
XMSS and Embedded Systems

XMSS Hardware Accelerators for RISC-V

Wen Wang1, Bernhard Jungk2, Julian Wälde3, Shuwen Deng1, Naina Gupta4,
Jakub Szefer1, and Ruben Niederhagen3

1 Yale University, New Haven, CT, USA
{wen.wang.ww349, shuwen.deng, jakub.szefer}@yale.edu

2 Independent Researcher
bernhard@projectstarfire.de

3 Fraunhofer SIT, Darmstadt, Germany
ruben@polycephaly.org

4 Fraunhofer Singapore, Singapore
naina.gupta@fraunhofer.sg

Abstract. We describe a software-hardware co-design for the hash-
based post-quantum signature scheme XMSS on a RISC-V embedded
processor. We provide software optimizations for the XMSS reference
implementation for SHA-256 parameter sets and several hardware accel-
erators that allow to balance area usage and performance based on indi-
vidual needs. By integrating our hardware accelerators into the RISC-V
processor, the version with the best time-area product generates a key
pair (that can be used to generate 210 signatures) in 3.44 s, achieving
an over 54× speedup in wall-clock time compared to the pure software
version. For such a key pair, signature generation takes less than 10 ms
and verification takes less than 6 ms, bringing speedups of over 42× and
17× respectively. We tested and measured the cycle count of our im-
plementation on an Intel Cyclone V SoC FPGA. The integration of our
XMSS accelerators into an embedded RISC-V processor shows that it is
possible to use hash-based post-quantum signatures for a large variety
of embedded applications.

Keywords: XMSS · hash-based signatures · post-quantum cryptogra-
phy · hardware accelerator · FPGA · RISC-V

1 Introduction

Due to the continued computerization and automation of our society, more and
more systems from consumer products and Internet-of-Things (IoT) devices to
cars, high-speed trains, and even nuclear power plants are controlled by embed-
ded computers that often are connected to the Internet. Such devices can have
a severe impact not only on our information security but increasingly also on
our physical safety. Therefore, embedded devices must provide a high level of
protection against cyber attacks — despite their typically restricted computing
resources. If an attacker is able to disrupt the authenticity of transmitted data,



he or she can undermine the security of the system in many ways, e.g., malicious
firmware can be loaded or contents of a digital document can be changed with-
out being detected. Authenticity of the data is commonly ensured using digital
signature schemes, often based on the DSA and ECDSA algorithms [22].

Such currently used asymmetric cryptographic algorithms, however, are vul-
nerable to attacks using quantum computers: Shor’s algorithm [24,25] is able to
factor integers and compute discrete logarithms in polynomial time and Grover’s
algorithm [10] provides a quadratic speedup for brute-force search. In light of
recent advances in quantum-computer development and increased research inter-
est in bringing practical quantum computers to life, a new field of post-quantum
cryptography (PQC) has evolved [4], which provides cryptographic algorithms
that are believed to be secure against attacks using quantum computers. This
paper focuses on one of these algorithms, the eXtended Merkle Signature Scheme
(XMSS), which has been standardized by the IETF [15].

XMSS is a stateful hash-based signature scheme proposed in 2011 by Buch-
mann, Dahmen and Hülsing [6]. It is based on the Merkle signature scheme [19]
and proven to be a forward-secure post-quantum signature scheme with mini-
mal security assumptions: Its security is solely based on the existence of a second
pre-image resistant hash function family and a pseudorandom function (PRF)
family. Both of these function families can be efficiently constructed even in the
presence of large quantum computers [6]. Therefore, XMSS is considered to be a
practical post-quantum signature scheme. Due to its minimal security assump-
tions and its well understood security properties, XMSS is regarded as one of
the most confidence-inspiring post-quantum signature schemes.

Embedded devices will need to use algorithms such as XMSS to make them
future-proof and to ensure their security even in the light of practical quantum
computers. One of the increasingly popular processor architectures for embedded
devices is the RISC-V architecture. It is an open and free architecture that is
proving to be a practical alternative to close-source designs. Consequently, this
work uses a RISC-V-based system on chip (SoC) (see Section 3) as a representa-
tive for embedded system architectures and shows how to efficiently deploy the
post-quantum signature scheme XMSS on an embedded device, with the help of
new hardware accelerators.

Hash-based signature schemes such as XMSS have relatively high resource
requirements. They need to perform thousands of hash-computations for key
generation, signing and verification and need sufficient memory for their rela-
tively large signatures. Therefore, running such post-quantum secure signature
schemes efficiently on a resource-constrained embedded system is a difficult task.
This work introduces a number of hardware accelerators that provide a good
time-area trade-off for implementing XMSS on RISC-V.

Our Contributions. Our work describes a software-hardware co-design of
XMSS achieving 128 bit post-quantum security in an embedded systems setting
To speed up the XMSS computations, we first provide SHA-256-specific software
optimizations for the XMSS reference implementation. Based on the optimized
XMSS software implementation, we then develop several hardware accelerators

2



l chains l chains l chains l chains l chains

. . .

. . .

. . .

2h WOTS key pairs and L-trees

WOTS
signatures

L-trees

Merkle
tree

w − 1 steps

height
dlog(l)e

height h

Fig. 1: XMSS tree with binary Merkle hash tree and WOTS instances with L-trees as
leaves. Red nodes are the WOTS private key and blue nodes are the WOTS public key
values. Green nodes are the L-tree roots and the gray node is the XMSS public key.

to speed up the most compute-intensive operations in XMSS. Our experimental
results show a significant speedup of running XMSS on our software-hardware
co-design compared to the pure (optimized) reference software version.

The source code for our work is publicly available under the open source
GPLv3 license at https://caslab.csl.yale.edu/code/xmsshwswriscv/. An
extended version of this work is available as Cryptology ePrint Archive, Report
2018/1225 [28].

2 Preliminaries

In this section, we give an introduction to the relevant aspects of the XMSS
signature scheme and briefly recapitulate the functionalities of SHA-256.

2.1 XMSS

XMSS [15] is a stateful digital signature scheme based on the Merkle signature
scheme [19]. Similar to the Merkle signature scheme, XMSS uses a variant of
the Winternitz one-time signature scheme (WOTS or Winternitz-OTS) to sign
individual messages. One private/public WOTS key pair is used to sign one
single message (with the private secret key) and to verify the signature (with
the corresponding public verification key). To be able to sign up to 2h messages,
XMSS uses 2h pairs of WOTS secret and verification keys. To reduce the size
of the public key, a Merkle hash tree of height h and binary L-trees are used to
reduce the authenticity of many WOTS verification keys to one XMSS public
key. Since each WOTS key must only be used once, the signer needs to remember
which WOTS keys already have been used. Hence, the scheme is stateful. Figure 1
shows the overall structure of XMSS.

3

https://caslab.csl.yale.edu/code/xmsshwswriscv/


The XMSS standard also defines multi-tree versions called XMSSˆMT where
the leaf nodes of a higher-level tree are used to sign the root of another tree. In
this paper, we mainly consider single-tree XMSS. However, our results apply to
multi-tree XMSS as well in a straightforward way. For a detailed description of
XMSS and XMSSˆMT please refer to IETF RFC 8391 [15] and to [6].

In the following we briefly introduce the XMSS address scheme, WOTS, the
L-tree construction, and the procedure for constructing the Merkle tree. We also
give an introduction to XMSS key generation, signing, and verification.

Address Scheme. XMSS uses a hash-function address scheme throughout the
Merkle tree, L-tree, and WOTS computations to uniquely identify each individ-
ual step in the overall graph. These addresses are used to derive keys for keyed
hash functions that are unique for each specific location in the graph. Each ad-
dress is composed of eight 32 bit fields, with fields for, e.g., the level within a
tree and the leaf index. In total, an XMSS address has a size of 256 bit. For
more details about the hash function address scheme, please refer to IETF RFC
8391 [15, Sect. 2.5].

Winternitz OTS. The WOTS scheme was first mentioned in [19]. For signing
a message digest D of n-byte length, WOTS uses a cryptographically secure hash
function with n-byte output strings to compute hash chains. The message digest
is interpreted as binary representation of an integer d. First, d is split into l1 =
d8n/ log2(w)e base-w words di, 0 ≤ i < l1 and a checksum c =

∑l1
i=0 w−1−di is

computed for these base-w words (w is called the “Winternitz parameter”). The
checksum c is split into l2 = blog2(l1(w−1))/ log2(w)) + 1c base-w words ci, 0 ≤
i < l2 as well. WOTS key generation, signing, and verification are performed as
follows:

– To create a private/public WOTS key pair, Alice computes l = l1 + l2 secret
strings s0,i for 0 ≤ i < l, each of n-byte length (for example using a secret
seed and a PRF). These l n-byte strings are the private WOTS key. Then,
Alice uses a chaining function to compute l hash chains of length w − 1,
hashing each s0,i iteratively w − 1 times. The resulting chain-head values
sw−1,i, 0 ≤ i < l of n-byte length are the public WOTS key of Alice.

– To sign a message digest, d is split into l1 base-w words together with l2 base-
w checksum values computed as described above, Alice (re-)computes the in-
termediate chain values (sd0,0, sd1,1, . . . , sdl1−1,l1−1, sc0,0, sc1,1, . . . , scl2−1,l2−1)
starting from her private key values. These l = l1+l2 values are the signature.

– When Bob wants to verify the signature, he recomputes the remaining chain
steps by applying w− 1−di hash-function iterations to signature value sdi,0

and compares the results with the corresponding public key values. If all
chain-head values match the public WOTS key, the signature is valid.

XMSS uses a modified WOTS scheme, sometimes referred to as WOTS+ or
as W-OTS+ [13]; we use the term WOTS+ only when a explicit distinction from
“original” WOTS is required for clarification. WOTS+ uses a function chain()
as chaining function that is a bit more expensive than the simple hash-chain

4



function described above. The function chain() uses a keyed pseudo-random
function prfk : {0, 1}256 7→ {0, 1}8n and a keyed hash-function fk′ : {0, 1}8n 7→
{0, 1}8n. Within each chain step, the function chain() first computes a unique
n-byte key k′ and a unique n-byte mask using the prfk() function. The input to
prfk() is the hash function address of the current step (including the chain step
and a marker for the usage as key or as mask). The key k for prfk() is a seed
that is part of the XMSS public key. The mask is then XOR-ed with the n-byte
output from the previous chain-function call (or the initial WOTS+ chain n byte
input string) and the result is used as input for the hash-function f() under the
key k′, which gives the n-byte output of the chaining function chain() in the last
iteration step.

The WOTS+ secret key consists of l (l is defined as described above for
WOTS) pseudo-random strings of n-bytes in length. The XMSS specification
does not demand a certain function to compute the WOTS+ private key. In
the XMSS reference implementation, they are generated using the prfk() func-
tion with the local address (including the chain index) as input and keyed with
the XMSS secret key seed. Each WOTS+ secret key maps to one correspond-
ing WOTS+ public key, which is computed by calling the chaining function
chain() with w − 1 iteration steps. Signing and verification in WOTS+ work
as described above for WOTS using the WOTS+ chaining function. The more
complex structure of the chaining function of WOTS+ compared to WOTS is
required for multi-target resistance and within the XMSS security proof.

L-tree. The leaf nodes of an XMSS tree are computed from the WOTS+ public
keys by using an unbalanced binary tree of l leaf nodes (one leaf node for each
WOTS+ public key value), hence called L-tree. The nodes on each level of the
L-tree are computed by hashing together two nodes from the lower level. A tree
hash function hashrand : {0, 1}8n × {0, 1}8n 7→ {0, 1}8n is used for this purpose.

The function hashrand() uses the keyed pseudo-random function prfk() and
a keyed hash-function hk′′ : {0, 1}16n 7→ {0, 1}8n. First, an n-byte key k′′ and
two n-byte masks are computed using the prfk() with the address (including
the L-tree level and node index) as input and the same public seed as used
for WOTS+ as key. The masks are then each XOR-ed to the two n-byte input
strings representing the two lower-level nodes and the results are concatenated
and used as input for the hash-function h() keyed with k′′, which gives the n-byte
output of the tree hash function hashrand().

To be able to handle the pairwise hashing at levels with an odd number of
nodes, the last node on these levels is lifted to a higher level until another single
node is available. The root of the L-tree gives one single hash-value, combining
the l WOTS+ public keys into one WOTS+ verification key.

XMSS Merkle Tree. In order to obtain a small public key, the authenticity
of many WOTS verification keys (i.e., L-tree root keys) is reduced to one XMSS
public key using a binary Merkle tree. Similar to the L-tree construction, on
each level of the binary tree, neighbouring nodes are pairwise hashed together to
obtain one single root node that constitutes the XMSS public key (see Figure 1).

5



XMSS Key Generation. XMSS key generation is quite expensive: In order
to compute the XMSS public key, i.e., the root node of the Merkle tree, the
entire XMSS tree needs to be computed. Depending on the height h of the tree,
thousands to millions of hash-function calls need to be performed. XMSS key
generation starts by generating 2h leaf nodes of the Merkle tree. Each leaf node
consists of an WOTS instance together with an L-tree. For each WOTS instance,
first l WOTS private keys are generated. These are then used to compute the l
WOTS chains to obtain l WOTS public keys and then the L-trees on top of
these. Once all 2h L-tree root nodes have been computed, the Merkle tree is
computed to obtain the XMSS public key.

The XMSS public key consists of the n-byte Merkle tree root node and an
n-byte public seed required by the verifier to compute masks and public hash-
function keys using the function prfk() within the WOTS-chain, L-tree, and
Merkle tree computations. The XMSS standard does not define a format for the
XMSS private key. In the XMSS reference implementation that accompanies the
standard, an n-byte secret seed is used to generate the WOTS secrets using a
pseudo random function (e.g., prfk()).

XMSS Signature Generation. XMSS is a stateful signature scheme: Each
WOTS private/public key pair must be used only once; otherwise, the scheme
is not secure. To determine which WOTS key pair already has been used, an
n-byte leaf index (the state) is stored with the private key. The index defines
which WOTS key pair will be used for the next signature; after each signature
generation, the index must be increased.

Similar to most signature schemes, for signing an arbitrary-length message
or a document M , first a message digest of M is computed; details can be found
in [15, Sect. 4.1.9]. The digest M ′ is then signed using the selected WOTS in-
stance. This results in l n-byte values corresponding to the base-w decomposition
of M ′ including the corresponding checksum. Furthermore, in order to enable the
verifier to recompute the XMSS public root key from a leaf node of the Merkle
tree, the signer needs to provide the verification path in the Merkle tree, i.e.,
h n-byte nodes that are required for the pairwise hashing in the binary Merkle
tree, one node for each level in the Merkle tree.

Therefore, in the worst case, the signer needs to recompute the entire XMSS
tree in order to select the required nodes for the verification path. There are sev-
eral optimization strategies using time-memory trade-offs to speed up signature
generation. The BDS tree traversal algorithm [7] targets at reducing the worst
case runtime of signature generation by computing a certain amount of nodes in
the Merkle tree at each signature computation and storing them alongside the
XMSS state.

XMSS Signature Verification. Compared to key generation, XMSS signature
verification is fairly inexpensive: An XMSS public key contains the Merkle root
node and the public seed. An XMSS signature contains the WOTS leaf index, l
WOTS-signature chain values, and the verification path consisting of h Merkle-
tree pair values, one for each level in the tree. The verifier computes the message

6



digest M ′ and then recomputes the WOTS verification key by completing the
WOTS chains and computing the L-tree. The verifier then uses the Merkle-tree
pair values to compute the path through the Merkle tree and finally compares
the Merkle tree root node that was obtained with the root node of the sender’s
public key. If the values are equal, verification succeeds and the signature is
sound; otherwise verification fails and the signature is rejected.

Parameter Set. RFC 8391 defines parameter sets for the hash functions SHA-2
and SHAKE targeting classical security levels of 256 bit with n = 32 and 512 bit
with n = 64 in order to provide 128 bit and 256 bit of security respectively
against attackers in possession of a quantum computer [15, Sect. 5]. The required
parameter sets, as specified in [15, Sect. 5.2], all use SHA-256 to instantiate the
hash functions (SHA-512 and SHAKE are optional). Therefore, for this work,
we focus on the SHA-256 parameter sets with n = 32.

For SHA-256, three different parameter sets are provided in RFC 8391 [15,
Sect. 5.3], all with n = 32 and w = 16 but with h = 10, h = 16, or h = 20. In
general, a bigger tree height h leads to an exponential growth in the run time
of key generation. For verification the run time is only linearly impacted. The
naive approach for signing requires one to recompute the entire tree and thus
is as expensive as key generation. However, by use of the BDS tree traversal
algorithm [7], the tree height has only a modest impact on the run time. Multi-
tree versions of XMSS can be used to speed up the computations at the cost of
larger signature sizes (e.g., to improve key generation and signing performance
or to achieve a larger h). We are using h = 10 throughout our experiments;
however, our implementation is not restricted to this value.

2.2 SHA-256

The hash function SHA-256 [21] computes a 256 bit hash value from a variable-
length input. SHA-256 uses a 256 bit internal state that is updated with 512 bit
blocks of the input. SHA-256 defines a padding scheme for extending variable-
length inputs to a multiple of 512 bit. SHA-256 works as follows:

1. Initialize the internal state with a well-defined IV (see [21, Sect. 4.2.2]).

2. Extend the `-bit input message with a padding to make the length of the
padded input a multiple of 512 bit:

– append a single 1 bit to the input message, then

– append 0 ≤ k 0 bit such that `+1+k+64 is minimized and is a multiple
of 512, and finally

– append ` as a 64 bit big-endian integer.

3. Iteratively apply a compression function to all 512 bit blocks of the padded
input and the current internal state to obtain the next updated internal
state.

4. Once all 512 bit blocks have been processed, output the current internal state
as the hash value.

7



The compression function uses the current internal state and a 512 bit input
block and outputs an updated internal state. For SHA-256, the compression
function is composed of 64 rounds.

3 RISC-V

Software-hardware co-design has been adopted as a common discipline for de-
signing embedded system architectures since the 1990s [27]. By combining both
software and hardware in an embedded system, a trade-off between software flex-
ibility and hardware performance can be achieved depending on the user’s needs.
To accelerate XMSS computations, we developed a software-hardware co-design
of XMSS by moving the most compute-intensive operations to hardware while
keeping the rest of the operations running in software. Our software-hardware
co-design of XMSS is developed based on a RISC-V platform.

RISC-V. The RISC-V instruction set architecture (ISA) is a free and open
architecture, overseen by the RISC-V Foundation with more than 100 member
organizations5. The RISC-V ISA has been designed based on well-established
reduced instruction set computing (RISC) principles. It has a modular design,
consisting of base sets of instructions with optional instruction set extensions.
Due to its modular design, the RISC-V ISA is an increasingly popular architec-
ture for embedded systems. It is used, e.g., as a control processor in GPUs and
in storage devices [11], for secure boot and as USB security dongle [20], and for
building trusted execution environments (TEE) with secure hardware enclaves6.
Since the RISC-V ISA is an open standard, researchers and industry can easily
extend and adopt it in their designs without IP constraints.

VexRiscv. First-prize winner in the RISC-V Soft-Core CPU Contest of 20187,
VexRiscv8 is a 32-bit RISC-V CPU implementation written in SpinalHDL9,
which is a Scala-based high-level hardware description language. It supports the
RV32IM instruction set and implements a five-stage in-order pipeline. The design
of VexRiscv is very modular: All complementary and optional components are
implemented as plugins and therefore can easily be integrated and adapted into
specific processor setups as needed. The VexRiscv ecosystem provides memories,
caches, IO peripherals, and buses, which can be optionally chosen and combined
as required.

Murax SoC. The VexRiscv ecosystem also provides a complete predefined
processor setup called “Murax SoC” that has a compact and simple design and
aims at small resource usage. The Murax SoC integrates the VexRiscv CPU

5 https://riscv.org/
6 https://keystone-enclave.org/
7 https://riscv.org/2018/10/risc-v-contest/
8 https://github.com/SpinalHDL/VexRiscv/
9 https://spinalhdl.github.io/SpinalDoc/

8

https://riscv.org/
https://keystone-enclave.org/
https://riscv.org/2018/10/risc-v-contest/
https://github.com/SpinalHDL/VexRiscv/
https://spinalhdl.github.io/SpinalDoc/


with a shared on-chip instruction and data memory, an Advanced Peripheral
Bus (APB), a JTAG programming interface, and a UART interface. It has very
low resource requirements (e.g., only 1350 ALMs on a Cyclone V FPGA) and
can operate on its own without any further external components.

The performance of the Murax SoC is comparable to an ARM Cortex-M3:
A multi-tree version of XMSS has been implemented on an embedded ARM
Cortex-M3 platform in [16] (see also Section 7). We compiled a pure C-version
of the code from [16] for both an ARM Cortex-M3 processor and the Murax
SoC and compared their performance (see the bottom lines of Table 7). In terms
of cycle count, the Cortex-M3 is only about 1.5× faster than the Murax SoC.
Therefore, we conclude that the Murax SoC is a good representative for an
embedded system processor with low resources. As opposed to an ARM Cortex-
M3 platform, however, the Murax SoC is fully free, open, and customizable and
thus is an ideal platform for our work.

Extending the Murax SoC with new hardware accelerators can be imple-
mented easily in a modular way using the APB bus. We used this feature for our
XMSS accelerators. Depending on different use cases, our open-source software-
hardware co-design of XMSS can be migrated to other RISC-V or embedded
architectures with small changes to the interface.

Setup. We evaluated our design using a DE1-SoC evaluation board from Tera-
sic as test-platform. This board has an Intel (formerly Altera) Cyclone V SoC
5CSEMA5F31C6 device. We used Intel Quartus Software Version 16.1 (Stan-
dard Edition) for synthesis. On the DE1-SoC, we are running the Murax SoC
described above with additional accelerators that will be described in Section 5.
The DE1-SoC board is connected to a host computer by a USB-JTAG connec-
tion for programming the FPGA, a USB-serial connection for IO of the Murax
SoC, and a second USB-JTAG connection for programming and debugging the
software on the Murax SoC.

We configured the on-chip RAM size of the Murax SoC to 128 kB, which is
sufficient for all our experiments. We tested our implementations on the DE1-
SoC board at its default clock frequency of 50 MHz; however, to achieve a fair
comparison, our speedup reports presented in the following sections are based
on the maximum frequency reported by the synthesis tool. Our implementation
is neither platform-specific nor dependent on a specific FPGA vendor.

4 Software Implementation and Optimization

We used the official XMSS reference implementation10 with the BDS algo-
rithm [7] for tree traversal as software-basis for this work. We applied minor
modifications to the XMSS reference code to link against the mbed TLS li-
brary11 instead of OpenSSL, because mbed TLS generally is more suitable for

10 https://github.com/joostrijneveld/xmss-reference/, commit 06281e057d9f5d
11 https://tls.mbed.org/

9

https://github.com/joostrijneveld/xmss-reference/
https://tls.mbed.org/


prf

sha256 compression

thash h

wots sign

hash1024 hash768

expand seed

treehash/bds

xmss keypair xmss verifyxmss sign

wots pkgen

SHA256

thash f

gen chain

wots pk from sigl tree

Fig. 2: Simplified XMSS call graph. Function calls that have been removed during soft-
ware optimization are displayed with dotted nodes and arrows, added calls are dashed.
The “fixed input length” optimization is marked in blue, the “pre-computation” opti-
mization is marked in green.

resource-restricted embedded platforms such as the Murax SoC platform and
its SHA-256 implementation has less library-internal dependencies than that of
OpenSSL, which simplifies stand-alone usage of SHA-256.

To have a fair reference point for the comparison of a pure software imple-
mentation with our hardware accelerators, we implemented two software opti-
mizations for the XMSS reference software implementation as described in the
following paragraphs. These optimizations are also helpful on other processor ar-
chitectures but only work for SHA-256 parameter sets, because they depend on
the specific SHA-256 block size and padding scheme. We are going to provide our
software optimizations to the maintainers of the XMSS reference implementation
so they can integrate them if they wish to.

Figure 2 shows a simplified XMSS call graph for both the original source code
version and the changes that we applied for optimizations as described below.

Fixed Input Length. In the XMSS software reference implementation, around
90% of the time is spent inside the hash-function calls. Therefore, the SHA-256
function is most promising for optimization efforts. In particular for short-length
inputs, a significant overhead is caused by computing the SHA-256 padding.
However, within the XMSS scheme, the inputs of almost all SHA-256 calls have
a well-known, fixed length: A general, arbitrary-length SHA-256 computation is
only required when computing the actual hash digest of the input message, which
is called only once for signing and once for verifying. For all the other SHA-256
calls, the length of the input data is either 768 bit or 1024 bit depending on

10



256-bit hash768-padding:

0x80 0x00 . . . 0x00 0x03 0x00

512-bit hash1024-padding:

0x80 0x00 . . . 0x00 0x00 0x00 0x00 . . . 0x00 0x04 0x00

7 0 15 8 239 232 247 240 255 248

7 0 15 8 239 232 247 240 255 248 263 256 495 448 503 496 511 504

Fig. 3: Fixed padding for hash768 and hash1024
.

where SHA-256 is called within the XMSS scheme: An input length of 768 bit
is required within the PRF and within the WOTS-chain computation; an input
length of 1024 bit is required within the Merkle tree and the L-trees to hash
two nodes together. Therefore, we can eliminate the overhead for the padding
computation of the SHA-256 function by “hardcoding” the two required message
paddings, given that their lengths are known beforehand.

We implemented two specialized SHA-256 functions: The function hash768
targeting messages with a fixed length of 768 bit and hash1024 targeting mes-
sages with fixed length of 1024 bit. Figure 3 shows the padding for hash768 and
hash1024. Since SHA-256 has a block size of 512 bit, two blocks are required
to hash a message of length 768 bit. Therefore, we need to hardcode a 256 bit
padding for hash768 to fill up the second block to 512 bit. When a 768 bit
message is fed to the hash768 function, the 256 bit padding is appended to
the message. Then, the new 1024 bit padded message is divided into two 512 bit
blocks and the compression function is performed on each of them one by one.
Once the compression function on the second message block has finished, the
internal state is read out and returned as the output. The SHA-256 standard
always demands to append a padding even if the input length is a multiple of
512 bit. Therefore, for the hash1024 function a 512 bit padding is hardcoded
similarly to hash768 and three calls to the compression function are performed.

Table 1 shows a comparison of the original XMSS reference implementation
with an optimized version making use of the “fixed input length” optimization
on the Murax SoC with parameters n = 32, w = 16 and h = 10. The speedup
for 768 bit inputs is about 1.07× and for 1024 bit inputs is about 1.04×. The use
of 768 bit inputs is more common during the XMSS computations. Therefore,
we see an about 1.06× speedup for WOTS computations as well as the key
generation, signing, and verification operations in XMSS.

Pre-Computation. Pre-computation is commonly referred to as the act of
performing an initial computation before runtime to generate a lookup table
to avoid repeated computations during runtime. This technique is useful in im-
proving real-time performance of algorithms at the expense of extra memory and
extra preparatory computations [3]. In XMSS, a variant of this idea can be ap-
plied to improve the performance of the hash functions. Within XMSS, SHA-256

11



“original” + “fixed input length” + “pre-computation”
Cycles Cycle Speedup Cycles Speedup Speedup

(A) (B) (AB) (C) (BC) (AC)

hash768 11.5× 103 10.7× 103 1.07 5.87× 103 1.83 1.95
hash1024 16.2× 103 15.6× 103 1.04 — — —

WOTS-chain 571 × 103 530 × 103 1.08 371 × 103 1.43 1.54
XMSS-leaf 42.2× 106 39.8× 106 1.06 27.7 × 106 1.44 1.53

key generation 43.3× 109 40.8× 109 1.06 28.3 × 109 1.44 1.53
signing 58.3× 106 55.0× 106 1.06 38.4 × 106 1.43 1.52
verification 26.7× 106 25.2× 106 1.06 17.4 × 106 1.45 1.54

Table 1: Cycle count and speedup of the “fixed input length” optimization and for
both, the “fixed input length” and the “pre-computation” optimizations, on the Murax
SoC with parameters n = 32, w = 16 and h = 10.

is used to implement four different keyed hash-functions, the function thash_f
for computing f() in the WOTS-chains, the function thash_h for h() in the
tree hashing, and the function prf for computing the prf(), generating masks
and hash-function keys. Furthermore, SHA-256 is used to compute the message
digest that is signed using a WOTS private key. The domain separation and the
keying for these four functions are achieved by computing the input to SHA-256
as the concatenation of a 256 bit domain separator value (distinct for these four
functions), the 256 bit hash key, and the hash-function input. Since SHA-256
operates on 512 bit blocks, one entire block is required for domain separation
and keying of the respective hash function.

In case of the prf, for all public-key operations when generating masks and
hash-function keys for the WOTS chain, the L-tree and Merkle tree operations,
the key to the prf is the 256 bit XMSS public seed. Thus, both the 256 bit
domain separator and the 256 bit hash-function key are the same for all these
calls for a given XMSS key pair. These two parts fit exactly into one 512 bit
SHA-256 block. Therefore, the internal SHA-256 state after processing the first
512 bit block is the same for all these calls to the prf and based on this fact, we
can save one SHA-256 compression function call per prf-call by pre-computing
and replaying this internal state. The internal state can either be computed once
and stored together with the XMSS key or each time an XMSS operation (key
generation, signing, verification) is performed. This saves the computation on
one of the two input blocks in hash768 used in the prf. For hash1024, this
optimization is not applicable since the fixed input block pattern does not exist.

At the first call to prf, we store the SHA-256 context of mbed TLS for later
usage after the first compression function computation. The state includes the
internal state and further information such as the length of the already processed
data. When the prf is called during XMSS operations, we first create a copy of
the initially stored prf SHA-256 context and then perform the following prf()

12



operations based on this state copy, skipping the first input block. The cost
for the compression function call on the first SHA-256 block within the prf is
therefore reduced to a simple and inexpensive memory-copy operation.

Performance measurements and speedup for our pre-computation optimiza-
tion are shown in Table 1. For hash768 we achieve a 1.83× speedup over the
“fixed input length” optimization, because only one SHA-256 block needs to
be processed instead of two. For WOTS-chain computations we obtain a 1.43×
speedup and for the overall XMSS leaf computations an about 1.44× speedup.
The expected speedup for Merkle tree computations is about the same as for
the L-tree computations since the trees are constructed in a similar way. Table 1
shows that we achieve an overall speedup of more than 1.5× including both op-
timizations also for the complete XMSS operations, i.e., key generation, signing,
and verification. We observed a similar speedup on an Intel i5 CPU. Similar
speedups can be achieved on other architectures as well, e.g., ARM processors.

5 Hardware Acceleration

To further accelerate the XMSS computations, we developed several dedicated
hardware modules together with software interfaces for the XMSS software. As
shown in Figure 4, the Murax SoC uses an APB for connecting peripherals to
the main CPU core. The peripheral can be accessed by the software running
on the Murax SoC via control and data registers that are mapped into the
address space. Therefore, the software interface can simply use read and write
instructions to communicate with a hardware module. Due to the modularity of
the VexRiscv implementation, dedicated hardware modules can be easily added
to and removed from the APB before synthesis of the SoC (see Section 3).

The hardware accelerators are connected to the APB using a bridge module:
The Apb3Bridge module connects on one side to the 32 bit data bus and the
control signals of the APB and on the other side to the hardware accelerator. It
provides a 32 bit control register, which is mapped to the control and state ports
of the hardware accelerator, and data registers for buffering the input data,
which are directly connected to the input ports of the hardware accelerator.
The control and data registers are mapped to the APB as 32 bit words using a
multiplexer, selected by the APB address port on APB write; the control register
and the output ports of the hardware accelerator are connected in the same way
to be accessed on APB read. This allows the software to communicate with the
accelerators via memory-mapped IO using simple load and store instructions.

We modified the corresponding software functions in the optimized XMSS
implementation to replace them with function calls to our hardware accelerators
as follows: The function first sets control bits (e.g., RESET, INIT) to high in the
control register. When these bits are received as high by the Apb3Bridge module,
it raises the corresponding input signals of the hardware accelerator. Similarly,
the input data is sent to the corresponding hardware accelerator via the APB
bus in words of width 32 bit. Then the hardware accelerator is triggered using
the control register, performs its computation, and raises a done signal when it

13



VexRiscv

On-Chip
RAM

APB
Bridge

A
P

B
D

ec
o
d
er

UART

A
P

B
B

ri
d
g
e

Accelerator
Wrapper

SHA256

Inst.
Bus

Data
Bus

JTAG

UART

Murax

Fig. 4: Schematic of the Murax SoC. Hardware accelerators are connected to the APB.
Details on the hardware accelerators are shown in Figure 5.

finishes. Once the software is ready to read the result, it keeps polling the control
register until the DONE bit is set high. The software then can read the results
via the APB in words of 32 bit.

5.1 General-Purpose SHA-256 Accelerator

The first hardware module we developed is the SHA256 module, which is a
general-purpose hash accelerator that accepts variable length inputs. The SHA256
module is used as the building block in the XMSS-specific hardware accelerators
described in the following sub-sections. It has a similar interface as the generic
SHA-256 compression function in software: It receives a 512 bit data block as in-
put and computes the compression function, updating an internal 256 bit state.
This state can be read out as the 256 bit digest when the SHA-256 computation
is finished. Padding is performed in software as before.

We developed the module SHA256 by implementing an iterative version of
SHA-256 by computing one round of SHA-256 in one clock cycle. Therefore, we
require 64 clock cycles to process one SHA-256 data block. This provides a good
trade-off between throughput and area consumption similar to [12]. The SHA256

module is a generic hash core without platform-specific optimizations that runs
on any FPGA platform. Users can easily use a platform-optimized SHA-256 core
within our hardware modules, e.g., [8,17,23].

Hardware Support for Software Optimizations. The software optimiza-
tion of SHA-256 exploiting fixed input lengths of the SHA-256 function described
in Section 4 can be mapped in a straightforward way to the SHA256 module. The
software prepares the SHA-256 input chunks with pre-defined paddings just as
before and then transfers each chunk to the SHA256 module for processing. There-
fore, the speedup achieved for the pure software version can also be exploited
for this hardware accelerator.

In order to support the “pre-computation” optimization, (Section 4), we
added an interface to the SHA256 module that allows to set the internal state
of the SHA256 module from software. Reading the internal state is the same
as reading the SHA-256 message digest at the end of the hash computation.

14



Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

one 512 bit block

SHA256 64 1180 1550 100 0.639 — —

hash768 with pre-computation (one 512 bit block)

Murax 4950 1350 1660 152 32.6 9.22 1.00
+ SHA256 253 2860 3880 99.9 2.53 1.00 12.9

hash768 without pre-computation (two 512 bit blocks)

Murax 10,700 1350 1660 152 70.4 8.76 1.00
+ SHA256 576 2860 3880 99.9 5.77 1.00 12.2

hash1024 (three 512 bit blocks)

Murax 15,600 1350 1660 152 102 10.5 1.00
+ SHA256 700 2860 3880 99.9 7.01 1.00 14.6

Table 2: Performance of the hardware module SHA256 and comparisons of performing
the SHA-256 compression function on different numbers of 512 bit blocks when called
from the RISC-V software on a Murax SoC and on a Murax SoC with a SHA256

accelerator (all using the “fixed input length” optimization in software, i.e., cost for
SHA-256 padding is not included).

While the hardware is performing the hash computation, the software can go
on transferring the next data block to the SHA256 module. This reduces the
communication overhead and increases the efficiency of the SHA256 module.

Evaluation. Table 2 shows performance, resource requirements, and maximum
frequency of the SHA256 module. The module requires 64 cycles (one cycle per
round) for computing the compression function on one 512 bit input block.

Table 2 also shows a comparison of computing one SHA-256 compression
function call in software (design Murax) with calling the hardware module from
the software (design “Murax + SHA256”). Transferring data to the SHA256 ac-
celerator module and reading back the results contribute a significant overhead:
The entire computation on a 512 bit input block (without SHA-256 padding com-
putation) requires 253 cycles. This overhead is due to the simple bus structure
of the Murax SoC; a more sophisticated bus (e.g., an AXI bus) may have a lower
overhead — at a higher cost of resources. However, we achieve an almost 13×
speedup over the software implementation of the SHA-256 compression function.

Table 6 shows the performance impact of the SHA256 module on XMSS com-
putations (designs Murax and “Murax + SHA256”, including both “fixed input
length” and “pre-computation” software optimizations). For the key generation,
signing and verification operations, the SHA256 module accounts for an about
3.8× speedup in the XMSS scheme.

15



To further accelerate the XMSS computations in an efficient way, in the following
we describe the XMSS-specific hardware accelerators that we developed. We first
describe an XMSS-specific SHA-256 accelerator, which performs fixed-length
SHA-256 padding and provides optional internal storage for one pre-computed
state in hardware. Then, we describe how we use this XMSS-specific SHA-256
accelerator as building-block for larger hardware accelerators: An accelerator for
WOTS-chain computations and an accelerator for XMSS-leaf generation includ-
ing WOTS and L-tree computations.

5.2 XMSS-Specific SHA-256 Accelerator

In Section 4, we proposed two software optimizations for the XMSS scheme:
“fixed input length” for accelerating SHA-256 computations on 768 bit and
1024 bit inputs and “pre-computation” for acceleration of the function prf().
For hardware acceleration, we introduced a general-purpose SHA-256 hardware
module in Section 5.1, which replaces the SHA-256 compression function and
thus naturally supports the “fixed input length” optimization and the “pre-
computation” optimization of the software implementation. However, both of
the optimizations require to repeatedly transfer the same data, i.e., padding
or the pre-computed state, to the SHA256 module. To eliminate this overhead
and as building block for the hardware accelerator modules described in the
following sub-sections, we developed an XMSS-specific SHA-256 accelerator, the
SHA256XMSS module. It has a similar functionality as the general SHA256 module;
however, the SHA256XMSS module supports both of the software optimizations
internally: It only accepts complete input data blocks of size 768 bit or 1024 bit
and adds the SHA-256 padding in hardware. In addition, it provides an optional
internal 256 bit register for storing and replaying a pre-computed state.

Implementation. We used the SHA256 module as building block for the im-
plementation of the SHA256XMSS module. All the SHA-256 compression com-
putations in SHA256XMSS are done by interacting with the SHA256 module. In
order to handle larger input blocks, the data in port of the SHA256XMSS mod-
ule is 1024 bit wide. The SHA256XMSS module has an additional state machine
to autonomously perform two or three compression-function iterations (depend-
ing on the input length). The state machine also takes care of appending the
pre-computed SHA-256 padding to the input data before the last compression
function computation. To select between different input lengths, the SHA256XMSS
module has a message length input signal (low for 768 bit, high for 1024 bit).
To support the “pre-computation” optimization, the SHA256XMSS module has a
similar interface as described for the SHA256 module in Section 5.1, which allows
to set the internal state from software.

To further support the pre-computation functionality in hardware, a 256 bit
register can optionally be activated at synthesis time to the SHA256XMSS mod-
ule for storing the fixed internal state. An input signal store intermediate is
added for requesting to store the result of the first compression-function itera-
tion in the internal 256 bit register. An input signal continue intermediate is

16



Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

two 512 bit blocks

SHA256XMSS 128 1680 2070 89.7 1.43 1.77 1.00
+ PRECOMP 64 1900 2320 98.3 0.651 1.00 2.19

three 512 bit blocks

SHA256XMSS 192 1680 2070 89.7 2.14 — —

hash768

Murax 10,700 1350 1660 152 70.4 16.0 1.00
+ SHA256XMSS 274 3490 4890 97.8 2.80 1.06 25.1

+ PRECOMP 247 3660 5170 97.6 2.53 1.00 27.8

hash1024

Murax 15,600 1350 1660 152 102 13.1 1.00
+ SHA256XMSS 458 3490 4890 97.8 4.68 1.00 21.9

Table 3: Performance of hardware module SHA256XMSS and performance comparisons
of SHA-256 computations for 768 bit and 1024 bit (functions hash768 and hash1024)
when called from the RISC-V software on a Murax SoC and on a Murax SoC with a
SHA256XMSS accelerator.

added for requesting to use the previously stored internal state instead of the
first compression iteration. The pre-computation functionality can be enabled
(marked as “+ PRECOMP” in the tables) or disabled at synthesis time in order to
save hardware resources for a time-area trade-off.

To reduce the latency of data transfer between the SHA256XMSS module and
the software, the SHA256XMSS module starts computation once the first input
data block (512 bit) is received. While the SHA256XMSS module is operating on
the first input block, the software sends the rest of the input data.

When the SHA256XMSS module is added to the Murax SoC as a hardware
accelerator, it provides a SHA256 accelerator as well since the SHA256 module
is used as its building block. To achieve this, a hardware wrapper is designed
(as shown in Figure 5) which includes both the SHA256XMSS module and the
SHA256 module. Apart from the control signals and input data, the bridge mod-
ule Apb3Bridge also takes care of forwarding a 3 bit cmd signal from the soft-
ware to the hardware wrapper. Depending on the value of cmd, the hardware
wrapper further dispatches the signals to the corresponding hardware module
(SHA256XMSS or SHA256) and triggers the computation. Similarly, based on the
cmd value, the output data from the corresponding module is returned. The de-
sign of the hardware wrapper brings the flexibility that the SHA256XMSS module
can not only accelerate XMSS-specific SHA-256 function calls, but also general
SHA-256 function calls that accept variable length inputs, which may be helpful
for some other applications running in the system.

17



Evaluation. Table 3 shows the performance, resource requirements, and maxi-
mum frequency of the SHA256XMSS module. When the pre-computation function-
ality is not enabled, it requires 128 cycles and 192 cycles respectively (one cycle
per round) for computing the hash digests for input messages of size 768 bit and
1024 bit. When the pre-computation functionality of the SHA256XMSS module is
enabled, the cycle count for computing the hash digests for input messages of
size 768 bit is halved, because only one 512 bit block needs to be compressed
instead of two. However, storing the pre-computed state to achieve this speedup
increases ALM and register requirements. When the pre-computation function-
ality of the SHA256XMSS module is enabled, one hash768 call within design
“Murax + SHA256XMSS + PRECOMP” obtains a speedup of around 27.8× over the
plain Murax design.

Table 6 shows the performance impact of the SHA256XMSS module on XMSS
key generation, signing, and verification (design Murax compared to “Murax +
SHA256XMSS” and “Murax + SHA256XMSS + PRECOMP”). For these operations, the
SHA256XMSS module accounts for an about 5.4× speedup with pre-computation
enabled. Compared to adding a SHA256 module to the Murax SoC, this gives an
over 1.4× speedup in accelerating XMSS computations.

5.3 WOTS-chain Accelerator

The SHA256XMSS module provides a significant speedup to the XMSS computa-
tions. However, since inputs and outputs need to be written to and read from
the SHA256XMSS module frequently, the raw speedup of the SHA-256 accelerator
cannot fully be exploited: It actually takes more time to send the inputs to and
to read the results from the accelerator than the accelerator requires for the
SHA-256 operations. This overhead can significantly be reduced by performing
several SHA-256 operations consecutively in hardware. In this case, the hardware
accelerator needs to be able to prepare some of the inputs by itself.

The WOTS chain computations are an ideal candidate for such an optimiza-
tion, because the prf() computations performed in each chain step share a large
amount of their inputs (only a few bytes are modified in the address fields for
each prf() computation) and the f() computations use previous hash-function
outputs. Therefore, we implemented the hardware module Chain as dedicated
hardware accelerator for the WOTS chain computations to accelerate the work
of the software function gen_chain (see Figure 2).

Implementation. One building block of the Chain module is the Step module,
which implements the prf() and the keyed hash-function f() in hardware. The
Step module takes in a 256 bit XMSS public seed, a 256 bit data string and
a 256 bit address string as input and returns a 256 bit output. Within Step,
two prf() computations and one f() computation are carried out in sequence using
the hardware modules PRF and F. PRF and F are both implemented by interfacing
with a SHA256XMSS module described in Section 5.2. The result generated by the
first prf() computation is buffered in a 256 bit register and used later as hash-
function key. Similarly the second prf() computation result is buffered in a 256 bit

18



Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

Chain 5960 1940 3060 91.0 65.5 1.30 1.00
+ PRECOMP 4100 2170 3320 96.0 42.7 1.00 1.53

Murax 530,000 1350 1660 152 3490 31.4 1.00
+ Chain 6910 4350 6220 91.6 75.4 1.32 46.2

+ PRECOMP 4990 4560 6460 95.2 52.4 1.00 66.5

Table 4: Performance of the hardware module Chain and performance comparisons
of calling the gen_chain function from the RISC-V software on a Murax SoC and on
a Murax SoC with a Chain accelerator, with parameters n = 32 and w = 16.

register MASK. The 256 bit input data then gets XOR-ed with MASK and sent to
the final f() computation together with the previously computed hash key. The
result of the f() computation is returned as the output of the Step module.

The hardware module Chain repeatedly uses the Step module. It has two
input ports chain start and chain end, defining the start and end step for the
WOTS chain computation respectively, e.g., 0 and w−1 when used in WOTS key
generation. Each step in the Chain module uses its step index as its input address
and the output from the previous step as its input data. The result from the
last step is returned as the result of the Chain module. The “pre-computation”
optimization (see Section 4) can be optionally enabled for the SHA256XMSS mod-
ule before synthesis. To enable the optimization, the store intermediate port
of the SHA256XMSS module is set to high for the very first prf() computation
to request the SHA256XMSS module to store the result of the first compression-
function in its internal 256 bit register. For all the following prf() computations,
the input port continue intermediate of the SHA256XMSS module is raised high
to request the usage of the previously stored internal state.

When the Chain module is added to the Murax SoC as a hardware accel-
erator, it provides a SHA256XMSS and a SHA256 accelerator as well since these
modules are used as building blocks in Chain. A similar hardware wrapper as
described for the SHA256XMSS accelerator in Section 5.2 is used.

Evaluation. Table 4 shows performance, resource requirements, and maximum
frequency of the Chain module. Enabling the “pre-computation” optimization
(“+ PRECOMP”) results in a 1.53× speedup for the chain computations.

A comparison between the pure software and the software/hardware perfor-
mance of the function gen_chain is also provided in Table 4. When gen_chain
is called in the design “Murax + Chain + PRECOMP”, a speedup of around 66.5× is
achieved compared to the pure software implementation using the Murax design.

Table 6 shows the performance impact of the Chain module on XMSS key
generation, signing, and verification (Murax compared to “Murax + Chain” and
“Murax + Chain + PRECOMP”). Note that since the Chain accelerator provides
a SHA256XMSS accelerator as well, when a Chain module is added to the Mu-

19



rax SoC, apart from the function gen_chain, the hash768 and hash1024
functions are also accelerated. The acceleration of the Chain module leads to
a 23.9× speedup for both key generation and signing and a 17.5× speedup for
verification when the pre-computation functionality is enabled. These speedups
achieved are much higher compared to those achieved in the design with a
SHA256XMSS/SHA256 accelerator, as shown in Table 6.

5.4 XMSS-leaf Generation Accelerator

When the Chain module is used to compute WOTS chains, the IO requirements
are still quite high: For each WOTS key generation, the 256 bit WOTS private
key and a 256 bit starting address need to be transferred to the Chain module
for l times, although their inputs only differ in a few bytes of the address, and l
WOTS chain public keys each of 256 bit need to be transferred back.

To reduce this communication overhead, we implemented an XMSS-leaf ac-
celerator module, replacing the software function treehash (see Figure 2). The
Leaf module only requires a 256 bit address (leaf index), a 256 bit secret seed,
and a 256 bit XMSS public seed as input. After the Leaf module finishes com-
putation, the 256 bit L-tree root hash value is returned as the output.

Implementation. As shown in Figure 5, the Leaf module is built upon two
sub-modules: a WOTS module and an L-tree module. The WOTS module uses
the Chain module described in Section 5.3 to compute the WOTS chains and
returns l 256 bit strings as the WOTS public key. Then, these l values are pairwise
hashed together as described in Section 2.1 by the L-tree module. Finally, the
output of the L-tree module (the root of the L-tree) is returned as the output
of the Leaf module.

The WOTS module first computes the secret keys for each WOTS chain using
a PRF priv module iteratively for l times. As opposed to the prf() computations
during the WOTS chain, L-tree, and Merkle tree computations, the PRF priv

module takes a private, not a public seed as input. For each iteration, the cor-
responding address is computed and sent to the PRF priv module as input as
well. When the PRF priv module finishes, its output is written to a dual-port
memory mem, which has depth l and width 256 bit. Once the secret keys for the
l WOTS chains have been computed and written to mem, the WOTS public key
computation begins. This is done by iteratively using the Chain module (see
Section 5.3) for l times. The output of the Chain module is written back to mem,
overwriting the previously stored data.

Once the WOTS public key computation finishes, the L-tree module begins
its work. The building block of the L-tree module is a RAND HASH module which
implements the tree-hash function as described in Section 2.1. It takes in a 256 bit
XMSS public seed, two 256 bit data strings, and a 256 bit address string as input
and returns a 256 bit output. Within the hardware module RAND HASH, three
prf() and one h() computations are carried out in sequence using the modules
PRF and H. The result generated by the first prf() computation is buffered as the
256 bit key while the results from the following prf() computations are buffered as

20



SHA256

FSM iter.

SHA256XMSS

FSM PRECOMP reg.

Chain

FSM

Step

F PRF

Leaf

FSM

mem

WOTS

FSM PRF priv

L-tree

FSM

RAND HASH

H PRF

FSM (controll logic)

Wrapper

Apb3Bridge

Fig. 5: Diagram of the Leaf accelerator wrapper including all the accelerator modules.
(control logic is simplified). The SHA256XMSS module uses SHA256, the Chain module
uses SHA256XMSS, and the Leaf module uses Chain and SHA256XMSS.

the two 256 bit masks. The two 256 bit input data strings then get each XOR-ed
with a mask and sent to the final h() computation together with the previously
computed key. The result of the h() computation is returned as the output of
the RAND HASH module.

The L-tree module constructs the nodes on the first level by first reading out
two adjacent leaf nodes from the dual-port memory mem by issuing two simul-
taneous read requests to adjacent memory addresses. The memory outputs are
sent to the RAND HASH module as input data. Once RAND HASH finishes computa-
tion, the result is written back to mem in order (starting from memory address 0).
Since the L-tree is not a complete binary hash tree, it occasionally happens that
there is a last node on one level that does not have a sibling node. This node is
read out from mem and immediately written back to the next available memory
address. This pattern of computation is repeated until the root of the L-tree is
reached. This root is returned as the output of the Leaf module.

In order to minimize the resource usage of the Leaf module, all the hash com-
putations are done by interfacing with the same SHA256XMSS module. Figure 5
shows a diagram of the main building blocks of the Leaf module. The “pre-
computation” optimization for the prf() computations again can be enabled for
the SHA256XMSS module before synthesis. When the Leaf module is added to the
Murax SoC as a hardware accelerator, it also provides a Chain, a SHA256XMSS,
and a SHA256 accelerator since these modules are all used as building blocks in
the Leaf module.

21



Design Cycles Area Reg. FMax Time Time×Area Speedup
(ALM) (MHz) (ms) (relative)

Leaf 447 × 103 4060 6270 86.1 5.20 1.23 1.00
+ PRECOMP 306 × 103 4820 6840 92.8 3.30 1.00 1.58

Murax 27.7× 106 1350 1660 152 182 18.5 1.00
+ Leaf 450 × 103 6460 9270 86.6 5.19 1.45 35.0

+ PRECOMP 309 × 103 6500 9540 93.1 3.32 1.00 54.8

Table 5: Performance of the hardware module Leaf and performance comparisons of
calling the treehash function from the RISC-V software on a Murax SoC and on a
Murax SoC with a Leaf accelerator, with parameters n = 32 and w = 16.

Evaluation. Table 5 shows performance, resource requirements, and maximum
frequency of the Leaf module. Enabling the “pre-computation” optimization
(“+ PRECOMP”) gives a 1.58× speedup at the cost of a small area overhead.
Calling the accelerator in function treehash in the design “Murax + Leaf +
PRECOMP” brings a 54.8× speedup over the pure software implementation on the
plain Murax design. More importantly, as we can see from the Table (row “Leaf
+ PRECOMP” and “Murax + Leaf + PRECOMP”), the IO overhead is no longer
impacting the performance of the hardware accelerator Leaf.

Table 6 shows the performance impact of the Leaf module on XMSS key
generation, signing and verification (Murax compared with “Murax + Leaf” and
“Murax + Leaf + PRECOMP”). When a Leaf module is added in the Murax SoC,
it accelerates the functions treehash, gen_chain, hash768 and hash1024
in XMSS. For the key-generation operation, the Leaf module accounts for a
54.1× speedup with “PRECOMP” enabled. The Leaf module is not used during
verification and hence does not affect its execution time. The BDS algorithm [7]
for signing does make use of the Leaf accelerator: For signing the first 16 XMSS
leaves, on average a 42.8× speedup is achieved.

6 Performance Evaluation

Table 6 shows performance, resource requirements, and maximum frequency of
different designs for the XMSS operations: key generation, signing, and verifica-
tion. Since the runtime of the BDS signature algorithm [7] varies depending on
the leaf index, we report the average timing for the first 16 signature leaves of
the XMSS tree. To accelerate the key generation, signing and verification opera-
tions in the XMSS scheme, our hardware accelerators (“SHA256”, “SHA256XMSS”,
“Chain” and “Leaf”) can be added to the Murax SoC, which leads to good
speedups as shown in Table 6. In general, the more computations we delegate to
hardware accelerators, the more speedup we can achieve in accelerating XMSS
computations. However, at the same time, more overhead is introduced in the
hardware resource usage, which is a trade-off users can choose depending on

22



Design Cycles Reg. Area BRAM FMax Time Time× Speedup
(ALM) (Blocks) (MHz) Area

key generation

Murax 28,300,000,000 1660 1350 132 152 186 s 11.2 1.00
+ SHA256 4,870,000,000 3880 2860 132 99.9 48.8 s 6.23 3.82
+ SHA256XMSS 3,810,000,000 4890 3490 132 97.8 39.0 s 6.09 4.78

+ PRECOMP 3,350,000,000 5170 3660 132 97.6 34.3 s 5.60 5.43
+ Chain 912,000,000 6220 4350 132 91.6 9.96 s 1.93 18.7

+ PRECOMP 742,000,000 6460 4560 132 95.2 7.80 s 1.59 23.9
+ Leaf 466,000,000 9270 6460 145 86.6 5.38 s 1.55 34.6

+ PRECOMP 320,000,000 9540 6500 145 93.1 3.44 s 1.00 54.1

signing (average of the first 16 XMSS leaf signatures)

Murax 64,800,000 1660 1350 132 152 426 ms 8.85 1.00
+ SHA256 11,200,000 3880 2860 132 99.9 112 ms 4.93 3.81
+ SHA256XMSS 8,750,000 4890 3490 132 97.8 89.5 ms 4.83 4.76

+ PRECOMP 7,700,000 5170 3660 132 97.6 78.8 ms 4.45 5.40
+ Chain 2,070,000 6220 4350 132 91.6 22.6 ms 1.52 18.9

+ PRECOMP 1,700,000 6460 4560 132 95.2 17.8 ms 1.26 23.9
+ Leaf 1,250,000 9270 6460 145 86.6 14.4 ms 1.44 29.5

+ PRECOMP 926,000 9540 6500 145 93.1 9.95 ms 1.00 42.8

verification

Murax 15,200,000 1660 1350 132 152 99.6 ms 5.17 1.00
+ SHA256 2,610,000 3880 2860 132 99.9 26.1 ms 2.88 3.81
+ SHA256XMSS 2,060,000 4890 3490 132 97.8 21.1 ms 2.84 4.73

+ PRECOMP 1,800,000 5170 3660 132 97.6 18.5 ms 2.61 5.39
+ Chain 649,000 6220 4350 132 91.6 7.08 ms 1.19 14.1

+ PRECOMP 541,000 6460 4560 132 95.2 5.68 ms 1.00 17.5
+ Leaf 649,000 9270 6460 145 86.6 7.49 ms 1.87 13.3

+ PRECOMP 541,000 9540 6500 145 93.1 5.80 ms 1.46 17.2

Table 6: Time and resource comparison for key generation, signing and verification on
a Cyclone V FPGA (all values rounded to three significant figures with n = 32, w = 16
and h = 10). “Time” is computed as quotient of “Cycles” and ”FMax”; “Time×Area”
is computed based on “Area” and “Time” relative to the time-area product of the
respective most efficient design (gray rows); “Speedup” is computed based on “Time”
relative to the respective Murax design.

their needs. The best time-area product for the expensive key generation and
the signing operations is achieved in design “Murax + Leaf” with “PRECOMP”
enabled. For the less expensive verification operation, the “Murax + Chain +
PRECOMP” design gives the best time-area product.

The maximum frequency for the designs is heavily impacted by our hardware
accelerators (which is accounted for in our speedup and time-area product re-
ports), dropping from 152 MHz down to as low as 86.6 MHz. If a high instruction
throughput of the Murax SoC is required for an embedded application that is

23



using our XMSS accelerators, a clock-frequency bridge between the APB and
our accelerators might be necessary to enable independent clocks; however, this
does not have an impact on the wall-clock speedup of our accelerators.

For a tree height of h = 10, i.e., a maximum number of 2h = 1024 signatures
per key pair, the time for XMSS key generation can be as short as only 3.44 s
using our hardware accelerators. Even more signatures per key pair are conceiv-
ably possible using multi-tree XMSS, as shown in Table 7 (row “XMSSˆMTb”).
By use of our hardware accelerators, we expect a similar speedup in accelerat-
ing XMSSˆMT as we achieved in XMSS. Signing and verification computations
are very efficient on our hardware-software co-design for all the SHA-256 pa-
rameter sets, i.e., n = 32, w = 16, h = {10, 16, 20}: For h = 10, signing takes
only 9.95 ms and verification takes only 5.80 ms. For a bigger tree height, e.g.,
h = 20, signing and verification are only slightly more expensive: Signing takes
11.1 ms and verification takes 6.25 ms, as shown in Table 7 (row “XMSSo with
(n, h,w) = (32, 20, 16)”). Our experiments show that running XMSS is very
much feasible on a resource restricted embedded device such as the Murax SoC
with the help of efficient dedicated hardware accelerators.

7 Related Work

We first compare our work with a very recent work [9] which shows a similar
software-hardware co-design for XMSS. Then, we summarize all the existing
FPGA-based implementations on other hash-based signature schemes. Finally,
comparisons with implementations of XMSS on other platforms are provided.
Detailed comparison results are shown in Table 7.

In 2019, Ghosh, Misoczki and Sastry [9] proposed a software-hardware co-
design of XMSS based on a 32-bit Intel Quark microcontroller and a Stratix IV
FPGA. WOTS computations are offloaded to a WOTS hardware engine which
uses a general-purpose Keccak-400 hash core as building block. In their design,
generating one WOTS key pair takes 355,925 cycles, consuming 2963 combi-
national logic cells and 2337 register cells. This hardware engine has the same
functionality as our WOTS module described in Section 5.4. In our design, the
WOTS module (with “+ PRECOMP”) takes 279,388 cycles for generating a key pair.
The synthesis result of our WOTS module on the same FPGA reports a usage of
2397 combinatorial logic cells and 3294 register cells. However, as shown in [9],
keccak-400 has a 6× smaller Time×Area compared to SHA-256 when imple-
mented on a 14nm technology. Given such big differences in the building hash
core, a fair comparison between the two WOTS designs is not possible.

By use of the WOTS hardware engine, running the XMSS reference imple-
mentation on their software-hardware co-design with n = 32, h = 16, w = 16
takes 4.8 × 106 cycles in verification on average (key generation and complete
signature generation are not included in their tests). To achieve a better compar-
ison, we run a full XMSS test with the same parameter set on the “Murax + Leaf

+ PRECOMP” design. As shown in Table 7, in terms of cycle count, our design
achieves an over 8.5× bigger speedup compared to [9] in accelerating the verifi-

24



Design Parameters Hash Feature Platform Freq. KeyGen. Sign Verify
(n, h, w) MHz ×109cyc. ×106cyc. ×106cyc.

CMSS [26] 32,(10x3),8 SHA-512 HW Virtex-5 170 1.2 3.7 2.2
SPHINCS [1] — ChaCha-12 HW Kintex-7 525 — 0.80 0.035
XMSS [14] 16,10,16 AES-128 AES SLE78 33 0.62 3.3 0.56

XMSSb 32,10,16 SHA-256 SW Intel i5 3200 5.6 13 3.0
XMSSo 32,10,16 SHA-256 SW-HW Murax SoC 93 0.32 0.93 0.54

XMSSb 32,16,16 SHA-256 SW Intel i5 3200 360 14 3.1
XMSS [9] 32,16,16 Keccak-400 SW Quark (Q) 32 — — 26
XMSS [9] 32,16,16 Keccak-400 SW-HW Q+Stratix IV 32 — — 4.8
XMSSo 32,16,16 SHA-256 SW Murax SoC 152 1800 70 15
XMSSo 32,16,16 SHA-256 SW-HW Murax SoC 93 21 0.99 0.56

XMSSb 32,20,16 SHA-256 SW Intel i5 3200 5700 15 3.2
XMSSo 32,20,16 SHA-256 SW-HW Murax SoC 93 330 1.0 0.58

XMSSˆMTb 32,(10x2),16 ChaCha-20 SW Cortex-M3 32 9.6 18 5.7

XMSSˆMTb 32,(10x2),16 ChaCha-20 SW Murax SoC 152 14 28 8.2

Table 7: Comparison with related work. All the tests running on Murax SoC with SW-
HW feature is based on the “Murax + Leaf + PRECOMP” design. b shows our benchmarks
and o means our work.

cation operation in XMSS. However, a fair comparison between our work and [9]
is not feasible due to the differences in the platforms, the hardware accelerators,
the building hash cores, etc.

There are currently only a few publications focusing on FPGA hardware
implementations of hash-based signature schemes: In 2011, Shoufan, Huber and
Molter presented a cryptoprocessor architecture for the chained Merkle signature
scheme (CMSS) [26], which is a successor of the classic Merkle signature scheme
(MSS). All the operations, i.e., key generation, signing, and verification are im-
plemented on an FPGA platform. The performance of their design is shown
in Table 7. Their implementation, however, is no longer state-of-the-art: They
provide none of the additional security features that have been developed for
modern hash-based signature schemes like XMSS, LMS [18], and the SPHINCS
family [5]. The straightforward hash-based operations are all replaced with more
complex operations involving masks and keys computed by pseudorandom func-
tions. Therefore, direct comparisons between the hardware modules among MSS
and XMSS cannot be fairly done. For modern hash-based signature schemes, an
implementation of the stateless hash-based signature scheme SPHINCS-256 [5]
was proposed in [1] in 2018. This signature scheme is closely related to XMSS.
SPHINCS-256 requires the cryptographic primitives BLAKE-256, BLAKE-512,
and ChaCha-12. The source code of all these works [1,26] is not freely available.
The detailed performance data for the main hardware modules is not provided
in the paper either. Lack of access to the source code and detailed performance
results make comparisons unfruitful.

25



Table 7 also shows comparisons of our work with implementations of XMSS
on other platforms. We first benchmarked the original XMSS software imple-
mentation (linked against the OpenSSL library) for all the SHA-256 parameter
sets on an Intel i5-4570 CPU. The performance results in Table 7 show that run-
ning the optimized XMSS software implementation on our software-hardware
co-design leads to an over 15× speedup in terms of clock cycles compared to
running the implementation on an off-the-shelf Intel i5 CPU. In 2012, Hülsing,
Busold, and Buchmann presented an XMSS-based implementation [14] on a
16-bit Infineon SLE78 microcontroller. The hash functions are implemented by
use of the embedded AES-128 co-processor. Performance results for XMSS with
n = 16, h = 10 and w = 16 maintaining a classical security level of 78 bit is pro-
vided. However, a fair comparison between our work and [14] is not feasible since
the security parameters used in [14] are already outdated. The practicability of
running SPHINCS [5] on a 32-bit ARM Cortex-M3 processor is demonstrated
in [16]. For comparison, they also implemented the multi-tree version of XMSS
on the same platform. Chacha-20 is used as the building hash function in their
design. We duplicated the same test with a pure C-version of the code on the
Murax SoC. As shown in Table 7, running XMSSˆMT with a big tree height
h = 20 on the Murax SoC is feasible.

8 From XMSS to SPHINCS

The stateful hash-based signature scheme XMSS is closely related to the stateless
hash-based signature scheme SPHINCS. In a nutshell, SPHINCS is similar to
multi-tree XMSS with the addition of a few-time signature scheme (HORST or
FORS) replacing the one-time signature scheme at the lowest level in the hyper-
tree. There are several versions of SPHINCS, e.g. the original SPHINCS-256 [5]
instantiation and the improved SPHINCS+ [2] from the NIST submission.

The software optimizations and hardware accelerators presented in this work
can be directly used to accelerate most of the hash-based computations in
SPHINCS as well. Some implementation details, for example the address scheme,
might need to be adapted depending on the specific SPHINCS version. To fur-
ther accelerate the SPHINCS computations, dedicated hardware accelerators can
be developed to accelerate the respective few-time signature operations in the
targeted SPHINCS version.

9 Conclusion

In this paper, we presented the first software-hardware co-design for XMSS on a
RISC-V-based embedded system. We first proposed two software optimizations
targeting the SHA-256 function for the XMSS reference software implementa-
tion, and then developed several hardware accelerators to speed up the most
expensive operations in XMSS, including a general-purpose SHA-256 acceler-
ator, an XMSS-specific SHA-256 accelerator, a WOTS-chain accelerator and
an XMSS-leaf accelerator. The integration of these hardware accelerators to the

26



RISC-V processor brings a significant speedup in running XMSS on our software-
hardware co-design compared to the pure software version. Our work shows that
embedded devices can remain future-proof by using algorithms such as XMSS
to ensure their security, even in the light of practical quantum computers.

Acknowledgments. This work was supported in part by NSF grant 1716541.
Part of the research was performed when the second author was affiliated with
Fraunhofer Singapore.

References

1. Amiet, D., Curiger, A., Zbinden, P.: FPGA-based accelerator for post-quantum
signature scheme SPHINCS-256. Cryptographic Hardware and Embedded Systems
(CHES) 2018(1), 18–39 (2018), Open Access

2. Aumasson, J.P., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S.,
Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen,
M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P.:
SPHINCS+ — Submission to the 2nd round of the NIST post-quantum project.
Tech. rep. (2019), specification document (part of the submission package), URL:
https://sphincs.org/data/sphincs+-round2-specification.pdf

3. Aysu, A., Schaumont, P.: Precomputation methods for faster and greener post-
quantum cryptography on emerging embedded platforms. IACR ePrint Archive,
Report 2015/288 (2015)

4. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) Ad-
vances in Cryptology (EUROCRYPT). LNCS, vol. 9056, pp. 368–397. Springer
(2015)

6. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS – a practical forward secure signa-
ture scheme based on minimal security assumptions. In: Yang, B.Y. (ed.) Post-
Quantum Cryptography (PQCrypto). LNCS, vol. 7071, pp. 117–129. Springer
(2011), second Version, IACR ePrint Archive, Report 2011/484

7. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) Post-Quantum Cryptography (PQCrypto). LNCS,
vol. 5299, pp. 63–78. Springer (2008)

8. Garćıa, R., Algredo-Badillo, I., Morales-Sandoval, M., Feregrino-Uribe, C.,
Cumplido, R.: A compact FPGA-based processor for the secure hash algorithm
SHA-256. Computers & Electrical Engineering 40(1), 194–202 (2014)

9. Ghosh, S., Misoczki, R., Sastry, M.R.: Lightweight post-quantum-secure digital
signature approach for IoT motes. IACR ePrint Archive, Report 2019/122 (2019)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing (STOC). pp. 212–219. ACM (1996)

11. Higginbotham, S.: The rise of RISC - [opinion]. IEEE Spectrum 55(8), 18 (2018)
12. Homsirikamol, E., Rogawski, M., Gaj, K.: Throughput vs. area trade-offs in high-

speed architectures of five round 3 SHA-3 candidates implemented using Xilinx
and Altera FPGAs. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2011. LNCS, vol. 6917, pp. 491–506. Springer (2011)

27

https://tches.iacr.org/index.php/TCHES/article/view/831
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://eprint.iacr.org/2015/288
https://eprint.iacr.org/2011/484
https://eprint.iacr.org/2019/122


13. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) Progress in Cryptology
(AFRICACRYPT). LNCS, vol. 7918, pp. 173–188. Springer (2013)

14. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards.
In: Selected Areas in Cryptography (SAC). LNCS, vol. 7707, pp. 66–80. Springer
(2012)

15. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391, 1–74 (2018)

16. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS. In: Public-Key Cryp-
tography (PKC), LNCS, vol. 9614, pp. 446–470. Springer (2016)

17. Kahri, F., Mestiri, H., Bouallegue, B., Machhout, M.: Efficient FPGA hardware
implementation of secure hash function SHA-256/Blake-256. In: Systems, Signals
& Devices (SSD). pp. 1–5. IEEE (2015)

18. McGrew, D., Curcio, M., Fluhrer, S.: Hash-based signatures. cfrg draft-mcgrew-
hash-sigs-1, 1–60 (2018)

19. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology (CRYPTO). LNCS, vol. 435, pp. 218–238. Springer (1990)

20. Merritt, R.: Microsoft and Google planning silicon-level security. EE
Times Asia (Aug 2018), url: https://www.eetasia.com/news/article/

18082202-microsoft-and-google-planning-silicon-level-security

21. NIST: FIPS PUB 180-4: Secure Hash Standard. National Institute of Standards
and Technology (2012)

22. NIST: FIPS PUB 186-4: Digital Signature Standard. National Institute of Stan-
dards and Technology (2013)

23. Padhi, M., Chaudhari, R.: An optimized pipelined architecture of SHA-256 hash
function. In: Embedded Computing and System Design (ISED). pp. 1–4. IEEE
(2017)

24. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Foundations of Computer Science (FOCS). pp. 124–134. IEEE (1994)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

26. Shoufan, A., Huber, N., Molter, H.G.: A novel cryptoprocessor architecture for
chained Merkle signature scheme. Microprocessors and Microsystems 35(1), 34–47
(2011)

27. Teich, J.: Hardware/software codesign: The past, the present, and predicting the
future. Proceedings of the IEEE 100, 1411–1430 (2012)

28. Wang, W., Jungk, B., Wälde, J., Deng, S., Gupta, N., Szefer, J., Niederhagen, R.:
XMSS and embedded systems — XMSS hardware accelerators for RISC-V. IACR
ePrint Archive, Report 2018/1225 (2018)

28

https://www.eetasia.com/news/article/18082202-microsoft-and-google-planning-silicon-level-security
https://www.eetasia.com/news/article/18082202-microsoft-and-google-planning-silicon-level-security
https://eprint.iacr.org/2018/1225

	XMSS and Embedded Systems

