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Abstract—Circuit cutting is a novel technique in the field
of quantum computing that offers a promising approach for
breaking up large quantum circuits into smaller ones that can be
executed on smaller quantum computers. Circuit cutting offers a
scalable and hybrid computing approach, by combining classical
and quantum computers to run large quantum circuits. At the
same time, quantum circuits represent the fundamental building
blocks of quantum algorithms, and obfuscation techniques are
crucial for protecting the sensitive information and intellectual
property encoded in these circuits. This paper constitutes the
first security analysis of circuit cutting techniques as a means to
protect quantum circuits, and not just for cutting bigger quantum
circuits to fit on smaller devices. As cloud providers are in
control of quantum computers and give access to users, utilizing
cloud-based quantum computers for executing quantum circuits
involves considerable security risks. This work demonstrates
that quantum circuits can be effectively obfuscated by using
quantum circuit cutting techniques. If users are worried about an
adversary who attempts to reverse-engineer the original quantum
algorithm, circuit cutting can be used as a security measure. To
further provide configurable obfuscation level, i.e. number of
possible circuits that the cloud provider would have to guess,
this work proposes a novel dummy-subcircuits technique. This
technique introduces dummy subcircuits with additional qubit
cut points to create more confusion for the cloud provider
and further help to obfuscate the user’s original circuits with
limited cost.

Index Terms—quantum computing, security, code obfuscation,
circuit cutting

I. INTRODUCTION

Cloud-based quantum computers represent a significant leap

in computing technology, merging the power of quantum

computation with the accessibility and scalability of cloud

computing. Many cloud-based quantum computers are avail-

able today, from IBM Quantum [1], Amazon Braket [2], and

Azure Quantum [3]. In a cloud-based quantum computing

model, these providers give access to quantum processing units

(QPUs) to remote users who pay based on the amount of

time they need to execute their circuits. The QPUs are time-

shared among users. This allows researchers, scientists, and

businesses to harness the computational potential of quantum

systems without the need for extensive on-site infrastructure

and cost. Users can access quantum computing resources,
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run algorithms, and perform complex calculations via the

internet, making quantum computing more widely available

and practical. Once a user is done, the QPU can be utilized

by another user.

The cloud-based approach democratizes access to quantum

computing, enabling a broader range of industries and applica-

tions to benefit from quantum computational advantages. As

this technology continues to evolve, it holds the promise of

revolutionizing fields such as cryptography, optimization, drug

discovery, and materials science, among others.

While cloud-based quantum computers offer many benefits,

they suffer from possible security threats. In particular, un-

trusted cloud provider is a major security concern; the whole

cloud provider could be untrusted, or there could be untrusted

insiders working within the cloud provider, which would

represent insider attackers [4]. Since the cloud providers, or

the insiders, have full access to the quantum circuits executing

on the quantum computers, they may be incentivized to copy

the user’s code, copy results from the user’s computation,

spy on types of computations performed by the user, etc. At

the same time, users have no choice but to use cloud-based

quantum computers if they want to take advantage of this

technology; as most users do not have resources or the know-

how to build their own quantum computers. When using cloud-

based quantum computers, users today have limited means

to protect themselves. Blind quantum computation, e.g. [5],

remains theoretical and cannot be deployed in practice yet.

In this work, we explore a new approach to protecting user’s

circuits from an untrusted cloud provider by leveraging recent

techniques introduced for cutting quantum circuits into smaller

subcircuits [6]. Circuit cutting was invented due to the problem

that there is so far a lack of large quantum computers, and due

to short decoherence times of existing quantum computers. We

realize, however, for the first time that quantum circuit cutting

can be used as an obfuscation mechanism. The obfuscation is

based on the difficult problem that the cloud provider has in re-

constructing the original circuit from the subcircuits generated

by quantum circuit cutting. Because the cloud provider does

not have information on how the subcircuits are composed

into a bigger circuit, they cannot effectively reconstruct the

original circuit. The cloud provider knows the subcircuits,

their inputs, and measurement results. However, we show that

this is not sufficient to easily reconstruct the original circuits.
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Fig. 1: Example of cutting a 5-qubit quantum circuit using a single cut, resulting in two distinct, smaller subcircuits. (Left) A scissor marks
the point where qubits were cut. The darker shaded area represents subcircuit 1, while the lighter shade denotes subcircuit 2. (Right) A
dashed arrow traces the route of the cut qubit wire. To perform circuit cutting, the two subcircuits are executed independently on QPUs, and
all qubits are measured at the end of each subcircuit. Note that thanks to circuit cutting, 3-qubit QPUs are needed vs. 5-qubit QPUs if no
circuit cutting was used. For the cut qubit, at the cut point, the qubit is initialized in the {I,X, Y, Z} bases, and subcircuit 2 is executed
with each initialization. Resulting data is used to reconstruct the final circuit output by running the circuit cutting algorithm on a classical
CPU or GPU.

As we demonstrate, there’s a large number of ways that the

subcircuits could be composed, which generates significant

confusion, and thus significant level of obfuscation. Further,

on average, each improper reconstruction results in output

probabilities different from what the correct circuit would

generate, thus there is also a significant level of confusion

for the attacker. Therefore, we show that circuit cutting is an

efficient and scalable method for the obfuscation of circuits

and their outputs, and it can be already used today.

The insights of this work are the realization that without the

information on how to compose the subcircuits into a bigger

circuit, the cloud provider has no effective means to find the

original circuit, except for a brute-force search. In particular,

quantum circuit cutting software can be executed on the user’s

computer, to generate subcircuits and the metadata about how

to compose the subcircuits. Then, the metadata can be kept

locally safe by the user, while he or she submits the subcircuits

to the cloud-based quantum computer provider. The provider

executes each subcircuit, returning the (classical) measurement

results to the user. The user can then reconstruct the correct

output from the measurement results of all the subcircuits and

the metadata. Circuit cutting is explained in more detail in

Section II, but at a high level, the cloud provider can guess

which qubits in which subcircuits are initial qubits, cut points,

or measurements. However, as we demonstrate, even with that

information, there is an extremely high number of possible

connections, through the cut points. Thus, given only the

subcircuits, there is a significantly large number of circuits,

which we call candidate circuits, that could feasibly be made

from these subcircuits.

To allow for arbitrarily increasing the number of the

candidate circuits, i.e. the obfuscation level, we propose an

additional technique; a novel dummy-subcircuits approach that

introduces dummy subcircuits with randomly selected qubit

cut points. By submitting the dummy subcircuits along with

the subcircuits generated by quantum circuit cutting software,

the obfuscation level can be arbitrarily increased. For example,

for user circuits of 4 qubits with significantly low obfuscation

level by default, adding 60 dummy subcircuits could result in

2278 candidate circuits that the cloud provider would have to

consider when trying to guess the users’ original circuit. This

number of candidate circuits, i.e. the obfuscation level, can be

arbitrarily increased by adding more dummy subcircuits.

A. Contributions

The contributions of this work are as follows:

• Analysis of quantum circuit cutting as security mecha-

nisms for obfuscation and protection of user circuits from

untrusted cloud providers.

• Introduction of dummy-subcircuits technique to further

enhance obfuscation level, through the insertion of

dummy subcircuits with randomized qubit cut points.

• Evaluation of the security level of circuit cutting when

used for obfuscation. Among others, we consider the

number of possible candidate circuits as well as the

difference between the output probabilities of the original

circuit vs. candidate circuits.

• Evaluation of the execution overhead for the attacker,

associated with generating the candidate circuits and also

for the reconstruction process needed to compute the

outputs from these circuits.

II. CIRCUIT CUTTING BACKGROUND

Prior quantum computing research mainly focused on mak-

ing better use of a single quantum computer. The emergence

of quantum circuit cutting theory [6] makes it possible to cut a

large quantum program into smaller sub-programs, execute the

sub-programs on smaller quantum processing units (QPUs),

and later reconstruct the sub-results with classical computing.

Figure 1 illustrates the process of cutting a basic quantum

circuit, as depicted in the left panel, which represents a 5-qubit

quantum circuit. Each qubit wire runs horizontally. Single

qubit quantum gates are represented by boxes on individual
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qubit wires, while boxes spanning two wires indicate 2-

qubit quantum gates. Typically, executing this circuit demands

a QPU with at least 5 high-quality qubits to perform all

quantum gates before significant error accumulation. However,

circuit cutting segments this circuit into smaller, manageable

subcircuits. A single cut, marked by a scissor symbol, bisects

the quantum circuit into two subcircuits. These subcircuits

can be independently executed in parallel by multiple 3-

qubit QPUs, without needing quantum interconnections. Thus,

circuit cutting involves making perpendicular cuts across qubit

wires, allowing a larger quantum circuit to be divided into

several smaller subcircuits through multiple cuts.

The underlying physics concept of circuit cutting involves

expressing unknown quantum states at cut points as a sum of

their Pauli bases components. In this process, QPUs execute

four versions of subcircuit 1, each measuring the upstream

cut qubit q2 in one of the {I,X, Y, Z} Pauli bases. No-

tably, measurements in the I and Z bases are performed

using identical single-qubit rotations, reducing the necessity

to only 3 subcircuits for each upstream cut qubit. In parallel,

QPUs conduct four variations of subcircuit 2, initializing

the downstream cut qubit q′2 in one of the |0ð , |1ð , |+ð , |ið
states. These states then form the basis for constructing the

{I,X, Y, Z} Pauli bases as linear combinations. Measuring

(or initializing) a qubit in varying bases involves adding

different single qubit rotations to the end (or beginning) of

the subcircuits, which are straightforward operations causing

minimal additional complexity in the subcircuits. This method

results in four distinct outcomes for subcircuit 1, denoted as

pe1 for each cut edge e ∈ {I,X, Y, Z}, and similarly produces

four outcomes for pe2.

Circuit cutting ultimately achieves the classical reconstruc-

tion of quantum state outputs by combining the results of the

subcircuits. Prior circuit cutting work in CutQC [7] establishes

that the output P of the original, intact circuit is equal to

the sum
∑

e p
e
1 ¹ pe2. Circuit cutting extends to multiple

subcircuits beyond two by sequentially combining the outputs

of all subcircuits across the Pauli decompositions of every cut

quantum edge:

P =

Z|E|
∑

e={I}|E|,e∈E

¹n
i=1p

e∈Ei

i (1)

The state-of-the-art circuit cutting technique [8] employs scal-

able tensor network strategies for computing the reconstruction

problem. The quantum interactions among the subcircuits

are therefore substituted by classical post-processing, which

is analogous to the communication cost paid in classical

parallel computing.

A. Circuit Cutting Workflow

In practical applications, users initially employ local algo-

rithms to identify efficient cuts for a large quantum circuit.

These algorithms include options like a Mixed Integer Pro-

gramming (MIP) solver [7] or a heuristic solver [8]. Once

suitable cuts are determined, users divide the large quantum

Circuit Cutting Software

Subcircuit Subcircuit Subcircuit

Distributed QPUs

GPU

Original Quantum Circuit Output

Cloud Provider

User9s Computer

User9s Computer

Trusted

Untrusted

Trusted

Large Quantum Circuit

Protected 

Cutting

Metadata

Fig. 2: Circuit cutting workflow: large circuits are broken into
smaller subcircuits, then smaller subcircuits are executed on the
remote quantum computer, and finally the results of the subcircuits
are combined to reconstruct the output of the original, large circuits.
The trusted and untrusted parts are highlighted in the figure; they are
discussed in detail in the Threat Model, in Section III.

circuit into smaller subcircuits. These subcircuits are then

sent to a cloud-based QPU provider for execution. Cloud

backends then compile the subcircuits to run on their QPUs.

After the subcircuits have been processed in the cloud, users

retrieve the results from these cloud backends. The final step

involves users utilizing local GPUs to conduct post-processing

of tensor networks to reconstruct the results of the initial

quantum program.

Figure 2 depicts the entire process, from initial cut finding to

final result reconstruction. The circuit cutting steps emphasize

the collaboration between local computational resources and

cloud services in executing complex quantum computations.

B. Circuit Cutting, Subcircuits, and Metadata

Reconstructing the original quantum circuit from the sub-

circuit outcomes hinges on accurately tracing the connections

formed by the cut edges between subcircuits. The correct

computation of equation 1 requires precise alignment of the cut

edges among subcircuits. Matching wrong pairs of cut qubits

produces nonsensical reconstruction results.

Figure 3 (a) shows an example of 3 subcircuits with 2 cuts.

The user knows exactly how the cuts connect the subcircuits

since they have full knowledge of the cuts being made.

However, cloud providers only receive the subcircuits after

the cuts are made, and only know which qubits are cut qubits

in each subcircuit, Figure 3 (b). If cloud providers attempt to

reconstruct the initial quantum circuit, it is possible to come

up with wrong but valid cut qubits correspondence that lead

to wrong reconstruction outcomes, Figure 3 (c). If dummy-

subcircuit is introduced, Figure 3 (d), then the number of

feasible, but incorrect reconstructions increases, Figure 3 (e).

III. THREAT MODEL

This work focuses on the threat of an untrusted cloud

provider (equivalently, untrusted insider working within the

cloud provider) who may be trying to reverse engineer what
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(e) Example of additional feasible (but incorrect) solutions due to dummy subcircuits.

Subcircuit 2 Subcircuit 3Subcircuit 1

� �� �

Subcircuit 2 Subcircuit 3Subcircuit 1

Subcircuit 2 Subcircuit 3Subcircuit 1

� �� �

Subcircuit 2 Subcircuit 3Subcircuit 1

� �� �

Dummy 

Subcircuit

�

Subcircuit 2 Subcircuit 3Subcircuit 1

Subcircuit 2 Subcircuit 3Subcircuit 1
Dummy 

Subcircuit

Subcircuit 2 Subcircuit 3Subcircuit 1
Dummy 

Subcircuit

Subcircuit 2 Subcircuit 3Subcircuit 1
Dummy 

Subcircuit

Subcircuit 2 Subcircuit 3Subcircuit 1
Dummy 

Subcircuit

(a) User9s original circuit.

(b) Cloud provider only knows individual subcircuits.

(c) Example of a correct and an incorrect reconstruction.

(d) Cloud provider9s view when additional dummy subcircuits are added.

Correct reconstruction:

� 	³ �  and � 	³ �  

Incorrect reconstruction

Correct reconstruction :

� 	³ �  and � 	³ �  

Incorrect reconstruction

Incorrect reconstruction

Incorrect reconstruction

Fig. 3: Without knowing the exact cut edge connectivity among the
subcircuits, it is possible to come up with valid but wrong subcircuit
reconstructions. (a) The user view of the subcircuits. Users know both
the cut qubits and their pairing. qui indicates upstream cut qubits,
and qdi indicates the downstream cut qubits. (b) Cloud provider only
knows which qubits are upstream and downstream cuts, but not their
pairing. (c) Example of a correct and incorrect solution; the incorrect
solution is still a feasible (but wrong) one; a reconstruction is valid
when all the upstream and downstream qubits are matched, but still
it does not represent the user’s original circuit. (d) Cloud provider’s
view when dummy-subcircuit is introduced by the user. (e) Example
of multiple feasible (but incorrect) solutions when dummy-subcircuit
is introduced.

circuit the user is executing on the cloud provider’s quantum

computers. We assume that the user compiles their program

locally, and that classical reconstruction operations are also

performed locally on a trusted computer. We assume the user

securely retains circuit cutting metadata that specifies how the

subcircuits should be composed into their original circuit. The

subcircuits themselves are submitted to the cloud provider who

has full access to them, but does not have the metadata. Finally,

the results are collected by the user, and the user locally

computes the result of their computation from the quantum

computer results and the metadata that the user has retained.

The trusted and untrusted parties are also shown in Figure 2.

We assume the cloud provider knows the cut points (the

upstream and downstream qubits) among the subcircuits. We

further assume that the cloud provider knows which qubits

and subcircuits involve initial qubits, because they are set

into |0ð state, and which are the final qubits, because they

are measured with regular measurement operations only in

one basis (meanwhile for qubits at the cut points, they are

measured in multiple bases).

We assume that the cloud provider is not able to use addi-

tional knowledge, e.g., what type of circuit is being executed,

to help his or her search. We leave as future work analysis

of whether subcircuits’ structure can reveal information about

the nature of the original circuit.

A. Additional Obfuscation with Dummy-Subcircuits

As a further additional obfuscation measure, we propose

that users submit dummy subcircuits alongside the correct

subcircuits. We assume the structure of the subcircuits, gate

distributions, etc. are such that the cloud provider is not able

to determine whether a subcircuit is a real subcircuit or a

dummy one. Therefore, we can create additional dummy cir-

cuits, submitted with the original subcircuits to obfuscate the

reconstruction process. Evaluation of profiling of subcircuits

and the ability of the cloud provider to distinguish real from

dummy subcircuits is left as future work.

IV. LEVERAGING QUANTUM CIRCUIT CUTTING FOR

OBFUSCATION OF USER’S CIRCUITS

In this section, we discuss the obfuscation capabilities

of quantum circuit cutting. Current quantum devices and

technology require the provider to have full access to the

user’s circuits to properly transfer them to the quantum device

for execution. This exposes the submitted quantum circuits

and algorithms to security risks. With circuit cutting, instead

of submitting original circuits, users submit the subcircuits

generated by the circuit cutting software. Now, an adversary

with access to these subcircuits could try to recreate the

original circuit. This section analyzes the feasibility of such a

recreation process and describes a classical algorithm that cal-

culates the total number of possible recreated circuits, which

we also call candidate circuits, given a set of subcircuits. Later,

this section also examines how the recreation complexity is

altered when introducing the dummy-subcircuits techniques.

A. Computing Number of Qubits in User’s Original Circuit

The first step to recreate quantum circuits, with a set

of subcircuits, is to calculate their size. As the subcircuits

include measurements in {I,X, Y, Z} Pauli bases that give out

information about whether a qubit has been cut, an adversary

could utilize this to obtain the size of the original circuit.

Assuming we have n distinct subcircuits with ni qubits each

and nc cuts in total (the number of cuts is equal to the

number of upstream or downstream cuts), then combining

these subcircuits results in a quantum circuit with size nr,

where nr is calculated by subtracting the number of cuts from

the sum of ni qubits, as shown in Equation 2 below.

nr =

n
∑

i=1

ni − nc (2)
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Fig. 4: Examples of subcircuit connectivity and valid and invalid recreations. (a) All subcircuits are connected via upstream and downstream
cuts and form a valid recreated circuit with 5 qubits (from Equation 2 we have nr = 10 − 5). (b) Circuits 1 and 4 can be connected
through their remaining two upstream/downstream qubits (2! combinations). However, circuit 2 forms a circular connection, as its upstream
cut qubit is connected to its downstream cut qubit. This recreation is therefore invalid. (c) Circuits 1 and 4 can be connected through their
upstream/downstream qubits (3! combinations), but circuits 2 and 3 are interconnected. Thus, this case is also invalid. (d) Similarly, circuits
1 and 4 can be connected via 3! combinations, but circuits 2 and 3 are intra-connected as their upstream qubit are connected to their
downstream qubit, resulting in an invalid recreation.

Using the nr size, the recreation problem turns into a com-

binatorial one, where we need to calculate the total number

of valid recreations. The connections between the subcircuits

need to be made via upstream and downstream cut qubits.

While one could easily conclude that with nc cuts we would

have nc!(= 1 × 2 × · · · × nc) total recreations, we also have

to take into account several cyclic cases, as explained in the

following section.

B. Computing Possible Combinations of Candidate Circuits

The process of connecting subcircuits to produce a recreated

quantum circuit involves combining the upstream cut qubits

with the downstream cut qubits; qubits with no cuts are

used directly in the recreated circuit. Figure 4a showcases an

example where four subcircuits with five cuts (five upstream

and five downstream qubits) are connected; subcircuits 1 and

4 have three upstream and three downstream cuts respectively,

whereas subcircuits 2 and 3 have one of each. If we just

start connecting upstream to downstream cuts, there would

eventually be some cases where the upstream qubit of circuit

2 (or 3) would be connected to its downstream qubit, like in

Figures 4b and 4d. Similarly, the upstream qubit of circuit

2 could be connected to the downstream qubit of circuit 3,

while the upstream qubit of circuit 3 could be connected to

the downstream qubit of 2, as shown in Figure 4c.

Having identified the possibility of cyclic connections, we

need a way to calculate and subtract them from the nc!
term. This will give us the total number of possible recreated

circuits. To formulate the problem using the examples in

Figure 4 we identify the number of cuts, nc, to 5 (total

upstream or downstream qubits). Additionally, we need the

number of qubits with solely upstream cuts, nu = 3, i.e.

the qubits of circuit 1, the number of qubits with solely

downstream cuts, nd = 3, i.e. the qubits of circuit 4, and the

number of qubits with both upstream and downstream cuts,

nud = 2, i.e. one qubit from circuit 2 and one from circuit 3.

Beginning with Figure 4b, we see that circuit 3 can be

connected to either of the 3 upstream, or downstream qubits

of circuits 1 and 4 respectively, thus a total of
(

nu

1

)

·
(

nd

1

)

combinations, where
(

n

k

)

= n!
k!(n−k)! . The remaining qubits of

circuits 1 and 4 can be connected with factorial combinations,

thus (nu − 1)!. Finally, instead of circuit 3, we could use

circuit 2, thus we have to multiply the previous terms with
(

nud

1

)

. Considering all the above and the fact that nu = nd

for all generated subcircuits, we obtain a total number of
(

nu

1

)2
· (nu−1)! ·

(

nud

1

)

= nu!
1! ·

(

nu

1

)

·
(

nud

1

)

invalid recreations

for case 4b.

In cases 4c and 4d, we see that circuits 1 and 4 can be

connected through nu! =
nu!
0! ·

(

nu

0

)

combinations. Circuits 2

and 3 can either be interconnected, meaning the upstream qubit

of one is connected to the other’s downstream qubit like in 4c,

or intraconnected, meaning their upstream qubit is connected

to their downstream qubit like in 4d. For these cases, we have

a total of
(

nud

1

)

·1 =
(

nud

1

)

·
(

nud

2

)

combinations. Therefore, for

the cases 4c and 4d, we obtain a total of nu!
0! ·

(

nu

0

)

·
(

nud

1

)

·
(

nud

2

)

invalid recreations.

Combining these results and subtracting them from the

factorial of total cuts, we produce the following approximate

formula that calculates the number of feasible recreated cir-

cuits, e.g. the number of valid combinations between given

subcircuits using the number nc of cuts, the number nu of

qubits with solely upstream cuts and the number nud of qubits

with both upstream and downstream cuts:

nvalid = nc!−
nud−1
∑

x=0

nu!

x!
·

(

nu

x

)

·

[(

nud

1

)

·

(

nud

2

)

· · ·

(

nud

nud − x

)]

(3)

This formula is specific for the structure of our bench-

mark circuits, i.e. subcircuits where the number of qubits

with solely upstream cuts equals to the number of qubits

with solely downstream cuts. This formula overestimates the

number possible reconstructions. After extended analysis, we

conclude that a universal formula for any circuit type and

structure, may be impossible to obtain, due to the various

possible cut combinations and subcircuits variations. However,

we leave as future work the design of an efficient algorithm

that can calculate the feasible recreated circuits with minimal

execution cost.
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C. Recreation Algorithm

Each possible, valid inter-connection of the subcircuits

represents one candidate circuit. Each candidate circuit is a

circuit that the malicious cloud provider would guess could

be the original circuit. One important note is that the qubit

order in the recreated circuits does not make any difference, as

an attacker would be interested in the probability distribution

of the quantum algorithm, rather than the absolute state-

vector values. Even if the original quantum circuit produces

results with a qubit ordering of qnqn−1 . . . q1q0 and a recreated

candidate circuit with an order of qn−1 . . . q1q0qn (or any

other random ordering), sorting the probabilities of each

outcome would produce the same distribution, from which an

attacker could potentially identify the nature of the quantum

algorithm used.

To recreate the candidate circuits from a set of subcircuits,

we designed an algorithm using Python and IBM’s Qiskit

SDK. The first step is to produce a mapping for every

combination, from the subcircuit qubits and their connections

via upstream and downstream qubits, to the nr qubits of the

candidate circuits Since we do not need to worry about the

qubit ordering, after obtaining the possible combinations using

Equation 3 and as we already know the size of the candidate

circuits from Equation 2, we just assign the subcircuit combi-

nation to a random qubit. This mapping allows us to append

the gates from the subcircuits in the right order to construct the

candidate circuit. For example, qubit qr3 from the candidate

circuit is mapped to connection 1 → 3 → 4 from Figure 4a.

The other nr−1 qubits will either be mapped to the remaining

connections, e.g. qr2 to 1 → 4 and qr1 to 1 → 2 → 4, or to

subcircuit qubits with no cuts, e.g. qr0 to qubit q20 and qr4
to q31 .

Having figured out a mapping for each possible combina-

tion, the next step is to append the appropriate gates from the

subcircuits to a newly created quantum circuit. These gates and

their qubit dependencies (for multi-qubit gates), are obtained

by parsing the subcircuits and retrieving information about

the instructions (gate, qargs) per node (sci, qsci ), the number

of gates for each node (its steps), the connectivity between

multi-qubit gates, and finally, the total instructions (number

of gates) for all subcircuits. For each mapping, the algorithm

first creates an empty quantum circuit with size nr. Then it

initiates a breadth-first appending approach, where each qubit

qr is advanced by one step (one additional gate). In the case

of a single-qubit gate, the algorithm just appends the gate to

the appropriate qr, and advances the qr step, while subtracting

one instruction from the total remaining ones. If the gate is

a multi-qubit gate, then all qri qubits for this gate must be

in the same step, for it to be appended and the appropriate

counters to be modified. This process continues until no more

instructions remain. Whereas the mappings handled by the

recreation algorithm would be valid, according to Equation 3,

there may be cases where a mapping creates a topological

error and no more gates can be appended. This happens when

a multi-qubit gate has to be appended between qubit qr and

Fig. 5: Topological error in a supremacy-type circuit. Upstream
cut qubits are highlighted on the right side of subcircuits 1,2 and
downstream qubits on the left. Qubit qr3 is mapped to qubit q1 of
subcircuit 2, i.e., node (’2’,1). Qubit qr1 is mapped to node (’2’,2)
which is connected to node (’2’,0). At step 2, qr1 needs to append a
CZ gate with node (’2’,1), i.e. qubit qr3 . However, at the same step,
qr3 has to previously append a CZ gate with node (’2’,0), which
comes after node (’2’, 2). Thus, a topological error arises as neither
qr1 nor qr3 can append their gates and the specific mapping cannot
result in a valid recreated circuit.

qsci , but the qsci cannot reach the required step, due to the

specific connectivity. As seen in Figure 5, a possible mapping

is qr1 : (’2’,2) → (’2’,0) and qr3 : (’2’,1), where node (’2’,1)

corresponds to qubit q1 from subcircuit 2. At step 2, qr1 needs

to append a CZ gate with node (’2’,1), i.e. qubit qr3 . However,

at the same step, qr3 has to previously append a CZ gate

with node (’2’,0), which comes after node (’2’, 2), therefore,

creating a topological error where no qubit can append their

required gate. To prevent this and discard such mappings, the

algorithm checks if after an iteration round (all qr qubits have

been examined), no qubit has advanced its step. In that case,

the process for this mapping stops and the recreated circuit is

discarded. An overview of the circuit construction process is

shown in Algorithm 1.

D. Obfuscation with Dummy-Subcircuits Technique

As we will see in the evaluation section, there may be cases

where the recreated circuits are minimal and not adequate

to provide an efficient obfuscation level, when only default

circuit cutting is used. This can happen either due to the small

number of cut qubits or to the topological structure of the

circuit, which will cause many mappings to be discarded, as

previously mentioned. To further increase the desirable obfus-

cation level, we introduce dummy subcircuits, submitted with

the original ones, that induce further recreation complexity, as

more mappings between subcircuits are produced. Two factors

must be considered when adding dummy subcircuits; how will

these circuits look like and how many will be added?
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Algorithm 1: Recreation Algorithm

Input: List of quantum subcircuits.

Output: List of candidate quantum circuits

1 nc ← number of cuts

2 nr ← number of candidate circuits

3 nu ← qubits with solely upstream cuts

4 nd ← qubits with solely downstream cuts

5 nud ← qubits with up- and downstream cuts

6 combinations← combine subcircuits

7 mappings← mapping for each combination

// Qubits qri from the candidate circuit

are mapped to qubits qi from the given

subcircuits

8 instructions← {(sci, qsci) : (gate, qargs)}
// Total number of gates, steps (number

of gates) per node, and connectivity

between multi-qubit gates of each node

9 for mapping in mappings do

10 recreated← QuantumCircuit(nr)
11 steps← [0 for qb in range(nr)]

12 while total inst > 0 do

13 advanced steps← 0 for qr in nr do

14 step← steps[qr]
15 gate, qargs← node inst[qr, step]
16 if qargs > 1 then

17 conn list← connected qubits

18 if steps[qc] is step, ∀ qc in conn list

then

19 recreated.append(gate, qargs)
20 steps[qc]← steps[qc] + 1, ∀ qc
21 total inst← total inst− 1
22 advanced steps←

advanced steps + 1
23 end

24 recreated.append(gate, qargs)
25 steps[qr]← steps[qr] + 1
26 total inst← total inst− 1
27 advanced steps← advanced steps + 1
28 end

29 end

30 if advanced steps is 0 then

31 break and discard recreated

32 end

33 end

34 end

1) Structure of Dummy Subcircuits: Adding a random

subcircuit may result in subcircuits that have different gates,

gate distributions, etc., from the real subcircuits. As a straight-

forward solution with the lowest computation cost for the

user, we choose to copy existing subcircuits and submit them

multiple times. To avoid submitting the exact subcircuits, we

randomize the gates on the created dummy circuits, and the

added gates are chosen from the total gates in the original

TABLE I: Local computer and software tools used in the evaluation.

CPU Apple M1

RAM 8 GB

Python 3.8.18

Qiskit 0.45.1

subcircuits. Note that in the threat model, we assume the cloud

provider is not using information about subcircuit structure to

help in the recreation of the original circuit, thus, we assume

they will not eliminate the dummy subcircuits.

A more important factor in the selection of dummy sub-

circuits is to conserve the total number of upstream and

downstream cut qubits in the submitted circuits. The number

of total upstream cut qubits must always be equal to that of the

downstream cut qubits. Therefore, when introducing additional

dummy circuits, we should introduce an equal number of up-

stream and downstream cuts, so that a valid recreation exists.

To maximize the produced candidate circuits, we choose to

copy subcircuits with upstream and downstream cuts, therefore

each time adding an even number of dummy subcircuits.

This configuration leads to a significantly increased number

of candidate circuits and also higher demanded computation

time, as the combinations of the various subcircuit mappings

(including the dummy ones added after a copied subcircuit)

can be extremely high. For this reason, in the evaluation

section, we propose an estimation method used to decide

the number of added dummy circuits, based on the desired

level of protection, without needing to compute the actual

recreated circuits.

2) Number of Dummy Subcircuits: Regarding the number

of added subcircuits, there are arbitrary choices that one can

make, depending on the complexity they want to add. As long

as the total number of upstream cut qubits is equal to the

number of downstream ones, an arbitrarily high number of

dummy circuits can be used. The recreation process could

potentially be made computationally unfeasible if multiple

dummy circuits are added. Note that the user can distinguish

the dummy subcircuits from the real subcircuits, thus they can

easily ignore computation results from dummy subcircuits and

only use the results from the original ones to finish the circuit

cutting reconstruction on their machine.

V. EVALUATION SETUP

This section gives details of our evaluation setup, as well as

metrics used and the benchmarks upon which our techniques

were evaluated.

A. Execution Environment

To develop and execute the recreation algorithm we used

a commercial Macbook Air with a Python environment and

IBM’s Qiskit SDK. We plan to open-source the code developed

for this paper. The specifications are shown in Table I.

B. Circuit Cutting Software

We used CutQC software version from June 2022 to perform

the circuit cutting and generate the subcircuits. The configura-
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tions used for cutting a quantum circuit with size n are shown

in Table II.

TABLE II: CutQC configuration used in circuit cutting.

Max. subcircuit width n

Max. subcircuit cuts 10

Subcircuit size imbalance 2

Max. cuts 10

Desired subcircuit number 2, 3, 4, 5

C. Dummy Subcircuit Generation

We extended circuit cutting with our new techniques, es-

pecially dummy subcircuit generation. We developed simple

Python software to generate the dummy subcircuits. A CutQC-

produced subcircuit is chosen at random, is copied, its gates

are randomized and is appended as a dummy circuit, according

to the specifications mentioned in the previous section.

D. Benchmarks

To evaluate the complexity of the recreation process, i.e. the

effort by the attacker, we used the following circuit types:

1) Bernstein-Vazirani (BV). The Bernstein-Vazirani quan-

tum circuits efficiently uncover a hidden binary string

within a single query [9]. They showcase quantum

parallelism to achieve a quadratic speedup over classical

approaches and are a prominent example of quantum

supremacy over classical counterparts.

2) Supremacy. The supremacy quantum circuits have dense

probability output and were used by Google to demon-

strate quantum advantage [10]. Due to the structure of

these circuits (2-D with the two dimensions differing by

up to 2 qubits) not all qubit numbers are valid. Thus, for

the evaluation of all circuit types we use circuits of 4,

6, 8, or 12 qubits, to match the supremacy circuits’ size.

3) Quantum Fourier Transform (QFT). Quantum Fourier

Transform circuits are integral components in quantum

algorithms [11]. These circuits perform a quantum ver-

sion of the classical Fourier Transform and are crucial

in algorithms like Shor’s algorithm for integer factoriza-

tion. They showcase quantum advantage in parallelism,

and can efficiently solve problems related to periodic-

ity and superposition, offering significant speedup over

classical algorithms.

The above benchmark circuits, which were also used to

evaluate CutQC [7],nserve as a standard collection for gate-

based quantum computing platforms and promising near-

term applications.

E. Metrics – Number of Generated Recreations

For all aforementioned circuit types, the first step is to utilize

CutQC to generate a set of subcircuits for each. These subcir-

cuits are then used by our algorithm to calculate all possible

mappings and initiate the recreation process. The number of

produced results depends on the original circuit’s size and the

structure of each connected subcircuit, as mentioned in the

previous sections.

F. Metrics – Number of Estimated Recreations

When the algorithm starts recreating a quantum circuit for

a given produced mapping, the structure and dependencies of

the subcircuits could lead to a topological error, as showcased

in Figure 5. Therefore, the final number of recreated circuits

can be lower than the one calculated with Equation 3, as

this formula is an overestimation of the recreated circuits.

For this reason, we plot the number of estimated recreations,

i.e. the result of Equation 3 for a given set of subcircuits

along the number generated recreations that did not have

topological errors. Although Equation 3 can overestimate the

number of recreations, we can make predictions for the desired

obfuscation level, as shown in 8b, without having to compute

all the recreated circuits by using this formula.

G. Metrics – Output Probabilities of Candidate Circuits

The primary objective of circuit obfuscation is to generate

output probability distributions that significantly deviate from

the original, thereby preventing attackers from extracting use-

ful information. We use a custom Mean Absolute Percentage

Error (MAPE) metric to quantify the average percentage

difference between two quantum state distributions. We first

sort both the ground truth and the reconstruction distributions.

Then, we compute the MAPE based on the following equation:

MAPE ≡
1

2n

2n−1
∑

i=0

|P r
i − P

g
i |

P
g
i

(4)

where P g is the ground truth distribution, P r is the distribution

of a candidate circuit, and n is the number of qubits of

the benchmark.

VI. EVALUATION RESULTS

We begin the evaluation process by computing the number

of recreated circuits for the aforementioned circuit types and

varying sizes of the original circuits. As seen in Figure 6,

the different circuit types exhibit different behavior, which

depends on the subcircuit size. The two important character-

istics are the number of generated recreations and whether

that number follows the estimation by Equation 3. In the

following sections, we analyze the results from Figure 6 for

each circuit type.

A. Bernstein-Vazirani (BV)

Employing circuit cutting for BV circuits, using the CutQC

software, results in an odd number of subcircuits with an

even number of total cuts. For an original circuit with a

size of 4, 8, or 12 qubits, CutQC produces three subcircuits

with two total cuts. Due to this characteristic, the recreation

algorithm generates only a single recreated circuit, i.e. the

original one. When the original circuit has a size of 6 qubits,

5 subcircuits with a total of 4 cuts are produced, resulting in 6

recreations. In both cases, it is obvious that circuit-cutting does

not provide the required protection to the user, as a malicious

cloud provider could easily reconstruct the original circuit and

gain access to the algorithm submitted.

8



(a) (b) (c)

Fig. 6: Recreation results for different circuit types. (a) Bernstein-Vazirani circuits with sizes of 4 up to 12 qubits. The generated circuits are
minimal, due to the structure of the produced subcircuits, with one subcircuit having only upstream cuts, one having only downstream cuts
and one having both. The estimated recreations are calculated by using (3) and showcase that this type of circuit does not face topological
errors during the recreation algorithm. (b) Supremacy circuits with size of 4 up to 12 qubits. While the recreated circuits are minimal, as
only two subcircuits are generated, the estimated recreations disclose the topological errors produced during the recreation algorithm, as seen
in Figure 5. (c) Quantum Fourier Transform circuits with sizes of 4 up to 12 qubits. The subcircuits generated from circuit-cutting, include
many upstream and downstream cuts, thus, they induce multiple possible recreations. Similarly, the estimated recreation results, depict that
no topological errors exist during the circuit recreation.

The key to overcoming this problem is to utilize the dummy-

subcircuits technique. In Figure 8a, we examine the obfusca-

tion level of a BV circuit with 4 qubits, when adding dummy

subcircuits. For 6 added subcircuits, the generated recreations

have increased from a single result, when no dummy sub-

circuits are used, to 5,040 candidate circuits. Therefore, a

malicious attacker would have to examine a significantly

larger amount of circuits to figure out the correct algorithm

submitted by the user. As we keep increasing the number

of added dummy circuits, the recreation algorithm would

have to process a considerably greater amount of mappings

to produce the candidate circuits. Due to this limitation and

to calculate the required number of dummy circuits for the

desired obfuscation level, we can use Equation 3 to estimate

the number of recreated circuits with an arbitrary number of

added dummy circuits. As the BV circuits do not exhibit

topological errors during the recreation process, therefore

no generated mappings have to be discarded as shown in

Figure 6a, the nvalid number from Equation 3 would match

the real number of recreated circuits. We can thus estimate that

for 60 added dummy circuits, the number of candidate circuits

can reach up to 2278, providing an adequate obfuscation level

and making it almost impossible for a malicious attacker to

guess the user’s circuit.

B. Supremacy

Employing circuit cutting for Supremacy circuits results in

2 produced subcircuits with a varying number of total cuts;

2 cuts for sizes 4 and 8 and 3 cuts for sizes 8 and 12.

Therefore, for a supremacy circuit with 4 or 8 qubits, only

a single recreated circuit is produced, whereas for a circuit

with 6 or 12 qubits, 4 candidate circuits are generated after

default circuit cutting. We have already showcased in Figure 5

that this type of circuit encounters topological errors during

the recreation process, therefore Equation 3 overestimates the

produced recreated circuits, as seen in Figure 6b. When exe-

cuting random circuits that could generate topological errors,

this estimation cannot be employed as it would overestimate

the produced results. We leave the examination of such cases

for future work.

C. Quantum Fourier Transform (QFT)

Employing circuit cutting for QFT circuits results in 2

subcircuits with multiple cuts, that range from 3 cuts for 4

qubits, to 8 cuts for 12 qubits. Due to this large number of

cuts, the QFT circuits have the most generated recreations,

which reach up to 40,320 circuits for the case of 12 qubit size.

Similarly to BV type, these circuits do not exhibit topological

errors during the recreation algorithm, thus we could use

Equation!3 to estimate the provided obfuscation level for a

varying number of added dummy subcircuits.

D. Probability Distribution of Recreated Circuits

Figure 7 displays the sorted MAPE scores (Equation 4)

for 100 randomly sampled candidate circuits of a 16-qubit

Supremacy benchmark. Most of the candidate circuits register

MAPE scores exceeding 10, indicating that the recreated

amplitudes are more than 10× different from the original.

This substantial divergence in amplitudes, not just structural

differences, highlights the significant alterations in the quan-

tum states of the recreated circuits compared to the original.

This demonstrates substantial obfuscation effectiveness, high-

lighting their potential for robust protection against reverse

engineering from attackers.

VII. TIME OVERHEAD OF RECREATION ALGORITHM FOR

THE ATTACKER

In this section, we evaluate the execution overhead faced

by the attacker, i.e. the cloud provider. The two main time-

consuming processes are the generation of candidate circuits
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Fig. 7: Sorted MAPE scores for 100 randomly sampled

candidate circuits for a 16-qubit Supremacy benchmark circuit

without dummy subcircuits.

using the recreation algorithm and the reconstruction of the

subcircuit execution results, to retrieve the outcome for each

recreated circuit.

In Figure 8b, we compute the time (in seconds) required

to execute the recreation algorithm for a BV circuit with

4 qubits and added dummy subcircuits. While additional

dummy subcircuits can significantly increase the required time,

because a large number of circuits must be constructed as

shown in Figure 8a, the most computationally intensive part

is the probability generation. Using the execution results from

the submitted subcircuits, CutQC reconstructs the original

quantum circuit’s outcome using the appropriate metadata.

An attacker can utilize the same process to compute the

outcome for every recreated circuit, just by executing the given

subcircuits once and appropriately constructing the metadata,

without having to execute every candidate circuit. However,

even this process can be extremely time-consuming with large

numbers of recreated circuits, as seen in Figure 8c. While for

no added dummy subcircuits and a single candidate circuit,

this process requires around 8 seconds, when 6 dummy circuits

are added and 5,040 candidate circuits are produced, it requires

almost half a day. Therefore, the computation complexity for

the attacker can be significantly high.

VIII. RELATED WORK

To help protect from untrusted quantum computer cloud

providers or insider attackers, a number of researchers have

focused on developing delegated quantum computation, blind

quantum computation, and similar ideas [5], [12]–[24]. These

methods are designed to enable a client to conduct quantum

computations on a remote quantum computer while main-

taining the confidentiality of the user’s code. Majority of

blind quantum computation protocols rely on the existence of

quantum networking for communication between user’s trusted

quantum computer and the untrusted, remote quantum client

(a)

(b)

(c)

Fig. 8: Recreation results for BV circuits with 4 qubits, after
adding dummy subcircuits. (a) By adding an increasing number of
dummy subcircuits, more recreated circuits are produced. Due to
no topological errors in this circuit type, Equation 3 can be used
to calculate the total number of circuits that would be generated.
After adding 6 dummy subcircuits, the computational complexity
is increased significantly, so estimated results are used to showcase
the provided obfuscation levels. (b) Time overhead of the recreation
process for up to 6 dummy circuits. (c) Time overhead of CutQC’s
reconstruction process that generates the outcomes of the original
quantum circuit, by combining subcircuit results.

and the server. These approaches are not feasible in cases

where the user does not have a (trusted) quantum computer.

An alternative approach to blind quantum computation is the

use of some trusted hardware within the quantum computer to

make it infeasible for cloud provider to learn the computa-

tion being performed on the computer [25]. They proposed

to protect the computation by adding decoy control pulses
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into the circuits submitted to the cloud provider. Then, on

the (trusted) quantum computer hardware, the decoy pulses

are removed, i.e. attenuated, before they reach the quantum

computer’s qubits. While the approach is promising, it requires

modification to hardware of the quantum computers.

As an alternative to these approaches, our work presented

a new method to obfuscate the quantum circuits by lever-

aging quantum circuit cutting. It does not require user to

have trusted quantum computer, nor quantum networking, nor

non-colluding cloud providers, nor does it require hardware

changes to quantum computers. Our method can be deployed

today and can support arbitrarily high obfuscation level, i.e.

arbitrarily high number of candidate circuits that the cloud

provider would have to guess, based on the number of dummy

subcircuits that users submit along with the subcircuits gener-

ated by quantum circuit cutting software.

IX. CONCLUSION

This paper demonstrated for the first time how quan-

tum circuit cutting can help protect users against untrusted

providers of cloud-based quantum computers. To provide a

configurable obfuscation level, this work proposed a novel

dummy-subcircuits technique, which introduces dummy sub-

circuits with additional cut points. This technique results in

multiple generated candidate circuits, creates further confusion

for the cloud provider, and helps obfuscate the user’s original

circuits with limited cost. Additionally, it creates a crucial

execution overhead for the attacker, should he or she attempt to

recover the outcomes for each recreated candidate circuit. The

evaluation of the produced circuits showcased the significant

alterations in the quantum states compared to the original

quantum circuit, thus, achieving robust protection. Circuit-

cutting, combined with dummy-subcircuits, efficiently protects

against malicious attackers, by providing a configurable level

of obfuscation, and can be deployed using current quantum

computing infrastructure. As future work, we leave the analy-

sis of random quantum circuits, which could potentially exhibit

topological errors during the recreation process. In that case,

we need to properly estimate the achieved obfuscation level

when using circuit-cutting and additional dummy-subcircuits.
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