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Abstract—Emergence of fault-tolerant quantum computers
(FTQC) brings about promise of harnessing the power of
quantum computing at larger scale. At the same time, as quantum
computers are expected to process more sensitive information,
there is a need to understand the security issues in fault-tolerant
quantum computers, and develop defenses for attacks that may
compromise confidentiality or integrity of the data processed by
FTQC. While noisy intermediate-scale quantum (NISQ) com-
puters have already been studied from the security perspective,
understanding security issues with FTQC is still an open research
question. To address the missing research gap, this work presents
the first exploration of possible security vulnerabilities of FTQC.
The work presents analysis of possible threat models and outlines
potential vulnerabilities of FTQC. Understanding the landscape
of the threats can help lead to development of safer FTQC design
at both software and hardware levels.

Index Terms—Fault-Tolerant Quantum Computing, FTQC,
Security Vulnerabilities

I. INTRODUCTION

Fault-tolerant quantum computing (FTQC) is an approach

to quantum computation that ensures reliable operation even

in the presence of errors caused by noise, decoherence, and

imperfections in quantum hardware. While some quantum al-

gorithms may show benefits on the current Noisy Intermediate

Scale Quantum (NISQ) computers, many quantum computing

algorithms, such as Shor’s [19] or Grover’s [11] require use of

error-corrected quantum computers to produce efficient solu-

tions to problems at large scale. With the ability of FTQC to

execute powerful quantum algorithms such as Shor’s, Grover’s,

or others, there is a need to understand the security issues in

fault-tolerant quantum computers, and develop defenses for

attacks that may compromise confidentiality or integrity of

the data processed by FTQC.

In the realm of NISQ computers, researchers have already

demonstrated a variety of potential security attacks. For exam-

ple, by abusing crosstalk, researchers have shown it may be

possible to maliciously flip qubits [16] when two quantum cir-

cuits are sharing the same quantum computer. Or, researchers

have also shown that basic quantum computing gates, such as

the reset gate, leak information when the gate operation is not

perfect [12]. These and other prior work mainly abuse NISQ

computers where there is no error correction and the qubits

are vulnerable to various forms of disturbance.

With the advent of fault-tolerant quantum computing, many

of the security issues in NISQ may be avoided. For example,

basic attacks that introduce noise or errors into computation

may be protected through the error correction. Yet, as this work

proposes, there are new, unexplored vulnerabilities in fault-

tolerant quantum computing. In general, this work presents ex-

ploration of possible vulnerabilities in fault-tolerant quantum

computing to highlight the fact that although error correction

provides numerous benefits, it does not automatically protect

against all security threats, and new security defenses will

need to be developed and deployed on top of error correction

in FTQC.

The potential vulnerabilities are compounded by the fact

that FTQC (and NISQ computers) are expensive and only

practically available as remote quantum servers though var-

ious cloud-based services. With remote access, users have

no physical control of the machines or the cloud operators

who manage the remote quantum computers. This presents

the challenge of possible security attacks due to untrusted or

malicious cloud providers or other untrusted or malicious users

who are running their quantum programs on the shared cloud

infrastructure (through spatial or temporal sharing).

Already today, quantum computers are easily accessible

through cloud-based services such as Amazon Braket [1],

IBM Quantum [4], or Microsoft Azure [8]. These services are

open to anybody through pay-as-you-go cloud services. Many

companies and startups that do not have their own quantum

computers already can use these cloud-based quantum com-

puters to run their, often proprietary, quantum circuits. As a

recent example, JPMorgan Chase does not own a quantum

computer, but leverages cloud-based Quantinuum H-series to

develop algorithms for solving linear systems on quantum

hardware [20]. With more powerful, FTQC the utilization of

quantum computers will continue to raise, and the importance

of securing quantum circuits and programs that execute on the

quantum computers will continue to increase.

Given the emergence of proof-of-concept attacks and need

to secure quantum computing, especially cloud-based quantum

computing, a number of researchers have proposed some

defenses. The defenses have been exclusively in the realm

of NISQ computers. Researchers have developed a quantum

compute antivirus [7], [6], while others have proposed use of

obfuscation to protect quantum circuits executing on honest-

but-curious cloud-based quantum computers [18]. Whether

these defenses can be adapted to FTQC, or what FTQC

specific defenses are needed, is an open research question. This
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Fig. 1. Taxonomy of threat models for fault-tolerant quantum computing.

work focuses on exploration of vulnerabilities of fault-tolerant

quantum computing. The resulting insights can directly drive

future work on securing and improving FTQC.

II. BACKGROUND

This section provides very brief background on FTQC and

classical control infrastructure in FTQC.

A. Fault-Tolerant Quantum Computing

FTQC devices rely upon quantum error correction (QEC)

to improve the noise resilience of computation. There exist

many QEC codes; the surface code is among the best known

because it can be implemented with 2D planar connectiv-

ity. However, these codes also require specific schemes to

effect quantum logic. For example, the surface code can

only natively implement the Clifford gates, which are not

universal. To perform the ‘T’ gate needed for universality,

specific magic state infrastructure is needed. Furthermore, two-

qubit interactions on surface codes require ‘lattice surgery,’

deforming the code in a predictable pattern. The Clifford+T

logical instruction set has encouraged the creation of new

compilers and design of both QEC codes and compilers is

an active research area. Compiling to the underlying platform

requires mapping and routing logical qubits, scheduling their

interactions, and planning magic state production.

B. Classical Control Infrastructure

The classical control infrastructure for an FTQC system

must accomplish a range of tasks, from controlling physical

qubits to decoding error syndromes and orchestrating higher

level instructions [21]. These tasks require significant classical

infrastructure that can be many times the size of the quantum

chip and its refrigerating envelope when considering supercon-

ducting qubits. The control infrastructure can be abstracted

as a ‘quantum control processor’ plus associated software

and algorithms.

In particular, maintaining a logical qubit via syndrome

decoding is a computationally demanding task. Decoding is

known to be hard theoretically, with complexity class ei-

ther NP complete or #P depending on the precise decoding

problem [9]. Furthermore, decoding must be performed at

the cycle rate of physical hardware; for fast platforms (e.g.

superconducting qubits), this means that decoders must operate

within microsecond [13] latencies.

Proposed algorithms and architectures for QEC decoders

have explored a variety of ideas to improve performance.

To improve algorithms complexity, approximate decoding al-

gorithms can be used; some, for example, solve easy cases

and offload hard cases [5], [15]. To reduce latency, dedicated

decoding chips are placed either near or in the fridge. For

example, CryoCMOS chips can be placed within the fridge [3]

and FPGAs can be placed outside the fridge. However, these

solutions all have drawbacks: approximate algorithms are

still demanding computationally and specialized chips are

expensive to fabricate, especially on novel platforms like

CryoCMOS.
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Fig. 2. Classification of vulnerabilities of fault-tolerant quantum computing.

C. Compiling Circuits to FTQC Devices

Compilation of quantum algorithms is a nascent and active

area of research. Compilation involves multiple levels of ab-

straction, requiring program transformation from the algorith-

mic, logical, and physical levels. For example, programs may

first be described mathematically, then translated into logical

instructions, then optimized for physical qubit instructions.

There are many potential compiler optimizations which may

be employed. For example, compiling multi-controlled NOT

gates can be done with clean ancillas, dirty ancillas [22], or

in-place [2]. Each of these compilation schemes would affect

the physical operations actually performed. Furthermore, these

implementations must be mapped and routed on real devices,

incurring additional overheads and room for optimization.

D. Security of FTQC, Classical Control, and FTQC Compilers

This far, security aspects of FTQC, classical control, and

compilers have not been considered. As many aspects of

FTQC are being actively developed, now is the time to

incorporate security into the design. To help give guidance,

this paper presents taxonomy of threat models in the following

section, and classification of vulnerabilities of FTQC in the

subsequent section.

III. TAXONOMY OF THREAT MODELS

We first provide a taxonomy of threat models. Different

users may have different threats they are worried about,

what one user considers a vulnerability, another may not be

concerned about. Thus, it is important to have a taxonomy of

threat models, which then is used to evaluate what vulnerabil-

ities are a concern under each particular threat model.

Figure 1 shows a taxonomy of threat models for fault-

tolerant quantum computing. When deciding on a threat

model, a user (or cloud provider or manufacturer) should

decide who and what can be trusted, what are considered

attack vectors, and what are the considered attack realization.

A specific threat model is effectively a combination of answers

to each of these questions.

For example, a cloud provider may be worried about

untrusted users and using malicious software to perform

remote attacks. Or, a cloud user may be worried about an

untrusted cloud provider performing sensing on operation of

the quantum control processor through a physical attack. Or

a cloud provider may be worried about an untrusted hardware

manufacturer who has inserted a hardware Trojan through

modification of qubit design.

In the Figure 1 colored and dashed arrows highlight var-

ious attack vectors when a particular component is assumed

untrusted. For example, a quantum program could be directly

malicious (label “Malicious Software” in the taxonomy figure)

or an otherwise honest user could download a third-party

library that contains malicious code (label “Malicious 3rd

Party Library” in the taxonomy figure). Further, a quantum

compiler may be directly malicious (label “Malicious Soft-

ware” in the taxonomy figure), or the compiler developer can

download a third-party library that contains malicious code

(label “Malicious 3rd Party Library” in the taxonomy figure).

On the hardware side, an untrusted cloud provider could try

to modify the qubits and hardware they control (label “Qubit
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Fig. 3. Clustered heatmaps of large size transpiled QASMBench [10] benchmarks with RandomWalk and ShortestPath graph kernels.

Modification” in the taxonomy figure) or given their physical

access to the devices they could try to sense operation of

the qubits ((label “Sensing Qubit and Gate Operations” in the

taxonomy figure).

A. Choice of Threat Model(s)

The choice of threat model is a subjective choice. Some

threats may be more plausible, e.g. user downloading a mali-

cious third-party library. Other threats may be less plausible,

e.g. a cloud provider opening up a dilution refrigerator and

physically modifying the qubit hardware. Yet, on the other

hand, a malicious hardware manufacturer could easily modify

the hardware. The threat model taxonomy cannot answer the

question about which threat models a user (or cloud provider

or manufacturer) should consider, but it is a means of thinking

about what could be trusted (or untrusted) and what are

possible attack vectors and attack realizations.

IV. CLASSIFICATION OF VULNERABILITIES OF DIFFERENT

COMPONENTS

While noisy intermediate-scale quantum (NISQ) computers

have already been studied from the security perspective, under-

standing security issues with FTQC is still an open research

question. To address the missing research gap, this section

presents the first exploration of possible security vulnerabil-

ities of FTQC by developing a taxonomy of vulnerabilities

of FTQC.

Possible vulnerabilities are presented for each component

of a FTQC system. Whether the possible vulnerabilities are

a real security concern, depends on whether the component

is considered untrusted by the user (or cloud provider or

manufacturer). This in turn depends on the threat model that

is being considered. Section III discussed the possible threat

models through use of our taxonomy.

Figure 2 shows various vulnerabilities that could affect

FTQC systems. We focus on five components, the quantum

programs, FTQC compiler, error correction code definition,

quantum control processor, and the quantum-classical inter-

face. We separate the error correction code definition to

highlight the fact that otherwise correct and trusted control

processor could be configured to use wrong or incorrect or

weak error correction.

Considering quantum programs, with FTQC the possibility

to cause crosstalk attacks may be limited, as the users ex-

ecute atop logical qubits. However, if a user is able to get

access to control of physical qubits (through the ability to

disable error correction or specify custom error correction

algorithm that allows them to control physical qubits), then

users could generate attacks by having malicious control pules.

Considering the error correction code definition, if the provider

allows for custom error correction, or attackers find ways

to manipulate the error correction, then they can undermine

the system. Further, attackers could find flaws in the error

correction algorithms or implementations that then facilitate

attacks. Considering the FTQC compiler, it could change

the error correction, modify code, or even steal user’s code.

Users will be worried about code modification or stealing

(if compiler is hosted in the cloud), while cloud providers

will be worried about compiler properly implementing error

correction (if compiler is hosted by users locally before they

submit compile circuits to the cloud). Considering quantum

control processor, it is vulnerable to various side and fault

injection attacks. Targeting classical operations, attackers can

steal digital or analog data about qubit or gate operations being

executed. Quantum classical interface is the direct connection

between the control processor and the qubits. Transmission

lines could be monitored to learn qubit access times and
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Fig. 4. Sample qubit access patterns for common quantum subroutines. Within each graph, moving right is later in program execution, while each row is
a specific qubit. A qubit is white if it is interacting with another qubit or not. (a) is an adder circuit, (b) is a multiplier circuit, (c) is a Quantum Fourier
Transform (QFT) circuit, (d) is a Trotter circuit.

patterns, or faults could be injected into the transmission lines.

V. EXAMPLE ATTACKS

In this section, we present two preliminary results demon-

strating potential weaknesses in FTQC concerning program

identification. We focus on possible side channel leaks in

the quantum control processor. We simulate attacker’s access

to information about which qubits are interacting with each

other as different quantum circuits execute, i.e. we consider

the threat model of an untrusted cloud provider collecting

information about quantum gates and the qubits they involved.

We consider only two-qubit interactions among logical qubits

as a quantum program executes.

A. Clustering Connectivity Graphs

As the most basic approach, we generate connectivity

graphs, where each node represents a qubit, while the edge

weight represents how often each pair of qubits has interacted

during the execution of the circuit.

We generate graphs that represent a subset of QASM-

Bench [10] benchmarks. To identify whether the graphs have

structure, we take two steps. First, we compute the similarity

among the graphs, then, we cluster the provided graphs using

graph kernels. Graph kernels [14] are used to compare the

similarity of different graphs. A graph kernel g is defined over

the space of graphs G as follows:

g : G × G 7→ R (1)

For example, for graphs G1, G2, g(G1, G2) represents the

similarity of graphs G1, G2 under some metric g. We use

the Python library Grakel [17] and ShortestPath and Ran-

domWalk kernels.

Figure 3 shows the clustered heatmaps of the large size

transpiled QASMBench [10] benchmarks with RandomWalk

and ShortestPath graph kernels. More similar graphs are shown

in light color, and less similar graphs are shown in dark color.

On the diagonal we can see that by definition, each graph

is similar to itself and thus the diagonal is light colored.

As we can see, different benchmarks are similar to each

other, and groups of benchmarks get clustered together. Future

understanding of the reasons behind why the benchmarks are

similar and how that relates to the clusters can help understand

if there are possible information leaks from the connectivity

graphs that an attacker may gather. For example, if a new



algorithm is being executed, its similarity to a known circuit

could leak information about that new algorithm.

B. Qubit Access Pattern

As a second approach, we consider qubit access pattern.

We generate qubit access patterns by analyzing which qubits

would be active, i.e. interacting with another qubit, at each

time-step of circuit execution.

We analyze four quantum subroutines: quantum adder,

quantum product, QFT, and Trotter circuits. We observe that

access patterns of qubits can also reveal some insights about

program structure. In Figure 4, we show two-qubit (inter-

acting) gates in time. Note that different subroutines have

different access patterns; this may serve as a unique signature

for different subroutines. In particular, access patterns will

also be harder to obfuscate, as they reflect fundamental data

interactions that must occur for the program to succeed.

VI. CONCLUSION

In this work, we analyzed the possible threat models and

potential vulnerabilities of the fault-tolerant quantum com-

puters. We presented a taxonomy of different threat models

and classification of vulnerabilities in FTQC. In addition,

two example attack scenarios were analyzed from among the

possible threat models and vulnerabilities. The main focus was

to identify the structure of the executed quantum program.

Based on the taxonomy of threat models and the classification

of vulnerabilities, future work can study each threat model

and each vulnerability to build a comprehensive understanding

of threats to FTQC, and eventually propose software or

hardware defenses.
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and Josu Etxezarreta Martinez. Decoding algorithms for surface codes.
arXiv preprint arXiv:2307.14989, 2023.

[10] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. Qasm-
bench: A low-level qasm benchmark suite for nisq evaluation and
simulation, 2022.

[11] Aamir Mandviwalla, Keita Ohshiro, and Bo Ji. Implementing grover’s
algorithm on the ibm quantum computers. In 2018 IEEE international

conference on big data (big data), pages 2531–2537. IEEE, 2018.

[12] Allen Mi, Shuwen Deng, and Jakub Szefer. Securing reset operations
in nisq quantum computers. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, pages 2279–
2293, 2022.

[13] Hartmut Neven. Meet willow, our state-of-the-art quantum chip, Dec
2024.

[14] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph
kernels: A survey. Journal of Artificial Intelligence Research, 72:943–
1027, 2021.

[15] Gokul Subramanian Ravi, Jonathan M Baker, Arash Fayyazi,
Sophia Fuhui Lin, Ali Javadi-Abhari, Massoud Pedram, and Frederic T
Chong. Better than worst-case decoding for quantum error correction. In
Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2,
pages 88–102, 2023.

[16] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young,
Erik Nielsen, and Robin Blume-Kohout. Detecting crosstalk errors in
quantum information processors. Quantum, 4:321, 2020.

[17] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Gi-
atsidis, Konstantinos Skianis, and Michalis Vazirgiannis. Grakel: A
graph kernel library in python. Journal of Machine Learning Research,
21(54):1–5, 2020.

[18] Theodoros Trochatos, Chuanqi Xu, Sanjay Deshpande, Yao Lu, Yong-
shan Ding, and Jakub Szefer. A quantum computer trusted execution
environment. IEEE Computer Architecture Letters, 22(2):177–180,
2023.

[19] CH Ugwuishiwu, UE Orji, CI Ugwu, and CN Asogwa. An overview of
quantum cryptography and shor’s algorithm. Int. J. Adv. Trends Comput.

Sci. Eng, 9(5), 2020.

[20] Romina Yalovetzky, Pierre Minssen, Dylan Herman, and Marco Pistoia.
Solving linear systems on quantum hardware with hybrid hhl++. Scien-

tific Reports, 14(1):20610, 2024.

[21] Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong,
Guoyang Chen, Dawei Ding, Haishan Feng, Yihuai Gao, Xiaotong Ni,
et al. A classical architecture for digital quantum computers. ACM

Transactions on Quantum Computing, 5(1):1–24, 2023.

[22] Ben Zindorf and Sougato Bose. Efficient implementation of multi-
controlled quantum gates. arXiv preprint arXiv:2404.02279, 2024.


	Introduction
	Background
	Fault-Tolerant Quantum Computing
	Classical Control Infrastructure
	Compiling Circuits to FTQC Devices
	Security of FTQC, Classical Control, and FTQC Compilers

	Taxonomy of Threat Models
	Choice of Threat Model(s)

	Classification of Vulnerabilities of Different Components
	Example Attacks
	Clustering Connectivity Graphs
	Qubit Access Pattern

	Conclusion
	Acknowledgments
	References

