
Solving Large Systems of Linear Equations
over GF(2) on FPGAs

Wen Wang, Jakub Szefer
Dept. of Electrical Engineering

Yale University
New Haven, CT, USA

E-mail: {wen.wang.ww349, jakub.szefer}@yale.edu

Ruben Niederhagen
Dept. of Mathematics and Computer Science

Technische Universiteit Eindhoven
Eindhoven, The Netherlands

Email: ruben@polycephaly.org

Abstract—This paper presents an efficient systolic line ar-
chitecture for solving large systems of linear equations using
Gaussian elimination on the coefficient matrix. Our architecture
can also be used for solving matrix inversion problems and for
computing the systematic form of matrices. These are common
and important computational problems that appear in areas
such as cryptography and cryptanalysis. Our architecture solves
these problems efficiently for any large-sized matrix over GF(2),
regardless of matrix size, shape or density. We implemented and
synthesized our design for Altera and Xilinx FPGAs to obtain
evaluation data. The results show sub-µs performance for the
Gaussian elimination of medium-sized matrices and performance
on the order of tens to hundreds of ms for large matrices.
In addition, this is one of the first works addressing large-
sized matrices of up to 4,000× 8,000 elements and therefore
is suitable for post-quantum cryptographic schemes that require
handling such large matrices.

I. INTRODUCTION

Solving systems of linear equations (SLEs) is an important
computational task in many scientific fields. Solving systems
over GF(2) is of particular interest in cryptography and
cryptanalysis. For example, it can be used as a subroutine for
computing inverses of field elements of GF(2m) [1], which is
an essential task in elliptic curve cryptography. Furthermore,
solving systems over GF(2) is a relevant step in factorization
algorithms, e.g., the number field sieve.

Also in the field of post-quantum cryptography the problem
of solving systems over GF(2) arises: it is an important
step in key generation of code-based cryptosystems [2], [3].
Increasing the key size is one way to achieve high security
levels for such systems. However, when increasing the key
size, larger and larger matrices need to be processed. Current
high-security proposals consider matrices with 6,960 columns
to achieve 128-bit post-quantum security level [4, Sec. 2].
Our work is crucial for accelerating such applications in post-
quantum cryptography.

Building systolic architectures for Gaussian elimination is a
standard approach for solving SLEs in hardware. Most of the
existing publications target small- (about 10×10 elements) to
medium-sized (about 50×50 elements) matrices by building a
large systolic architecture that matches the matrix size. Due to
resource limitations on FPGAs, such designs are not suitable
for large matrices (over 200× 200 elements) as there are not
enough FPGA resources.

In our work, we efficiently break the Gaussian elimination
process into a number of steps and phases that use a systolic
architecture, which is smaller than the matrix size, to perform
operations on the original, large matrix. Our work is crucial for
accelerating multiple applications in post-quantum cryptogra-
phy. Details of our architecture are presented in Section IV.

In this work, we extend the approach proposed in [5], and
improved upon [6], with these contributions:

• Large Matrix Support – First work to show results for
matrices of up to 4,000×8,000 elements. The matrix size
is limited by the available on-chip memory; our approach
can be extended to use external memory as well.

• Reduced Runtime – Sub-µs performance for the Gaussian
elimination of medium matrices and performance on the
order of tens to hundreds of ms for large matrices.

• Reduced Resource Utilization – 1/3 reduction in logic
utilization compared to related work and very efficient
use of block memory elements.

• Device Portability – Easy realization on both Altera and
Xilinx FPGAs without any modification since no Xilinx
or Altera specific optimizations are involved in the design.

• Code Availability – The Verilog source code of our design
is available as Open Source at http://caslab.eng.yale.edu/
code/gausselim.

II. GAUSSIAN ELIMINATION AND SYSTOLIC
ARCHITECTURES

Gaussian elimination is a basic method that can be extended
and used for, among others, solving systems of linear equa-
tions, bringing a matrix into its systematic form, or performing
matrix inversions.

Consider solving a system of linear equations in the form
A · x = b, where A is a square matrix and b is a vector.
First, Gaussian elimination is used to transform the system
into its equivalent form U · x = b′, where U is an upper right
triangular matrix. The transformation is done by a sequence
of elementary row operations. Once U · x = b′ is obtained,
the system is solved by using backward substitution, i.e.,
elementary row operations are applied that convert the system
to I · x = b′′, where I is an identity matrix and b′′ is the
solution to this system.

http://caslab.eng.yale.edu/code/gausselim
http://caslab.eng.yale.edu/code/gausselim

P11 P12 P13 . . . P1l

P22 P23 . . . P2l

P33
. . .

...

Pll

Fig. 1: Systolic array of processor elements from [5].

For matrix systemization, a rectangular matrix G (of size
l × k, k > l) is divided into the left square part G1 (of size
l× l) and the right part G2 (of size l× (k− l)). By performing
Gaussian elimination and backward substitution on the whole
matrix, its left part is reduced to the identity matrix I while
its right part is converted to a matrix P . Thus, G is brought
to its systematic form G = [I|P].

For matrix inversion, the invertible square matrix A is
adjoined to an identity matrix I , i.e. a new matrix [A|I] is
created. This matrix is then systematized which reduces its
left side to the identity form; the adjoined identity matrix is
transformed to the inverse of the original matrix, i.e., [A|I]
becomes [I|A−1].

A. Systolic Architectures for Gaussian Elimination

Hardware architectures for Gaussian elimination over finite
fields can be divided into three types: systolic array, systolic
network, and systolic line.

1) Systolic Array: In 1989, Hochet, Quinton, and Robert
introduced a systolic array of processors for doing Gaussian
elimination on a matrix over GF(p) with partial pivoting [5].
The general structure of their architecture is shown in Figure 1.
They use a processor array with an upper-right triangular
shape that has special processors on the diagonal (circular
processors) that pick the pivot elements, and general proces-
sors (square processors) on the remaining positions that apply
transformations for the elimination. The input matrix is fed
into the array through a “stairway” of shift registers; after
the computation is finished, the resulting matrix is stored in
internal registers of the processors. The array is systolic, i.e.,
all inputs/outputs of the processors are registered, and there are
registers between the rows and the columns of the array, as
shown in Figure 1. Thus, the critical path of this architecture
is determined by the internal logic of the processors. To solve
an l × l linear system, 3l clock cycles are needed. Another
l cycles are required in order to readout the resulting matrix
from the processor’s registers in a systolic fashion. Thus, the
resulting matrix is available after 4l clock cycles.

2) Systolic Network: In 1990, Wang and Lin proposed the
idea of a systolic network of processors [1], which eliminates
the shift registers for data input/output and the registers
between rows and columns in the systolic array. In this case,
signals propagate through the whole systolic network within
one clock cycle. After 2l clock cycles, the solution of an
l × l linear system is available. However, the critical path of
the systolic network is determined by the size of the whole
network. When l grows bigger, the achievable frequency and
thus the performance of the network declines.

3) Systolic Line: In 2011, Rupp et al. discussed a systolic
line of processors [7]. This approach is a trade-off between
systolic arrays and systolic networks. We adopt this approach
in our work. In our architecture, registers are added between
different rows, while signals are allowed to propagate through
one whole row in one clock cycle. No shift registers are
needed neither for data input nor for data output. Compared
to systolic arrays, the required time to solve an l × l linear
system is reduced to 3l. The critical path of this architecture
only depends on the width of the rows, which strikes a balance
between systolic arrays and systolic networks.

B. Systolic Architecture Size vs. Matrix Size

A key design and implementation detail is the size of the
systolic architecture compared to the size of the matrix. Most
existing designs focus on small- and medium-sized matrices,
as for those sizes the systolic architecture can fully fit on
the FPGA. Meanwhile, for large matrices, where the systolic
array would be too large to fit on the FPGA, a different
approach is needed. Details of our architecture, that addresses
this problem, are presented in Section IV.

III. EXISTING IMPLEMENTATIONS AND THEIR
APPLICATIONS

There are several publications that describe hardware im-
plementation of Gaussian elimination. Most of the work has
been focusing on small-sized or medium-sized matrices over
finite fields, especially GF(2). Some publications also deal
with GF(2m) or GF(p).

Jasinski et al. [8] implemented matrix inversion using
Gaussian elimination. They implemented a systolic network
architecture with a space complexity of O(l2) for square
matrices of size l. Using their approach, matrices up to size
120× 120 can be inverted on a Stratix IV FPGA in 1,000ns.
However, the authors state that as the synthesized circuit
grows larger, the maximum frequency drops heavily due to
the increased length of the routing paths.

Bogdanov et al. [9] presented a parallel SMITH (Scalable
Matrix Inversion on Time-Area Optimized Hardware) archi-
tecture for solving medium-sized SLEs. Their design has an
average running time of 2l and a worst-case time complexity
of O(l2) for solving a system of l linear equations; our design
requires a fixed amount of 3l clock cycles. They presented
their implementation for SLEs of size up to 50 × 50. Their
design is clocked with a frequency up to 300MHz; inversion
of a 50× 50 matrix requires 330ns on a Spartan 3 device.

In 2011, Rupp et al. [7] improved upon the work of [9]
and proposed a GSMITH (Generalized SMITH) architecture
to solve SLEs over GF(2) and GF(2m). Their GSMITH archi-
tecture is capable of solving SLEs of size up to about 150×150
on a Virtex 5 FPGA. They give concrete performance numbers
for sizes up to 110× 110 SLEs. They solve a 110× 110 SLE
within 840ns. In this case, the architecture is clocked with a
frequency of 391MHz.

In 2010, Shoufan et al. [6] described a novel cryptoprocessor
architecture for the McEliece code-based (post-quantum) cryp-
tosystem with about 103-bit pre-quantum security level. In the
key generation module, they need to transform a large public
key to its systematic form. To achieve this, they built two
11×11 systolic arrays (TRI-SA and SQR-SA) as described in
[6, Section 6]. They performed Gaussian elimination on large
matrices of size 550×2,048 on a Xilinx Virtex 5 device. This is
the only previous work which discusses Gaussian elimination
for large matrices in hardware.

However, they did not provide code nor performance results
of their design for Gaussian elimination. Only results for their
overall cryptoprocessor design are given.

IV. DESIGN AND IMPLEMENTATION

A. Working With Large Matrices

As mentioned in Section I, using one large systolic archi-
tecture to do Gaussian elimination on large matrices is not
practical due to the resource limitations of FPGAs. Instead
of processing the input matrix on the whole, prior work [6]
proposes operating on column blocks of the input matrix.
Their design uses two systolic processor arrays, TRI-SA and
SQR-SA, to simulate the functionality of the original large
array by storing and replaying the outputs of the processor
array accordingly. A classical (software) implementation of
Gaussian elimination sequentially picks a single row as pivot
row and eliminates the entries in the corresponding column of
the remaining rows. The design in [6] picks a block of n rows
at once and eliminates the corresponding columns all together.

The architecture in [6] is composed of two basic proces-
sor elements: processor_A and processor_B, similar
to the design in [5]. The processor array TRI-SA has an
upper-right diagonal shape similar to the original processor
array from [5] (see Figure 1). It contains processor_A
elements that are in charge of computing the pivot elements
for the elimination and processor_B elements that apply
(together with processor_A) the row transformations nec-
essary for elimination. The processor array SQR-SA contains
only processor_B elements. It is used to perform the row
operations on the remaining column blocks of the matrix, as
defined by the outputs of TRI-SA.

The design in [6] divides the system-solving process into
two passes of Gaussian elimination: one for triangularization
(forward elimination) and one for systemization (backward
elimination). It iteratively uses the two processor arrays TRI-
SA and SQR-SA to process corresponding matrix column
blocks. After the first pass, the left part of the matrix is
eliminated into an upper-right triangular matrix where the

diagonal elements are all one. After the second pass, the
partially eliminated matrix is flipped and then eliminated in
a similar way as during the first operation. After this second
elimination, the left part of the matrix is turned into the identity
matrix and the linear system is completely solved.

B. Design of Our Architecture for Large Matrices

Our design is based on [5] and improves upon [6]. We use a
similar notation as [6] whenever possible in order to simplify
comparison.

We improve the prior design by combining TRI-SA and
SQR-SA into one square module comb_SA which has
diagonal processor elements that can be used either as
processor_A or processor_B. These processor ele-
ments are called processor_AB. This approach allows us
to save about 1/3 of the logic required by [6] for TRI-SA
and SQR-SA. Figure 2 shows the design details of our new
comb_SA module.

Similar to [6], our algorithm uses several phases where in
each phase n pivoting rows are picked at once. Each phase
then requires several steps in order to perform the required
row operations on all column blocks. To simplify this process,
we store the matrix in a column-block format in the on-chip
block memory.

To enable a wide range of applications, our implementation
is parameterized: the block size n can be chosen according
to the requirements, e.g., small in order to reduce resources,
large in order to reduce computing time, or according to the
memory architecture in case the word size of the memory is
fixed. Furthermore, the number of rows (l) and columns (k,
where k ≥ l) can be set as needed. For simplification, both l
and k must be multiples of n; otherwise l and k are simply
rounded up to the next multiple of n.

C. Implementation

We implemented our design in a hierarchical way: the core
are processors of type processor_AB and processor_B.
These processors are organized in an n × n array structure
within the module comb_SA. The module comb_SA is in-
stantiated in the module step that computes the elimination
on one column block of width n. In turn, step is instantiated
in the module phase that computes the elimination of a
certain row block for all remaining column blocks. Finally,
phase is instantiated within the module systemize that
uses phase repeatedly in order to eliminate all row blocks.

a) Modules comb_SA, processor_AB, and
processor_B: Figure 2 shows comb_SA implemented
using an array of processor_AB and processor_B
instances. Figure 3a and Figure 3b show input and output
ports of processor_AB and processor_B respectively in
more detail. The input data is passed into the processor array
by the data_in ports of the processors in the top row. The
output values of comb_SA come from the data_out ports
of the processors in the bottom row. Within comb_SA, the
data_out ports of processors in one row are connected to
the data_in ports of the next row by a register. The start

AB
r

B
r

B
r

. . .

B
r

B
r

AB
r

B
r

. . .

B
r

B
r

B
r

AB
r

. . .

B
r

. . .

. . .

. . .

. . .

. . .

B
r

B
r

B
r

. . .

AB
r

Fig. 2: Layout of module comb_SA. Input function_A to
the processor_ABs is not shown. Registers are shown as
boxes on the wires connecting processors.

AB
r

data_in

data_out

start_in start_out
op_in op_out

finish_in

finish_outfunction_A

(a) Module processor_AB.

B
r

data_in

data_out

start_in start_out
op_in op_out

(b) Module processor_B.

Fig. 3: Details of input/output ports of modules
processor_AB and processor_B.

and finish signals are delayed for two cycles between the
rows by using two registers as shown in Figure 2.

In contrast to [5] and [6], our design is a systolic line rather
than a systolic array: all elements in one row operate logically
in the same cycle, there are no registers between processors
in the same row. The advantage of our design is that we do
not need shift registers for input and output of the data.

Processing the rows of the matrix works as follows: If the
signal function_A is low, each processor_AB behaves
exactly like a processor_B. Otherwise, processor_AB
is used in order to find pivot elements for the respective

TABLE I: Truth table for processor_AB.

inputs state outputs
start finish data r r+ op data

1 0 d x d x 0
0 0 0 r r pass 0
0 0 1 0 1 swap 0
0 0 1 1 r add 0
0 1 x x x swap r

TABLE II: Truth table for processor_B.

inputs state outputs
start data op r r+ data

1 d x x d 0
0 d pass r r d
0 d swap r d r
0 d add r r d + r

column and to generate instructions for the processor_B
modules within the same row. The signal start_in must
be high for one cycle at the beginning of the computation. If
start_in is high, the value of data_in is stored in an
internal register r. In case the first data_in value already
is one, the pivot element already has been found. Otherwise,
consecutive data_in values are forwarded to data_out
until data_in is one. Now, r is forwarded to data_out
and data_in is stored in r; the register value r is “swapped”
with the input data. If values are simply forwarded, op_out is
set to the operation pass, i.e., 2’b00. When r and data_in
are swapped, the processor generates the command swap,
i.e., 2’b01. Once the pivot element is found, subsequent
rows either need to pass (operation pass, i.e., 2’b00) when
data_in is already zero or the row needs to be added to
the pivoting row, i.e., data_out is computed as the sum of
r and data_in. In the latter case, the operation add, i.e.
2’b10, is issued. The operation of processor_AB is also
shown as a truth table in Table I.

The module processor_B applies the operations that
have been computed earlier by procesor_AB to its input
data. If start_in is high, the internal register r is set to
data_in. If op_in is pass, data_in is simply forwarded
to data_out. If op_in is swap, register r is forwarded to
data_out and data_in is stored in r instead. If op_in
is add, register r is added to data_in and the result is
forwarded to data_out. The operation of processor_B
is also shown in Table II.

Finally, once all input data has been processed, we have
fully eliminated the pivot rows as well. To start the elimination,
the signal finish of processor_AB is set to high for
one cycle. In this case, processor_AB sets data_out to
r and issues the command swap. Therefore, all consecutive
instances of processor_B in that row also forward their
internal state to data_out to be processed by the following
rows of processors.

b) Modules step and phase: The purpose of the mod-
ule step is to compute the elimination of one column block
of the matrix. The module phase invokes step repeatedly in
order to apply the elimination operations to all column blocks.

The step module streams all rows of the targeted column
block specified by the phase module through comb_SA and
stores the output in place of the matrix data. In the first step
of a phase, the pivot elements are within the column block
that is being processed. Therefore, for the first step, the signal
function_A is set to high by the phase module, causing
the processor_AB instances to pick pivot elements and to
compute operation commands for the remaining processors in
the row. The op_out values are stored by the step module
in a dedicated memory for processing the next steps. For
consecutive column blocks, function_A is set to low and
the previously stored operations are replayed into op_in.

c) Module systemize: This module invokes the
phase module l/n times in order to perform the elimination
on all row blocks. Eventually, the final result of the elimination
is available in memory.

After the first phase, all rows including the pivot rows have
been eliminated with respect to the first n rows. To simplify
address calculations, we store the pivot rows in the bottom of
the matrix. Therefore, in the second phase, the pivot rows can
be picked from the top of the matrix. The last n input rows to
comb_SA are the pivot rows from the first phase. These rows
also get processed with the current pivot rows and therefore
they are further eliminated. After the second phase, the last n
rows are the pivot rows from the second phase, the second-
last n rows (l − 2n+ 1 to l − n) are the pivot rows from the
first phase. Following this scheme, phase by phase all rows
are reduced by all pivot rows and finally the systematic form
(reduced row echelon form) of the input matrix is computed.

D. Comparison of Single-Pass and Dual-Pass Variants

The algorithm in [6] computes the reduced row echelon
form of the input matrix by applying a systolic array design
for Gaussian elimination twice in two passes. In both passes,
the number of processed rows decreases by n in each phase.
This approach is also possible for our systolic line design.

We now show that our single-pass approach that operates
on all l rows in each phase is more efficient than a dual-pass
approach that operates on n rows less in each phase.

In the dual-pass case, the first phase of Gaussian elimination
processes the whole matrix. In this phase, each step takes l+2n
clock cycles to finish processing its corresponding n-column
block of l rows. After this phase, n rows are in the desired
triangular form. For the second phase, since there are n rows
less to process, each step requires only (l − n) + 2n = l + n
cycles. Iteratively, the steps in phase i each require n cycles
less compared to steps in the previous phase i − 1, i.e., (l −
in) + 2n cycles. Phase i requires k

n − i steps. Thus in total,

it takes 2
∑ l

n−1
i=0 (l+ 2n− in)(kn − i) clock cycles to compute

the reduced row echelon form using two passes. (The runtime
of [6] is very similar except their design has a 3n instead of
2n overhead per step because they use a systolic array.)

5 10 20 40 80 160 320 640 1280
1

1.2

1.4

1.6

1.8

2

n

Q
uo

tie
nt

of
C

yc
le

C
ou

nt
s k = l

k = 2l
k = 4l

Fig. 4: Quotient of the dual-pass systolic line approach divided
by our single-pass systolic line approach (l = 1280).

Our design performs both forward and backward elimination
in one single pass. The first phase processes l rows of data
which takes l+ 2n clock cycles. In each phase, all l rows are
reduced with respect to the current pivot rows. Therefore, in
the second phase (as well as all following phases), we need
all l rows of data as input. Thus, in our design, each step takes
a fixed number of l + 2n cycles. The first phase requires k

n
steps; thereafter, each phase takes one step less compared to
the previous phase. In total, we require

∑ l
n−1
i=0 (l+ 2n)(kn − i)

clock cycles (plus a few cycles of overhead due to pipelining)
in order to compute the reduced row echelon form.

Figure 4 shows the theoretical analysis of the cycle count
for the two variants for different sizes of n. Our single-pass
systolic line approach is always better compared to a dual-pass
systolic line approach in terms of number of cycles, especially
when the matrix is almost square.

However, the dual-pass approach detects if the matrix is in-
vertible already after its first pass of the Gaussian elimination.
Our single-pass approach needs to finish the whole process
first. Therefore, the dual-pass approach is a better choice when
the matrix is not guaranteed or known to be invertible and
when an early abort of the system solving is beneficial.

Note, we use multiples of 5 for n because the embedded
memory blocks in our Altera Stratix V FPGA can be used
most efficiently when using a word size of this form.

V. EVALUATION

A. Trade-off between Area and Time

In our systolic line design, there is a trade-off between area
and time, controlled by the width n of comb_SA. Bigger n
means higher parallelism and less computing time, but at the
same time more logic. As mentioned before, the critical path
in our architecture is determined by the width of the rows of
comb_SA. Figure 5 shows that the maximum clock frequency
(Fmax) drops as the size of the systolic line architecture (n)
grows because of the longer routing paths on the FPGA.
However, for moderately large n up to n ≤ 80, Fmax can

5 10 20 40 80 160

300

400

500

n

Fm
ax

(M
H

z)
matrix size: 320× 640

Fig. 5: Maximum clock frequency (Fmax) achieved for differ-
ent choices of n.

214 215 216 217 218 219 220 221

300

400

500

Matrix size in bits

Fm
ax

(M
H

z)

n = 20

Fig. 6: Maximum clock frequency (Fmax) achieved for differ-
ent matrix sizes (in bits); see Table III.

be kept above 400MHz, while for larger n, a relatively high
Fmax of 360MHz can be maintained as well.

Since we are using a small- to medium-sized systolic
line architecture when processing large-sized matrices, logic
utilization is no longer a constraint compared to the standard
designs discussed in literature. Instead, the available on-chip
memory determines the largest size of the matrix that can
be processed by our design. Even larger matrices can be
processed when using off-chip memory.

To improve the frequency, it is possible to reduce the critical
path from the full width of a row of comb_SA by insertion of
registers every c columns. This is similar to a systolic array
that has registers between each column (c = 1) but would
use larger values of c, such as n/2, n/4, etc., depending
on the desired frequency. Using additional pipelining steps
increases the total number of cycles and requires additional
shift registers, but it allows higher frequency.

B. Performance and Resource Usage vs. Matrix Size

Figure 6 shows the maximum frequency of our architecture
for doing Gaussian elimination from medium-sized to large-
sized matrices when the size of the systolic line architecture

is fixed to n = 20. With an increasing matrix size, the
maximum frequency drops significantly. This is caused by the
implementation of the memory on the FPGA. Our Stratix V
FPGA provides on-chip memory in blocks of 20K bits. Larger
memories are composed of several of these blocks which
requires additional logic. If the required memory is very large,
data paths and additional logic within the memory blocks have
a big impact on the maximum frequency that can be achieved.
A solution for this problem would be to introduce additional
pipeline steps into the data path of the memory. Detailed
performance and resource usage is shown in Table III.

C. Comparison with Related Work

Table IV presents a comparison of performance and resource
usage of our design with the GSMITH design in [7], the
systolic network design in [8], and the SMITH design in [9].
These designs perform Gaussian elimination for medium-sized
matrices; their processor array has the same size as the input
matrix. Our design is not intended for matrices of this size but
optimized for iterative operation on large matrices. To achieve
a fair comparison, we compare only our comb_SA module
using a processor array of a similar size to their designs. The
resource usage of [8] and [9] is only provided for Spartan 3
FPGAs. Therefore, we synthesized our comb_SA design for
this FPGA. Compared with these three designs, our design
achieves very good performance in terms of frequency, area,
and total runtime.

Shoufan et al. in [6] compute on large matrices of size
550×2,048. They implement a complete crypto system and do
not provide details on the performance of their system solver.
In order to compare our design with [6], we calculated the
expected number of clock cycles for their design based on their
description. Since we use a single-pass systolic line approach,
while they use a dual-pass systolic array approach, our design
takes less clock cycles to finish the elimination process. Since
no performance and resource usage data is provided for this
part in their paper, no detailed comparison can be made.

VI. CONCLUSION

Need for Gaussian elimination of large matrices arises in
various cryptographic and cryptanalytic algorithms. The pre-
sented work is the first to show results of Gaussian elimination
for matrices of up to 4,000 × 8,000 elements. The new
architecture introduced a new comb_SA module and uses
multiple steps and phases to simulate the functionality of
the original large systolic architecture. The whole design is
configurable both in the size of the comb_SA module (n)
and the matrix size, l × k. With this design, we can achieve
sub-µs performance for the Gaussian elimination of medium
matrices and performance on the order of tens to hundreds
of ms for large matrices. We also obtained 1/3 reduction in
logic use compared to related work [6] and have very efficient
use of block memory. Our design can be easily realized on
both Altera and Xilinx FPGAs without any modification since
no Xilinx or Altera specific optimizations are involved in the

TABLE III: Altera Stratix V synthesis results for different matrix sizes with fixed n = 20.

l k Clock Cyclesb Fmax (MHz) Runtime (ms) Logica Registers Matrix Size (bits) Total Memory (bits)

80 160 3,120 488 0.0064 616 1,172 1.56 · 213 2.15 · 213

160 320 20,000 494 0.04 638 1,193 1.56 · 215 1.81 · 215

320 640 141,120 445 0.32 648 1,207 1.56 · 217 1.67 · 217

640 1,280 1,055,360 383 2.8 670 1,226 1.56 · 219 1.61 · 219

1,280 2,560 8,152,320 300 27 726 1,243 1.56 · 221 1.59 · 221

2,560 5,120 64,064,000 229 280 935 1,279 1.56 · 223 1.57 · 223

4,000 8,000 242,804,000 192 1,300 1,458 1,342 1.91 · 224 1.92 · 224

a Logic utilization is counted in ALMs (Adaptive Logic Modules).
b Theoretical calculation, does not take into account a few cycles of overhead.

TABLE IV: Comparison with existing FPGA implementations of Gaussian elimination.

Design n l k Clock Cycles Fmax (MHz) Runtime (ms) Logica
Registers FPGAALMs Slices

[7] 50 50 50 150 150 0.00100 (3,106) 3,713 2,574 Xilinx Spartan 3
[8] 50 50 50 50 –d –d (9,256) 11,065 –d Xilinx Spartan 3
[9] 50 50 50 100e 300 0.00033e (3,349) 4,004 –d Xilinx Spartan 3
our 50 50 50 150 178 0.00084 3,129 5,236 Xilinx Spartan 3
our 50 50 50 150 413 0.00003 2,618 5,725 Altera Stratix V

[6] 11 550 2,048 5,323,450c –d –d –d –d –d Xilinx Virtex 5
our 11 550 2,048 4,624,100b 305 15b 246 538 Xilinx Virtex 5
our 11 550 2,048 4,624,100b 332 14b 437 613 Altera Stratix V

a Conversion from Xilinx Spartan 3 Slices to Altera Stratix V ALMs: 1 ALM = 3,129 / 2,618 ≈ 1.2 Slices.
b Theoretical calculation, does not take into account a few cycles of overhead.
c Theoretical calculation based on design description.
d Exact information not provided in reference.
e Average depending on input matrix.

design. The Verilog source code of our design is available as
Open Source at http://caslab.eng.yale.edu/code/gausselim.

ACKNOWLEDGMENT

This work was supported in part by the Netherlands Organi-
sation for Scientific Research (NWO) under grant 639.073.005
and by the Commission of the European Communities through
the Horizon 2020 program under project number 645622
(PQCRYPTO).

REFERENCES

[1] C.-L. Wang and J.-L. Lin, “A systolic architecture for computing inverses
and divisions in finite fields GF(2m),” IEEE Transactions on Computers,
vol. 42, no. 9, pp. 1141–1146, 1993. 1, 2

[2] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” JPL DSN Progress Report, vol. 44, pp. 114–116, 1978. 1

[3] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding
theory,” Problems of Control and Information Theory, vol. 15, no. 2,
pp. 159–166, 1986. 1

[4] D. Augot, L. Batina, D. J. Bernstein, J. Bos, J. Buchmann, W. Castryck,
O. Dunkelman, T. uneysu, S. Gueron, A. ulsing, T. Lange, M. S. E.
Mohamed, C. Rechberger, P. Schwabe, N. Sendrier, F. Vercauteren, and
B.-Y. Yang, “Initial recommendations of long-term secure post-quantum

systems,” PQCRYPTO — Horizon 2020 ICT-645622, Tech. Rep., 2015,
www.pqcrypto.eu.org/docs/initial-recommendations.pdf. 1

[5] B. Hochet, P. Quinton, and Y. Robert, “Systolic Gaussian elimination over
GF(p) with partial pivoting,” IEEE Transactions on Computers, vol. 38,
no. 9, pp. 1321–1324, 1989. 1, 2, 3, 4

[6] A. Shoufan, T. Wink, H. G. Molter, S. A. Huss, and E. Kohnert, “A novel
cryptoprocessor architecture for the McEliece public-key cryptosystem,”
IEEE Transactions on Computers, vol. 59, no. 11, pp. 1533–1546, 2010.
1, 3, 4, 5, 6, 7

[7] A. Rupp, T. Eisenbarth, A. Bogdanov, and O. Grieb, “Hardware SLE
solvers: Efficient building blocks for cryptographic and cryptanalytic
applications,” the VLSI Journal INTEGRATION, vol. 44, no. 4, pp. 290–
304, 2011. 2, 3, 6, 7

[8] R. P. Jasinski, V. A. Pedroni, A. Gortan, and W. Godoy Jr., “An improved
GF(2) matrix inverter with linear time complexity,” in International
Conference on Reconfigurable Computing and FPGAs — ReConFig,
2010, pp. 322–327. 2, 6, 7

[9] A. Bogdanov, M. Mertens, C. Paar, J. Pelzl, and A. Rupp, “SMITH — a
parallel hardware architecture for fast Gaussian elimination over GF(2),”
in Workshop on Special-purpose Hardware for Attacking Cryptographic
Systems — SHARCS, 2006. 2, 3, 6, 7

http://caslab.eng.yale.edu/code/gausselim
www.pqcrypto.eu.org/docs/initial-recommendations.pdf

	Introduction
	Gaussian Elimination and Systolic Architectures
	Systolic Architectures for Gaussian Elimination
	Systolic Array
	Systolic Network
	Systolic Line

	Systolic Architecture Size vs. Matrix Size

	Existing Implementations and Their Applications
	Design and Implementation
	Working With Large Matrices
	Design of Our Architecture for Large Matrices
	Implementation
	Comparison of Single-Pass and Dual-Pass Variants

	Evaluation
	Trade-off between Area and Time
	Performance and Resource Usage vs. Matrix Size
	Comparison with Related Work

	Conclusion
	References

