tx corresponds to an entry in the HDS indicated
by idx. To generate enrollment data and the HDS, a trusted
party needs to measure the desired PUF CRPs in an enrollment
phase. This can be the same party who applies the HESP
scheme. An HDS construction for Dynamic DRAM PUFs and
its enrollment is described in Section VII-D.

B. Metrics for Dynamic PUFs

Other than the inter and intra distance metrics commonly
used to evaluate Static PUFs, the time-dependent behavior of
Dynamic PUFs can be evaluated with the following metrics:
• Time Resolution: Denoted by δt, time resolution indicates

how sensitive the PUF responses are to the query time.
Query times that differ by more than δt are considered to be
different query times, and ideally, the Dynamic PUF should
give different responses even after ECC is applied. Each
realization of a Dynamic PUF has a physical limit of the
time resolution.

• Time Range: Denoted by [Tmin, Tmax], time range indi-
cates the range of PUF query times relative to the PUF reset
that can result in Dynamic PUF behavior. Within time range
[Tmin, Tmax], the PUF responses have enough entropy. In
real applications, the user should query the Dynamic PUFs
after Tmin and before Tmax. Thus, we also call Tmin the
initialization time of Dynamic PUFs. If an application needs
time longer than Tmax, then it needs to reset Dynamic PUF
or switch to use a different Dynamic PUF before Tmax.

III. HESP SCHEME OVERVIEW

The goal of HESP is to protect software from malicious
modifications and to bind the execution of the software to a
specific device that it was compiled for.

To achieve both goals, HESP extends the to-be-protected
software code in two aspects. First, code for tamper detection
is used to detect potential malicious behaviors. Second, code
for tamper response is used to change the software execution
if a malicious behavior is detected. Figure 1 shows the main
components of the framework used to realize the HESP.

A. Assumptions and Threat Model

We target low-end devices that may not have computation
resources or extra hardware for tracking the execution flow of
software. We assume devices to contain a Dynamic PUF (e.g.,

https://caslab.csl.yale.edu/code/puf-software-protection/
https://caslab.csl.yale.edu/code/puf-software-protection/
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a DRAM PUF) and a trusted interface to access the Dynamic
PUF (e.g., a Linux kernel module in our implementation). We
further assume the attacker can only query the Dynamic PUF
through the trusted PUF interface.

We assume the program to be protected has predictable
execution time. The variation of the execution times are
assumed to be within the time resolution δt of the Dynamic
PUFs. For user input or I/O delay with unpredictable response
time, the software may be designed such that the Dynamic
PUF is reset after each user input or I/O delay, so the time
waiting for the input is not monitored by the Dynamic PUF,
whereas the execution time of the other parts of the software
is monitored by the Dynamic PUF. In this way, the execution
of the program (other than the user input) is always protected.

We assume that the self-checksumming code is able to hash
the binary code that is actually executed. Thus, kernel-level
attacks that manipulate physical and virtual memory mapping
to confuse the self-checksumming code are not in scope [23].

We assume the attacker has access to one or more (pro-
tected) binaries and instances of devices with the correct
Dynamic PUFs that the binaries that were compiled for. In
Section IX-B, dynamic attackers who can run and observe the
runtime behavior of the code and static attackers who can only
inspect the code statically are discussed, respectively.

B. Tamper Detection

The first part of the HESP scheme is tamper detection, as
shown in Figure 1 (ii). The goal is to detect whether the
software is running on the authorized hardware device and
whether the software was modified in any way by an attacker.
Dynamic PUF query code and self-checksumming code are
used for this purpose.
• Dynamic PUF Query Code: Dynamic PUF query code

makes a PUF query, and the PUF response will later be used
in the tamper response code. The protected software binary
is only allowed to execute on an authorized device, and with
correct timing. This is achieved by entangling the execution
of the software with Dynamic PUF responses. As introduced
in Section II, the responses of a Dynamic PUF depend on
the device and the time of the query. The HESP-protected
software can execute correctly only with correct Dynamic
PUF responses, implying that the authorized device is used
and the Dynamic PUF is queried at the correct time. Details
of using the Dynamic DRAM PUF for HESP are given in
Section VII.

• Self-Checksumming Code: The integrity of the to-be-
protected software (including the patched protection code
and HDS) is checked by self-checksumming code, like
in [1], [2], [3]. The to-be-protected software is divided into
segments. Each self-checksumming code instance computes
a linear checksum function over one or more segments
(which in turn contain self-checksumming code instances
for checking other segments). The self-checksumming code
instances thus mutually check each other. If the checksum
result matches an expected value, the code segments that
were checked are considered unmodified, as will be dis-
cussed in Section IV.
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Fig. 1: Overview of the HESP framework for automatically patching
the protection code into the software applications. The .c represents C
code, .ll represents LLVM IR code, .dat represents auxiliary data such
as enrollments from the Dynamic PUF, and .bin is the executable.

C. Tamper Response

If the tamper detection code observes a potential malicious
behavior (e.g., wrong PUF response or wrong checksum),
a tamper response function will then give a wrong result,
changing the control flow of the software. We use two different
tamper response functions: call graph scrambling and register
value scrambling.
• Call Graph Scrambling: Call graph scrambling changes

the control flow of the software [19]. Especially, we focus
on function calls. In a call graph scrambling code instance,
the callee function address is computed using the Dynamic
PUF response, the checksum value and a reference value:
DestAddr = PUFresponse + Checksum + RefV alue.
If the Dynamic PUF response or the checksum value is
incorrect, the scrambling code will compute a wrong desti-
nation address resulting a jump to an incorrect destination
address as callee function, and the program will misbehave
and likely eventually crash. An alternate and more complex
approach could be to jump to a random function. This would
require a re-engineering effort for the software such that
each function can potentially call any other function and all
functions would have the same parameters [24]. However,
this approach may provide more gracious failure behavior.

• Register Value Scrambling: Register value scrambling [19]
changes the execution of the software. One of the system
registers, such as the stack pointer, will be randomly chosen
at compile time and the register will be modified at runtime,
if a wrong PUF or checksum result is given, likely leading
to a program crash.

Note that having a simple “error” function to be called when
tamper detection is triggered is not a good solution, because
entry points to the error function could give the attacker clues
to reverse-engineering and removing the protections.

In this work, we do not consider an attack where the attacker
manipulates the PUF responses by intentionally delaying the
program to jump to a specific DestAddr in call graph scram-
bling or write a specific value to a register in register value
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scrambling, causing a desired malicious behavior. Because the
Dynamic PUF only generates a very limited set of responses
compared to the whole address space or data value space, even
if the attacker has fine-grained control of time and temperature.
Thus, only a very limited set of DestAddr or register values
can be generated. Further, each device has a unique PUF,
so the attack cannot be generalized to a number of devices
without modifying the helper data system. Therefore, we do
not consider this type of attacks.

D. HESP Framework

An overview of the framework to realize the HESP pro-
tection scheme is shown in Figure 1. AutoPatcher takes three
inputs: (i) LLVM IR compiled from C source code of user
program; (ii) tamper detection code and tamper response code
templates to be inserted; and (iii) Dynamic PUF enrollment
measurements that were taken on the authorized device that
the software will execute on. AutoPatcher creates instances of
the protection functions and inserts them as protection code
instances into the LLVM IR code.

E. Execution Time of Software and the Time Resolution

Dynamic PUFs can help enforce or manage the control flow
of the software. Dynamic PUFs have a time resolution δt
(discussed in Section II). When the execution time deviates
less than δt, the PUF response will remain the same, else it will
change. Dynamic PUFs with coarse-grained time resolution
can be useful when they are applied to programs conducting
certain operations periodically at fixed time intervals to limit
the time variation of the periodic operation, such as monitoring
some states in a factory. In this case, δt should be chosen
according to the use case. With Dynamic PUFs, if the execu-
tion time of the software deviates from the expected time, the
execution path will change to prevent further execution.

IV. SELF-CHECKSUMMING CODE

The self-checksumming code uses hash functions to check
the integrity of code segments (including the patched pro-
tection code and HDS). In order to protect the integrity of
software, a dynamic mutual self-checksumming scheme was
proposed in [2], [3]. We apply a similar approach here. Each
instance of the self-checksumming code calculates a checksum
over one part of the code. For example, as shown in Figure 2,
the self-checksum code 1 computes a checksum over the
bottom part of the binary, as indicated by the arrow. Once
a checksum value is computed, it is combined with a pre-
computed reference value and a Dynamic PUF response in
order to determine if the value computed at runtime is correct.
The reference value is stored in the binary as well. The ref-
erence value for one instance of the self-checksumming code
will be stored in a part of binary that is checked by another
instance of self-checksumming code. Thus, there is a circular
dependency among different self-checksumming instances.

Compared to static code integrity checking, our scheme
makes use of the circular dependency to improve the tamper
resistance. To modify the software, the attacker needs to cal-
culate the hash for all the self-checksumming code instances

for the modified software and replace all the existing reference
values. Moreover, for a static attacker, who can only analyze
the code statically, combined with a software obfuscation
scheme that hides the address range covered by each self-
checksumming code instance, it is infeasible to compute the
checksum and to break the integrity protection. The software
obfuscation scheme and how it is applied is discussed in
Section IV-B.

A. Linear Self-checksumming Function over a Prime Field

Similar to other software integrity protection schemes for
low-end devices [3], we use a linear checksum function.
Although cryptographic hash functions could provide better
protection, they have a huge performance overhead.1 A linear
hash function can provide sufficient protection for integrity,
as shown in [2], [3], [19]. Especially, when combined with
software obfuscation that hides the address range of the
checksum code, a static attacker cannot compute the result
of each checksum function.

The parameter of each checksumming function is the start
and end address of the code segment to be protected and a
constant multiplier c for the linear checksum function. The
linear hash function is defined as follows: For a binary code
segment D = [d1, d2, ..., dn], where di is the ith 32-bit word
in the code segment, the linear checksum function h on D
is defined iteratively by h0(D) = 0 and hi(D) = di + c ∗
hi−1 for 0 < i ≤ n. Here, multiplier c is a non-zero number.
Finally, hn(D) is the checksum result of code segment D.
Equivalently, hn(D) = Σn

i=1c
n−i+1 ∗ di.

To make sure that there exist reference values for the self-
checksumming functions mutually checking each other, the
checksum operation is performed over a finite field. Over a
finite field, where division is possible, the checksum function
is invertible, i.e., for any i, di = [hn(D)−Σn

j=1,j 6=ic
n−j+1 ∗

dj ]/c
n−i+1 mod q. Note that each reference value is also a

word in some code segment. In this way, equations about
reference values can be built, and all the reference values
can be solved. Details of building equations to calculate the
reference values are given in Section VI-B. In the case of a
32-bit checksum, we chose the prime finite field with a size
that is a prime number equal to q = 232 − 5 [25].

B. Obfuscating Self-Checksumming Code Instances

To prevent a static attacker from circumventing the check-
summing code instances, we obfuscate the self-checksumming
code instances, especially the addresses that are used to
determine the location and size of the code segment being
checked by each instance, by converting static data values
embedded in the code to values computed dynamically by
functions. As shown in [4], [5], converting static data to
procedures can protect data from being located by attackers

1In the controlled PUF, a cryptographic hash is used. But in the self-
checksumming hash, a simpler hash using a prime filed is used. Because
all code segments will be hashed in the self-checksumming, whereas in the
controlled PUF only several PUF responses will be hashed. Consequently,
a cryptographic hash in a controlled PUF does not affect the runtime of
the program significantly, while the use of a cryptographic hash in the self-
checksumming code is prohibitive.
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Fig. 2: Example code layout of HESP protected code for a) straight-
line code in a loop and b) repeated function calls. Parts c-d) show
the control flow of each protection example of a-b).

employing static code analysis. With the use of software
obfuscation, a static attacker cannot easily reverse-engineer
the address range of the code segment checked by each self-
checksumming code instance, thus, he or she cannot compute
the self-checksumming result of the modified code, and cannot
circumvent the self-checksumming protections.

V. EXAMPLES OF DEPLOYING HESP

This section shows four code structures that may be found
in typical programs, and how HESP is applied to them:
first, a straight-line program; second, a program with repeated
function calls, where a callee function is called multiple times;
third, a program with a function called in a loop; and finally,
a program with its control flow depending on time.

A. Protection of Straight-Line Code

The code layout of a simple protected program with two
segments is shown in Figure 2 (a, c). At the beginning of the
program, the Dynamic PUF is reset. Each segment contains a
PUF query and a self-checksumming code. The PUF response
depends on the execution time elapsed between the last PUF
reset (at the beginning of the program) and the PUF query
time. The self-checksumming code computes the checksum of
a code segment to check the integrity of another segment. The
destination address of the function call at Use Response 1
depends on the PUF response and the checksum, and the
program will continue to execute segment 2 if both the PUF
response and the checksum are correct.

B. Protection of Program with Repeated Function Calls

In this scenario, some code will be executed more than once,
but in a deterministic way, as in Figure 2 (b, d). This could
happen when a function is called several times repeatedly, e.g.,
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Fig. 3: Protection of program with control flow depending on time.

func A is called twice from the main function. The self-
checksumming code will always return the same result if it
is executed several times. However, since a Dynamic PUF is
used, the PUF will return different responses each time the
PUF query code in the function is executed (assuming the time
between the two PUF queries is larger than the time resolution
δt), and the PUF queries need to use different idx to the HDS
entries at different times.

To make sure the functions will execute as designed if
the PUF is queried several times, several idx are needed for
PUF queries at different times and several reference values
are needed when using the PUF responses. To achieve this, a
global counter g counter is inserted for each function to point
to the correct idx and reference value to be used at runtime.
Every time a function is called, the global counter will be
increased by one. The PUF query code and response code
will fetch the corresponding idx and reference value based
on the value of the global counter and continue the correct
execution only with a correct PUF value. In Figure 2 (b), the
Use Response A is called twice, and thus, has two reference
values, one for each call.

C. Protection of Program with Loops

Within a loop, the PUF query will be executed several times.
The same method as in repeated function calls can be applied
if the number of loop iterations is fixed. Another solution is
to reset the Dynamic PUF at the beginning of each loop, as
shown with the loop in Figure 2 (a, c). Every time the code
block in the loop is executed, the PUF response will be the
same (relative to when the PUF was reset). In this case, no
reference counter value in the code is needed.

D. Program with Time-Dependent Control Flow

As the Dynamic PUF response depends on time, HESP
enables program execution to depend on the time elapsed since
the last PUF reset. For example, in Figure 3, the destination
of a callee function now depends on the time of the function
call, e.g., func A is called at T1 and func B is called at T2. To
generate the desired destination address, the PUF responses at
the different times are used with different reference values.
Similar to the repeated function call, a global counter is
inserted and increased at each loop iteration. The destination
address is calculated based on the PUF response and the
reference value pointed by the global counter. As shown in
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Figure 3 (b), in each iteration of the loop, a function will
be called. Effectively, a sequence of different functions is
executed, e.g., first func A at T1 and then func B at T2. This
technique flattens the call graph of the program, which is a
well-known technique for software obfuscation [8].

VI. HESP FRAMEWORK

In this section, we first introduce the parameters used for
deploying HESP and then describe the steps of AutoPatcher
inserting protection codes into executable binaries.

A. Security Parameters

HESP is parameterized with the values listed below:
• Total Number of Code Segments (S): The to-be-

protected software is divided into S segments. One self-
checksumming code instance will be inserted into each
code segment. Thus, S determines the total number of self-
checksumming code instances to be inserted in the protected
code. For the same source code, larger S means more check-
sums to be used in the tamper response functions. If there
are more tamper response functions than S, some checksums
will be used by multiple tamper response functions.

• Self-Checksumming Overlap Factor (C): This parameter
indicates how many self-checksumming code instances will
check the same segment of the binary, or equivalently,
how many code segments will be checked by one self-
checksumming code instance. The bigger the overlap factor
is, the more self-checksumming code instances the attacker
needs to circumvent if he or she wants to modify a code
segment. However, a big overlap factor will increase the
runtime overhead to calculate the checksums.

• Number of Tamper Response Code Instances (R, RC ,
RR): R denotes the total number of tamper response code
instances. Each self-checksumming code instance will cor-
respond to one or more tamper response code instances,
so R ≥ S. For each tamper response code instance, there
should be one corresponding PUF query. Specifically, RC

indicates the number of call graph scrambling code instances
that change the jump destination of a function call. For an
attacker who wants to reverse-engineer the call graph, he or
she needs to know the destination of each of the RC tamper
response code instances. This number also depends on the
complexity of the call graph of the program. In addition,
RR indicates the number of register value scrambling code
instances, and R = RR +RC .

• Total Number of Dynamic PUF Queries (P ): This pa-
rameter indicates the total number of Dynamic PUF queries
conducted while executing the software. In the current set-
ting, each tamper response code instance takes one Dynamic
PUF response as input. If one tamper response code instance
is executed several times, e.g., in a loop, a PUF query will
be made in each iteration, then that tamper response code
instance corresponds to multiple Dynamic PUF queries,
and thus P ≥ R. To reverse engineer the binary code,
the attacker needs to know all Dynamic PUF responses.
A large number of PUF queries inserted into the program
will increase the attacker’s efforts, but will also increase the
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Fig. 4: Frameworks to automatically generate protected binary code.

size of HDS in the patched program and will require more
activity on the PUF interface for more PUF responses.

B. Steps to Insert Protection Code

Due to the circular dependency among the self-
checksumming code instances, and the initially unknown
timing of the PUF queries, the protection code needs to be
inserted in the following three steps, as shown in Figure 4:

1) The whole code binary is first divided into S segments.
Depending on C, each checksumming code instance is
assigned randomly to check C code segments, such that
each segment will be checked by C self-checksumming
code instances. Also, for each self checksumming function
the non-zero multiplier c is chosen randomly. The Dynamic
PUF queries and the self-checksumming code instances
can be inserted to any place in the LLVM IR in the
segment, and the tamper response function should be
inserted such that it will execute after a self-checksumming
code instance or a Dynamic PUF query. Especially, there
should be enough time between Dynamic PUF query code
and tamper response code for the Dynamic PUF interface
to return the PUF response. In our implementation, we
insert the Dynamic PUF query code right after the last
tamper response code to ensure enough time to obtain the
Dynamic PUF response for the tamper response code.

Depending on the source code, different tamper re-
sponses can be inserted. For example, if there is a func-
tion call, a call graph scrambling code instance can be
inserted, i.e., the destination of the callee function is
tied to the checksum and Dynamic PUF response in the
tamper response. Otherwise, a register value scrambling
code instance can be inserted. With the above decision of
where and which protection code instances to insert, the
tamper detection code instances and the temporary tamper
response code instances are created from the template and
are inserted. The temporary tamper response code is the
same as the real response code, except that the temporary
tamper response code will always give the correct response
even if the tamper detection code returns a wrong value. If
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there are repeated function calls or there is time-dependent
control flow, global counters are also inserted (as discussed
in Sections V-B and V-D).

Next, the pre-inserted code is compiled and executed,
and the time when each PUF query happens is recorded
by a kernel module monitoring the PUF queries. Now
knowing the Dynamic PUF query times, PUF enrollments
for the required delay times are conducted. With the
enrollments, a set of HDS can be generated and inserted
into the data segment of the binary. The PUF enrollments
could also be done in advance, but then, all possible PUF
query times need to be enrolled.

2) The code is re-patched with the real tamper response code
instead of the temporary one. The reference values in the
tamper response code are not known yet and are set to
zero as placeholders.

After re-patching, the LLVM IR is compiled into
binary, then the expected checksum of the code segments
that each self-checksumming code instance checks are
computed. Let Di be the code segment to be checked
by self-checksumming function i, then the checksum is
computed by Hi,0 = hni

(Di), where ni is the size of Di;
note that the reference value placeholders in the tamper
response code pj are now treated as zeros. Moreover, the
multiplier of the placeholder pj in the code segment Di is
computed by li,j = cni−ki,j+1, where ki,j is the distance
of the placeholder pj from the beginning of the code seg-
ment Di, and c is the multiplier of the checksum function.
So the final checksum will be hni

(Di) = Hi,0+Σj li,j ∗pj
mod q, where pj are the values of the placeholders to be
solved in Step (3).

3) To calculate all the reference values in the tamper re-
sponse code instances, a system of linear equations on the
q = 232 − 5 prime field is constructed. For example, in
call graph scrambling codes, the destination of a jump is
the sum of the checksum i, the PUF response i, and the
reference value. Thus, the reference value pi satisfies the
following equation: pi = DestAddr − PUFresponsei −
Checksumi = DestAddr − PUFresponsei − (Hi,0 +
Σj li,j ∗ pj). Here, the pj are the placeholders in the code
segments Di checked by the checksumming function i
whose result is used by pi. In this way, a system of linear
equations on the placeholders is constructed and solved. A
solution to the equations must exist on the prime field.

To patch a program with time-dependent execution
(discussed in Section V-D), in addition to the original
program, a separate file should be given as an input indi-
cating the time-dependent control flow, i.e., the DestAddr
for each loop iteration. The compiler will generate the
reference values accordingly.

Finally, the correct reference values are inserted into
the placeholders in the response function in the binary.

C. Code Obfuscation

As discussed in Section IV-B, we convert static data to
procedures to hide the address range of the code segment
being checked by each self-checksumming function instance.

In the evaluation, we keep the obfuscation scheme separate
from AutoPatcher. There are open-source frameworks that can
be used for automatic obfuscating programs [10]. Note that
we only obfuscate the self-checksumming code, which is a
small portion of the code. Thus, the obfuscation results in
a small runtime overhead compared to the runtime of the
whole program.

D. Dynamic PUF Interface

The Dynamic PUF query code assumes a Dynamic PUF
interface on the platform. In this work, we use a controlled
PUF interface (Section VII-E) that can be implemented in
a Linux kernel module. The kernel module and application
can communicate through fixed memory locations in the
memory space of the application. The addresses of the memory
locations are public. For example, the application writes to a
pre-defined address to request a PUF response. The kernel
module will monitor the address. If a new request is detected,
the response will be written to another pre-defined address, so
that the application can obtain the PUF response.

VII. DRAM PUFS AS DYNAMIC PUFS

In this paper, we use DRAM modules to realize Dynamic
PUFs. DRAM, which is found in many commodity IoT and
embedded platforms, has been shown to exhibit PUF behavior.
There are three types of DRAM PUFs: decay-based DRAM
PUFs [26], [27], [17], [28], [29], [22], latency-based DRAM
PUFs [18], and startup-based DRAM PUFs [30]. The PUF
responses of the first two depend on the timing of the PUF
queries, and we show that these two types of PUFs can be
used as Dynamic PUFs.

A. Threat Model

A trusted Dynamic PUF interface is assumed. We imple-
ment the Dynamic PUF interface as a kernel module on
commodity, off-the-shelf devices, thus software attacks on
the kernel module or DRAM memory are not in scope.
Consequently, this implementation does not protect against
invasive physical attacks such as probing the hardware buses
or memory. A Dynamic PUF realized fully in hardware or
firmware could relax the assumption of a trusted kernel module
– but cannot be directly deployed on commodity, off-the-shelf
devices today. A trusted PUF enrollment environment with
high bandwidth communication to the device is assumed, such
as at the manufacturing site.

B. Dynamic PUFs using Decay-based DRAM PUFs

The decay-based DRAM PUF leverages the fact that DRAM
cells lose data over time, which is also known as DRAM decay.
Without refresh, each DRAM cell can only retain the data for
a certain time, called retention time. Decay-based DRAM PUF
responses are based on variations of the retention times of the
DRAM cells. A decay-based DRAM PUF is composed of a
set of cells within a DRAM region. The retention time of each
DRAM cell is shown to be random and related to fabrication
variations [17], [28].
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depends on the query time since Dynamic PUF Reset at T0.

In Dynamic DRAM PUFs, the PUF challenge is the address
range of a DRAM PUF region from which the PUF will be
extracted. Upon a Dynamic PUF Reset, an initial value is
written to the DRAM PUF region and the DRAM refresh
of the region is disabled. Upon a Dynamic PUF Query, the
DRAM PUF region will be read and the value is compared to
the initial value to get the locations of bit flips in the DRAM
region, which is the PUF response. Different initial values2

are tested during enrollment to find cells and initial values
that will give enough bit flips in the DRAM PUF region.

As illustrated in Figure 5 (a), querying the decay-based
DRAM at different times (e.g., at T1 and T2) will result in
different PUF responses. Here, we also use decay time to
denote the time between the Dynamic PUF Reset and the
Dynamic PUF Query. Due to the decay properties of the
DRAM cells, the time resolution of the dynamic decay-based
DRAM PUF can be in the order of a second.

However, DRAM has the additional property that each
access to a DRAM cell (a read or a write) implicitly refreshes
(resets) the whole DRAM row. When one wants to query the
PUF region several times after each reset, the PUF region can
be subdivided into sub-regions. Each sub-region consists of a
set of DRAM rows, and these DRAM rows do not have to be
adjacent to each other. Upon a Dynamic PUF Reset request,
all DRAM PUF sub-regions have their initial values set and
refresh is disabled. To query the Dynamic PUF, an index (idx)
is provided as part of the Dynamic PUF Query. The index also
determines which sub-region should be used for that query.
Other sub-regions continue to decay.

A decay-based Dynamic DRAM PUF can be accessed at
system runtime. It can be implemented on a commercial, off-
the-shelf device by selectively refreshing DRAM as shown
in Figure 5 (a), following [17]. First, on a Dynamic PUF
Reset (T0), the DRAM region is reserved, so that neither
the operating system (OS) nor applications use it, its cells
are initialized with the initial value (e.g., all zeros), and the
refresh of the DRAM module is disabled. To allow the OS and
other applications use DRAM without decay, a customized
kernel module is needed to selectively refresh the address

2If the initial value does not put a cell into a charged state, then in the
enrollment phase, the cell will not decay and will not be chosen to be in the
HDS. These cells will not be used later for the final PUF response.

space in which the OS and applications reside by accessing
each DRAM row in the address space3, as was shown in [17].
In this way, the system can still run even when the refresh of
the whole DRAM module is disabled. Upon a PUF query the
content of the DRAM region is read as the raw PUF response.

C. Dynamic PUFs using Latency-based DRAM PUFs

The latency-based DRAM PUF leverages the fact that
reducing the DRAM read access latency can induce bit flips
in the DRAM, and the location of the bit flips are shown
to be unique and stable. For example, as shown in [18], the
active time (tRCD) between a DRAM row is activated (using
the ACT command) and the subsequent read or write request
(using the RD or WR command) can be manipulated to cause
bit flips. In today’s DRAM modules, the time resolution of
the latency-based Dynamic DRAM PUF is in the order of
nanoseconds. Similar to the decay-based DRAM PUF, the
access to the DRAM is in the granularity of each DRAM
row. To allow multiple PUF queries after one PUF reset, the
PUF region can be subdivided into sub-regions.

To access the latency-based DRAM PUF as a dynamic
latency-based DRAM PUF at runtime, the Dynamic PUF
Reset can be realized by first writing the initial value to the
PUF region and then sending the ACT command to activate
the PUF row in the DRAM. Then, the Dynamic PUF Query
is realized by an RD command that is sent to read the value
in that DRAM row, and the result is compared with the initial
value. The raw PUF response is the location of all the bit
flips (Figure 5 (b)). This, however, requires low-level control
of the DRAM timing parameters and cannot be realized on
commodity, off-the-shelf devices today, but could be realized
on FPGAs or with hardware changes.

D. HDS and ECC for Dynamic DRAM PUFs

The PUF responses of both the decay-based and the latency-
based DRAM PUFs consist of bit flips in DRAM regions. For
different query times Tx, a different set of bits will flip. Decay-
based DRAM PUFs yield more bit flips for longer decay
times while latency-based DRAM PUFs yield more bit flips
for shorter latencies. In the following, we show a design of a
HDS for decay-based DRAM PUF. For latency-based DRAM
PUFs, we simply reverse the logical 0 and 1, and the HDS
will work in the same way.

The HDS for decay-based Dynamic DRAM PUFs consists
of multiple sets of pointers to cells in the DRAM PUF region.
Each set is used for obtaining the PUF response for one
specific query time Tx, and consists of pointers to cells that
are expected to flip in the time interval [Tx − 2δt, Tx − δt] if
a logical 1 is to be stored in the PUF response, and pointers
to cells in the time interval [Tx + δt, Tx + 2δt] if a logical 0
is to be stored in the PUF response. Considering noise, most
of the cells that flip in [Tx − 2δt, Tx − δt] during enrollment

3The refresh can be controlled by the kernel module and done at the
same rate as in the DRAM standard, but this may use up significant CPU
resources. If the system and application memory is refreshed at a reduced rate
to save CPU resources, the system will be more vulnerable to the Rowhammer
attacks [31].
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will flip in response at Tx and most of the cells that flip in
[Tx + δt, Tx + 2δt] during enrollment will not yet flip in the
response at Tx. If the measurement time deviates from Tx by
more than δt, the decay result will be different.

Since the retention times of cells are independent of each
other, with this HDS structure, responses at Tx and Ty are
generated from different cells, and thus, are independent.

To correct any noise present in the PUF responses, an
Error Correction Code (ECC) should be used over the raw
PUF response m to generate a stable response m′. In our
implementation, we use 3-repetition codes for error correction,
where 3 bits encode 1 bit. The number of bits of the PUF
response m′ used in HESP is a security parameter, If we
choose a 32-bit security level in the HESP scheme in the
tamper response code to bind the 32-bit address, 3× 32 = 96
bits are needed in raw PUF response m. For 3-repetition code,
with BER of 1.5%, the probability of an error in a 32-bit
response will be 2%. For greater BER, more bits are required
for error correction. As shown in [32], using 32 bits to correct
1 bit, up to 25% error in the response can be corrected reliably
with a failure rate of less than 10−9. Other ECCs (e.g., BCH
codes [33], [34]) can be used instead of the repetition code
for more efficient error correction.

During the enrollments, for each Tx, DRAM PUF responses
at decay times Tx−2δt, Tx−δt, Tx+δt, and Tx+2δt are
measured. To generate the HDS for Tx, first a random 32-bit
binary string is generated and encoded by the ECC (e.g., 3-
repetition codes). With the encoded 96-bit binary string, cells
that flip in [Tx−2δt, Tx−δt] for 1 or [Tx+δt, Tx+2δt] for 0 are
chosen to generate the helper data for time Tx. The cells used
for Tx in HDS should not be in the sub-regions that are already
used for other query times. During the reconstruction, the cells
pointed to by the HDS are read, the results are concatenated
into a binary string m, and the binary string is decoded by
the ECC to obtain the final 32-bit response m′, as shown in
Figure 6.

E. A Controlled PUF Interface to Dynamic DRAM PUF

A Dynamic DRAM PUF is built using a DRAM region.
Because a DRAM PUF (both decay-based and latency-based)
is a weak PUF, it can only provide a limited number of CRPs.
If the attacker can directly access the PUF, he or she is then
able to brute force all PUF challenge-response pairs for each
decay time. This allows the attacker to obtain a logical clone
of the PUF. To counter this, a controlled PUF environment is
needed to prevent the attacker from easily brute-forcing all the

challenge-response pairs [35], as discussed in the threat model
in Section VII-A.

A controlled PUF interface to the Dynamic PUF is shown
in Figure 6. Here, the PUF is queried by a trusted component,
and only the cryptographically hashed result is passed to the
outside. The controlled PUF environment supports two types
of PUF queries: a Dynamic PUF Reset and a Dynamic PUF
Query. A Dynamic PUF Reset will initialize the PUF, restart
the decay process of all DRAM cells in the DRAM region,
and reset the cumulative hash state s and the counter c of the
controlled PUF environment. During a Dynamic PUF Query,
the trusted module reads out the raw response m according to
helper data Hidx, corrects any errors in the raw PUF response
as discussed in Section VII-D, and obtains a noise-free PUF
response m′. Then, the PUF response m′ is concatenated
with the cumulative hash state s and is hashed to get the
final response r. The resulting r is subsequently stored as the
cumulative hash state s for the next query. Consequently, no
raw PUF response can be directly accessed.

Now consider an attacker who has access to the PUF
interface. To hide the mapping between Tx and idx from the
attacker, a random permutation of the entries of the HDS is
applied when generating the HDS. In this way, even if the
attacker knows idx of a PUF query, he or she still needs to
find out the time since the Dynamic PUF reset to obtain the
correct PUF response. Since querying the PUF with idx at a
wrong time might result in all zero (if queried before Tx−2δt)
or all one results (if queried after Tx + 2δt), which will result
in two fixed hash results, the attacker can try to reset and
query the PUF once at different times with each of the idx
to obtain the correct timing of each Hidx. To prevent this, the
first k queries will not return a hashed result, but give a null
output (shown by the multiplexer in Figure 6). The attacker
needs at least k PUF queries to get the first output from the
controlled PUF. In this way, the attacker needs to brute force
k PUF query times to get one response.

VIII. EVALUATION

This section evaluates the performance of HESP. We first
discuss the implementation of AutoPatcher and show the
sample programs tested. Next, we present the overhead of
the protection scheme. We end with an evaluation of the
characteristics of Dynamic DRAM PUF.

A. AutoPatcher

To evaluate the protection system, AutoPatcher is imple-
mented in Python. Currently, AutoPatcher inserts one self-
checksumming code instance into each function of the pro-
gram, and thus, S equals the total number of functions in
the program. For each function call, a call graph scrambling
code instance will be inserted, thus, RC equals the total
number of function calls. Otherwise, if a function does not call
any other function, a register value scrambling code instance
will be inserted, and thus, RR equals the total number of
functions that do not call any other function. In this way,
AutoPatcher analyzes the call graph, divides the program into
S segments and pre-inserts the protection code instances. To
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implement the time-dependent control flow, AutoPatcher takes
the original program and an extra file indicating the time-
dependent call graph to patch the tamper response functions.
We also use a separate Python script to generate the HDS
and to determine the expected PUF responses from PUF
enrollment measurements. With the expected PUF responses
and the LLVM IR code of the software program, AutoPatcher
can resolve the reference values as mentioned in Step 2 and
Step 3 of Section VI-B.

The core part of AutoPatcher consists of about 1400 lines of
Python code. The rest of the code contains the template pro-
tection code in LLVM IR (shown in the gray boxes (ii) in Fig-
ure 1). To patch and compile the program rep call with AES
(Figure 7) on an Intel i5-4570 CPU and 8 GiB memory takes
in total about 2.6 seconds (including about 1.3 seconds to solve
the equations due to circular checksumming). Compiling the
plain unprotected software takes about 0.2 seconds. The main
patching time is from solving the equations on the prime field,
which depends on the security parameter R.

B. Sample Programs Used in Evaluation

For the sample programs we developed to test the HESP,
we consider a case where an IoT device measures a sensor
and sends out the data periodically. To protect the obtained
data, the program performs encryption, or compute a digi-
tal signature at fixed time intervals. HESP ensures that the
cryptographic operations are executed at the desired time,
otherwise, any deviation will be detected by the Dynamic
PUF response. To demonstrate that our AutoPatcher can patch
different programs, we use open-source AES4 and SHA5 C
implementations in our sample programs with different control
flow structures introduced in Section V. The programs are
shown in Figure 7 and listed below. For each program, we
also list the security parameters S, R and P used for that
program.

4FIPS-197 compliant AES implementation: https://github.com/particle-
iot/core-communication-lib/tree/master/lib/tropicssl/library

5FIPS 180-2 SHA implementation: https://github.com/ogay/sha2

(a) straight with AES (S = 3, R = 4, P = 4): The
program encrypts a data block. The main function calls two
functions (aes enc and aes ecb) sequentially to perform
AES encryption, similar to the straight-line example in
Section V-A. As discussed in Section VIII-A, AutoPatcher
assigns parameters depending on the structure of the pro-
gram. Because there are three functions (main, aes enc,
and aes ecb), S = 3. There are two function calls in
the main functions, which are patched by the call graph
scrambling code, thus, RC = 2. Inside aes enc and
aes ecb, there is no function call, thus, the register value
scrambling code instances are inserted in the two functions,
with RR = 2. R = RR +RC = 4. A PUF query is made
for each of the tamper response code, thus, P = R = 4.

(b) branch with AES (S = 4, R = 7, P = 9): Depending
on the input command, the program either encrypts or
decrypts a data block. As shown in Figure 7 (b), in this
implementation, the aes dec function calls the aes enc
function due to the shared operations in both encryption
and decryption process. There are four functions (main,
aes enc, aes dec, and aes ecb), thus, S = 4. Since there
are four function calls in the main functions, and one
aes dec, which are patched by the call graph scrambling
code, thus, RC = 5. Inside aes enc and aes ecb, there
are no other function calls, thus, register value scrambling
code instances are inserted in the two functions, with
RR = 2. R = RR + RC = 7. A PUF query is made
for each of the tamper response code in each branch,
because different branches have different timing. For the
left encryption branch, there are four tamper response code
instances (including two call graph scrambling instances
and two register value scrambling instances); for the right
decryption branch, there are five tamper response code
instances (including three call graph scrambling instances
and two register value scrambling instances). Thus, P = 9.

(c) rep call with AES (S = 4, R = 7, P = 9): The program
first encrypts and then decrypts a data block. The aes enc
function is called twice repeatedly in total, once by main
and once by aes dec. The aes ecb function is called twice
by main. This is similar to the example in Section V-B,
where a function is called repeatedly. Similar to the test
program branch with AES, there are four functions, thus,
S = 4. There are four function calls in the main functions,
and one aes dec, which are patched by the call graph
scrambling code, thus, RC = 5. Inside aes enc and
aes ecb, there is no other function calls, thus, register
value scrambling code instances are inserted in the two
functions, with RR = 2. R = RR + RC = 7. A PUF
query is made for each execution of the tamper response
code instances as discussed in Section V-B. aes enc and
aes ecb execute twice, and thus, two PUF queries are
required for the register value scrambling instance inside
each of them. Thus, P = 9.

(d) loop with AES (S = 4, R = 7, P = 9): There is
a loop with 5 iterations outside rep call with AES. At
the beginning of the loop, the PUF and all the counters
are reset. This is similar to the example in Section V-C.
Here, we reset the dynamic PUF at the beginning of each

https://github.com/particle-iot/core-communication-lib/tree/master/lib/tropicssl/library
https://github.com/particle-iot/core-communication-lib/tree/master/lib/tropicssl/library
https://github.com/ogay/sha2
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Fig. 8: Runtime overhead for different overlap
factors C of the self-checksuming code.
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loop iteration. The other protection code is identical to
rep call with AES without loop. (The S, R, P are the
same as that for rep call with AES.)

(e) time dep with AES (S = 4, R = 5, P = 9): The
program contains 2 loop iterations. In the first iteration,
a data block is encrypted, and in the second iteration, a
data block is decrypted. The functionality is the same as
rep call with AES. In the loop, whether to encrypt or to
decrypt depends on the PUF response, which depends on
time. This is an example of time-dependent control flow
in Section V-D. Similarly, there are four functions in the
program, thus, S = 4. In this program with time-dependent
control flow, there are two function calls in the main
function, the first one calls aes enc or aes dec depends on
the PUF response, and the second calls aes ecb. Therefore,
within aes dec, aes enc is called. Thus, RC = 3. Inside
aes enc and aes ecb, the register value scrambling code is
inserted, with RR = 2, resulting in R = RR+RC = 5. For
each execution of tamper response code, a PUF response is
required. In the first loop iteration (at T0), the left branch
with four tamper response functions will be executed, and
then (at T1), the right branch with five tamper response
functions will be executed. Thus, P = 9 PUF queries will
be used.

(f) rep call with SHA (S = 6, R = 9, P = 11): a SHA 512
digest of a data block is computed. In the main function,
only sha512 is called. sha512 calls three other functions.
The shar512 transf function is called three times repeat-
edly from different functions. The method of choosing
parameter S, R, P is similar to the AES application.

(g) loop with SHA (S = 6, R = 9, P = 11): There is a loop
outside rep call with SHA. At the beginning of the loop,
the PUF and all the counters are reset.

C. Running Software Protected by HESP

We patched the above sample software with AutoPatcher
to bind the execution to three different Intel Galileo Gen
2 boards [36]. The protected software execute successfully,
getting the excepted output on the correct device.

We observe mis-behavior of the execution if we changed the
executable binary or run the software on a difference device
than it was compiled for. In such case, the program gave wrong
(or missing) outputs or crashed at some point.

D. Overhead of HESP Framework

HESP will increase the size of the executable binaries and
also increase the execution time.

1) Execution Time Overhead:
Controlled PUF Interface: In the setup, the controlled PUF

is implemented in a Linux kernel module (Section VI-D). If
the platform supports parallel computation (e.g., between CPU
and co-processor or hyperthreading), then the computation of
the PUF interface can be done in parallel with the software. If
the software has some idle time, such as in our implementa-
tion, the computation of the PUF interface can be conducted
when the software is idle. Otherwise, the interface increases
the software runtime.

Protected Software: The overhead for different overlap
factors of the self-checksumming code is shown in Figure 8.
Here, to make a comparison with the original program, we
separate the time waiting for the DRAM PUF and the program
execution time. Due to the randomness in assigning code
segments to self-checksumming functions, we patch each
program by running AutoPatcher six times to get six versions
of protected binary. Each protected and unprotected binary is
executed and timed ten times on the Intel Galileo Gen 2 to
measure the CPU cycles. The overhead is computed by the
average execution time of all the protected binaries minus the
average execution time of the original binaries. Thus, the over-
head contains the overhead due to self-checksumming code
instances, PUF queries, and tamper response functions. The
latter two have small overhead compared to the checksumming
function. As shown in Figure 8, bigger overlap factors C will
result in bigger overhead. When C = 2, the protected code
of rep call with AES has 48% runtime overhead. The test
programs with loops show higher overhead, due to more self-
checksum instances at runtime. The overhead also depends
on the code size, as the self-checksum code compute hashes
over the whole code. The unprotected rep call with AES
and rep call with SHA have similar runtime, but due to the
smaller code size of rep call with SHA, it has smaller runtime
overhead in the self-checksum function, as shown in Figure 8.

2) Executable Binary Size Overhead:
Helper Data System: To extract unique response for each

query time and correct errors in PUF responses, HDS is needed
(see Section VII-D). For each PUF query, the HDS requires
384 Bytes (4 Bytes for each pointer, and with 3-repetition
code, 3× 32 cells are needed). For rep call with AES where
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P = 9, the HDS takes up 3.4 KiB. For rep call with SHA
application where P = 11, the HDS takes up 4.1 KiB.

Patched Protection Code: The protection code instances
are inserted into the executable binary. The size of the un-
protected rep call with AES executable with S = 4 is 16.6
KiB, while the protected binary is 2 KiB larger. With HDS
(P = 9) of 3.4 KiB, the total overhead is 32.5%. The size
of the unprotected rep call with SHA executable with S = 6
is 12.8 KiB, and the protected binary is 2.8 KiB larger. With
HDS (P = 11) of 4.1 KiB, the total overhead is 54%. Other
protection schemes also shown similar overhead [19].

E. Dynamic DRAM PUF Characteristics

Prior works have shown the uniqueness of DRAM
PUFs [17], [28]. Because for each query time the HDS uses
different cells for the PUF response, the uniqueness of DRAM
PUF in prior work implies the uniqueness of the Dynamic
DRAM PUF responses for different query times. Possible
correlations between different DRAM cells in the DRAM PUF
responses remain to be further investigated in the future work.

To evaluate the robustness of Dynamic DRAM PUFs,
measurements were conducted on Intel Galileo Gen 2 plat-
forms [36] with two 128 MiB DDR3 and a temperature
feedback loop such that the temperature of DRAM chips are
stabilized at 40◦C. We evaluated total decay times Tx =
{15, 20, 25, 30, 35, 40} seconds and time resolutions δt =
{1, 2, 5} seconds. Here, Tx indicates the total decay time, i.e.,
the time elapsed between the last PUF reset and the PUF query.
Two enrollment measurements were taken at Tx−2δt, Tx−δt,
Tx + δt and Tx + 2δt separately, and cells that flip in the time
interval [Tx−2δt, Tx− δt] and [Tx + δt, Tx +2δt] are enrolled
in HDS (see Section VII-D).

Figure 9 shows the average number of bit flips in the time
interval [Tx−2δt, Tx−δt] or [Tx+δt, Tx+2δt]. Figure 9 shows
that longer Tx or larger δt give more bits that can be used in
the DRAM PUF region. To generate the HDS for time Tx,
96 bit flips are needed in the time interval [Tx − 2δt, Tx − δt]
and [Tx + δt, Tx + 2δt], as discussed in Section VII-D. With 8
MiB DRAM PUF size, when the total decay time is larger than
25 seconds for time resolution δt = 2 seconds, it can provide
more than 96 bits. This means that Tmin for 8 MiB DRAM
PUF on Galileo Gen 2 is 25 seconds. For Tmax, in the current
DRAM PUF construction, the PUF responses come from the
new bit flips in a time interval of δt (in [Tx − 2δt, Tx − δt]
or [Tx + δt, Tx + 2δt]), and enough bit flips in the intervals
are always observed in the decay time tested. Thus, Tmax is
beyond the decay times we tested. To achieve a better time
resolution (smaller δt) or a smaller Tmin, a larger DRAM
size should be used. Here, we reserved a big chunk of DRAM
PUF region (e.g., 8 MiB), which can provide enough PUF
query times. For different PUF query times, different rows in
the same DRAM PUF region are used.

To evaluate the error rate of DRAM PUF responses, we
took 100 measurements at each decay time Tx. To compute the
average bit error rate (BER), with the enrollment, we divide
the number of cells that do not flip to their desired logical
value (logical one for [Tx − 2δt, Tx − δt] and logical zero

for [Tx + δt, Tx + 2δt]) by the total number of cells enrolled
in the time interval. Figure 10 shows the maximum BER in
all reconstructions to show the worst case. When the time
resolution δt is larger than 2 seconds, the BER is smaller than
1.5%. Figure 10 also shows that the resolution of decay-based
DRAM PUF is better than 1 second, but with greater BER,
where more efficient ECC or more raw PUF bits are required.

Temperature Effects: The DRAM decay depends on tem-
perature. We tested the time resolution when the temperature
of the DRAM chip is stabilized at 40◦C. Our setup controls
the temperature variation to be within ±0.5◦C, which gives
the above time resolution. Without temperature control, there
will be more noise due to temperature fluctuations and the
time resolution will be degraded.

IX. SECURITY ANALYSIS

The presented scheme aims to prevent an attacker from
modifying the executable and un-binding the execution of
the code from the specific hardware device instance it was
compiled for. The attacker aims to defeat one or both of these
protections. The objective of HESP is to make the attacks as
difficult as possible, given the limitations of low-end IoT-type
devices. Especially, an attacker with enough money or time
resources can reverse-engineer any software if the software
is not protected by cryptographically strong obfuscation [4],
[5], [37], [38]. As we discuss below, this work raises the
bar for the attacker significantly over the existing software-
only solutions, e.g., the use of self-checking codes or existing
hardware-software solutions that use SRAM PUFs [19] to bind
software execution to a device instance.

A. Attackers without Access to the Correct Dynamic PUF

Without access to the authorized device and the correct Dy-
namic PUF, the attacker cannot successfully run the program,
as correct Dynamic PUF responses are needed to continue
the correct execution. An attacker can only statically analyze
the code or can run code on a different device or a emulator
and guess the Dynamic PUF responses. Without access to
correct Dynamic PUF responses, the execution call graph is
not known. Consequently, an attacker without access to the
authorized device and correct Dynamic PUF cannot run the
original or a modified version of the software successfully.

B. Attackers with Access to the Correct Dynamic PUF

A more powerful attacker has access to the authorized de-
vice and can query the controlled Dynamic PUF. The attacker
may also run the protected software on the device it was
originally compiled for, or run any other code that can query
the Dynamic PUF at times chosen by the attacker. The attacker
can also read and modify the software binary, including the
hard-coded data such as the HDS. In the following, we
consider two different attackers, namely (1) static attackers
who can only statically inspect the binary, and (2) dynamic
attackers employing tools like emulators and debuggers.
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1) Static Attackers:
A static attacker cannot run the program or observe the be-

havior of the program. The attacker can only statically inspect
the code and then use a separate program to query the Dynamic
PUF. However, the attacker needs to know the timing of each
PUF query, whereas the attacker does not know the call graph
of the software to estimate the execution time. The attacker can
only brute force the P Dynamic PUF query times one by one.
Moreover, due to the obfuscation of the self-checksumming
code instances, the static attacker cannot circumvent the self-
checksumming protection (in Section IV-B).

2) Dynamic Attackers:
Emulators: Emulators can simulate the behavior of hard-

ware platforms and “execute” the binary. More importantly,
while most emulators do not model the timing of software, a
cycle-accurate emulator can give an estimation of the timing
of PUF queries. Recall that as the PUF responses depend on
time, the attacker needs to get PUF query timing from the
emulator and then query the PUF. The attacker has to do this
for each query back and forth until the end of the program.
Increasing the number of PUF queries P makes the attack
more difficult.

Debuggers: One powerful tool an dynamic attacker will
use is a debugger. However, there are several limitations:
First, we only distribute the final binaries. So the attacker
does not have binaries compiled with debug flags. Second,
the debugger sometimes changes the binary, for example,
when a breakpoint is inserted. This will be detected by the
self-checksum code and will trigger the response function
leading to a wrong execution. Third, a debugger will change
the timing of execution (e.g., when a breakpoint is inserted).
Since the Dynamic PUF responses depend on time, this will
lead to incorrect PUF responses and thus incorrect execution.
Even with this limitation, the attacker may be able to use
watchpoints to figure out each of the P PUF queries and
all the S self-checksumming code instances, and then all
the R response functions. Increasing S, C, P , and R will
make the attack more difficult. Furthermore, a number of anti-
debugging techniques have been proposed [39], [40] and could
be additionally used by our protection scheme.

Tracing: Tracing involves logging the execution traces of
software, such as the memory contents, the register values,
and the execution path. The attacker then can trace back
the execution. With tracing and taint analysis based on the
execution trace, it is reported that it is possible to identify the
self-checksumming code or reverse engineer the call graph
of an application [37], [38]. The complexity of the attack is
similar to the case of using a debugger.

Profiling: Profiling is another tool to analyze the software
execution involving performance counters. The protection
code inserted does not consume significant time nor does it
make excessive memory accesses, so it is hard to use profiling
to locate the protection code. Even if profiling infers the
locations of the protection code, it does not reveal the PUF
responses. Thus, profiling is not as powerful as watchpoints
in debuggers, whose attack complexity depends on S, C, P ,
and R.

3) Attackers Accessing More than One Device:

In this scenario, an attacker has access to more than one
device and the protected software instances for each of the
device. The attacker can do everything mentioned above.
However, because every device has a different PUF response,
accessing more instances does not help the attacker to attack
the Dynamic PUF.

Moreover, the attacker can compare different versions of
protected binaries or protected binary compiled for different
devices of the same piece of software. Due to the randomness
in generating the protection binary code, the attacker can locate
the inserted protection code, and try to remove the protections.
However, the attacker still needs to brute force all the PUF
responses to obtain the call graph. Further, the HESP can be
applied with the same deployment preferences, such that for
the same program patched for different devices, the location of
the protection codes and the type of the obfuscated protection
code inserted are the same, and the only difference is the
reference values, which depend on the PUF responses. In this
case, the attacker still cannot locate the self-checksumming
code to break the integrity.

C. Comparison to other Protection Schemes
1) Alternative Approaches:
Compared to software-only schemes, such as [3], by binding

the execution with a PUF in hardware, the software binary
cannot be run on an unauthorized device directly. Compared
to binding the execution with an SRAM PUF [19], attacking
a Dynamic PUF requires more effort, and this effort can be
increased by choosing higher values for the S, C, P , and
R parameters. The SRAM PUF generates all the responses at
once based on the PUF readout from SRAM at system startup,
and stores all the response in memory for latter runtime
use. In this setup, a dynamic attacker, who can access the
memory space of the protected software, can directly dump
the memory to obtain all the static PUF response at once.
With Dynamic PUFs, only the current PUF response is in
memory and used on the fly. The attacker needs to obtain all
the PUF responses one by one at runtime for the target device.
Meanwhile, the runtime overhead of HESP is mainly due to
the self-checksumming function, so the runtime overhead is
similar to binding the software execution to SRAM PUF [19].

2) Related Approaches:
Software diversity: Software diversity introduces random-

ness in the target software, so that an attack targeting at one
executable will only apply to a small number of other tar-
gets [11]. Software diversity can be implemented in different
phases of the life-cycle of the software, e.g., implementation
time, compilation time, installation time, load time or exe-
cution time. Here, since HESP only requires changes in the
compilation step, we compare HESP with software diversity
achieved at compile time. With compile-time software diver-
sity, many different versions need to be generated at compile
time, the cost of producing program variants is large. Also,
each client must download a different program variant, so the
cost to distribute and update the executable is proportional
to the number of targets. The runtime overhead of compile-
time software diversity schemes is reported to range from
1% to 11% [11].
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TABLE I: Comparison of Overhead and Security Goals of Existing Schemes

Compilation
Time

Distribution
Time

Execution
Time

Software
update

Security Goals
Defend “attack
once apply ev-
erywhere”

Anti-
reverse
Engineering

Device
Authen-
tication

Software
Integrity

Plain
Software

compile once
for all distribu-
tions

distribute the
same binary

1 Same patch
for all
distributions

Software
Diversity
– Compile
Time

compile once
for each distri-
bution

distribute one
unique binary
for each device

1.01–
1.11×
[11]

a unique
patch for each
distribution

X

Software
Obfuscation

compile once
for all distribu-
tions

distribute the
same binary

2×–30×*

[10]
Same patch
for all
distributions

X

This
Work

compile once
for each distri-
bution

distribute one
unique binary
for each device

up to 2×** a unique
patch for each
distribution

X X X X

* When the whole program is obfuscated.
** In this work, only small part of the software is required to be obfuscated.

Like all other security mechanisms using PUF, HESP needs
to enroll the Dynamic PUF for each device, to generate
the HDS and subsequently to use the PUF responses in the
protection scheme. Because each device will have a different
executable, the cost to compile, distribute and update the
software is similar to software diversity schemes deployed
at compile time. As discussed in [41], nowadays software
for certain hardware platforms are only available through a
single app store. It is not impractical that for each download
an individual instance of software that is generated for the
targeted device.

Software obfuscation: Software obfuscation is a mech-
anism to hide a program from analysis [4], [5]. There are
a number of classes of software obfuscation transformations
that protect against reverse-engineering, such as data obfus-
cation [6], reordering instructions [7], or control flow flatten-
ing [8], [9]. In addition, the control flow of a software program
can be flattened and diversified so that there are many more
control flow paths than in the un-obfuscated version, and thus
the reverse engineering process is more complicated [8], [9].
Software obfuscation is usually achieved by rewriting or
recompiling the executable from the source code automati-
cally. This comes with compilation time overhead. In most
cases, obfuscation increases the size of the executable, and
the execution time of the obfuscated code increases as well.
In [10], several different obfuscation schemes are implemented
and evaluated. Depending on the scheme used, the runtime
overhead ranges from 2× to 30×. If a software update is
needed, a patch will be generated for all the distributions, and
then the patch is distributed and applied. Since the same binary
will be distributed to all users, the same patch will apply to
all the distributions of the code. Hence, the complexity of
software update of software obfuscation is the same as that of
distribution time of software obfuscation.

HESP can be seen as an instance of software diversity
and software obfuscation. The PUF response diversifies the
binary, which prevents the “attack once apply everywhere”,
and the call graph scrambling code obfuscates the control flow,
which defends reverse-engineering the call graph, although

the initial goal of HESP is to protect software integrity and
authorize the hardware. Other software diversity and software
obfuscation mechanisms can also be applied over or combined
with this work to achieve more security features. For example,
the layout of the binary can be randomized as in software
diversity, so that the destination addresses of function calls
for each target executable are randomized.

Table I shows a comparison of the overhead and the security
goals between different protection schemes. Different schemes
have different security goals. Similar to compile-time software
diversity, HESP generates different binaries for different tar-
gets, and thus, has the similar compilation, distribution and
update overhead. The execution time overhead of HESP is
up to 2× when C=2, mainly due to the self-checksumming
functions. Compared to software obfuscation, HESP has a
smaller program runtime overhead.

X. CONCLUSION

This paper presented a hardware-entangled software protec-
tion scheme which leverages Dynamic PUFs. Different from
the usual static PUFs, a Dynamic PUF has time-dependent
responses. The proposed Dynamic PUFs and linear self-
checksum functions over the prime finite field can be used
to detect if a software is running on an authorized device
and if the software was modified. The tamper response code
instances further scramble the call graph of the software
and scramble the register values if the checksum or Dy-
namic PUF response is incorrect. An AutoPatcher can take
the to-be-protected program and Dynamic PUF enrollments,
and can automatically deploy our scheme. The protection
scheme was implemented and tested on a commercial off-
the-shelf platform (Intel Galileo Gen 2) and was shown to
have a moderate performance overhead. The HESP frame-
work and the Dynamic PUF code developed in this project
will be made available under an open-source license at
https://caslab.csl.yale.edu/code/puf-software-protection/.

https://caslab.csl.yale.edu/code/puf-software-protection/
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