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Abstract—Quantum computing resources are now becoming
easily accessible from various cloud providers. Although still
in the Noisy Intermediate Scale Quantum regime, quantum
computers hold promise to be able to execute novel algorithms
and create invaluable data. However, just as with any other
type of computing resource, they may be vulnerable to security
attacks and should have defenses built into their design. This
paper explores a particular threat of untrusted cloud providers,
and how to protect user’s quantum programs and data from
the untrusted cloud provider. By leveraging trusted hardware in
the quantum computer, a new obfuscation-based protection is
developed based on switching of control pulses between different
drive and control channels of the quantum computer. This work
demonstrates that simple hardware modifications can enable
dynamic, run-time pulse switching, which makes it extremely
difficult for the cloud provider to decode what actual circuit
is executed on the quantum computer. This work presents a
basic architecture that employs pulse switching, and an extended
architecture that includes use of dummy qubits for increased
protection. The overhead of the proposed changes, as well
as attack complexity for different types of user circuits and
obfuscation levels is evaluated in this work.

I. INTRODUCTION

Quantum computing is one of the emerging technologies
which holds the promise to solve complex scientific, optimiza-
tions, and machine learning tasks [5]. With the progress in
quantum computing technology, multiple cloud providers have
opened up access to small and medium-scale quantum com-
puters to the customers as Infrastructure as a Service (IaaS).
For example, cloud-based services such as IBM Quantum,
Amazon Braket, and Azure Quantum already provide access
to the NISQ (Noisy Intermediate Scale Quantum) quantum
computers remotely for users.

Since today the quantum computer cloud provider can see
users’ circuits and all the control pulses, which define the
gates and operations of the circuit and as a result, the cloud
provider has full knowledge of what the user is executing. This
can endanger the privacy or intellectual property of the user’s
circuits and the data they contain. Therefore, there is a need
to protect users’ circuits from untrusted or malicious cloud
providers. To address this need, we propose CASQUE, which
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is a new hardware design to secure superconducting quantum
computers by leveraging trsuted hardware.

In the CASQUE design, we propose that trusted hardware
can be incorporated into the quantum computer to help protect
the user’s circuits and data. Similar to how the CPU package
in classical trusted execution environments forms the trust
boundary, we select the dilution refrigerator as the natural trust
boundary for the superconducting quantum computer. Opening
or manipulating the refrigerator will cause temperature and
pressure changes that destroy qubit states, and can be easily
sensed to trigger protection of our trusted classical hardware
in the refrigerator. Our trusted hardware consists of minimal
hardware changes to the quantum computer hardware and
leverages off-the-shelf components.

The main modification to a quantum computer hardware
that CASQUE introduces is a Beneš network of RF switches
to allow for switching of control pulses between different
qubit and coupling drive and control channels. The input
circuits are modified by our CASQUE software to randomly
switch control pulses between different channels, and only
inside the refrigerator, they are switched back to the correct
channels based on encrypted information received from the
user. The untrusted cloud provider cannot access the switching
information and does not know which pulses actually execute
on which qubits. In the extended CASQUE+ design, we also
introduce means of adding dummy qubits and dummy gates for
further increasing attack complexity. To support the switching
of control pulses, our modifications also account for adjusting
the frequency and amplitudes of the control pulses.

The hardware modifications are relatively minor in the
context of the complexity of the rest of the quantum computer
hardware. We are inspired to propose addition of the security
features and hardware based on classical security hardware,
such as Intel SGX [9], [43]. Cloud customers are today
willing to pay extra for additional protections in hardware,
and hardware providers have the motivation to add security
features in hardware to help protect the code. We assume
quantum computer cloud providers and hardware vendors are
motivated to provide such new hardware security features –
just as they provide such features for classical hardware today.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2312754
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2245344
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Fig. 1: System overview of today’s cloud-based quantum computers, overlaid with the components of CASQUE, distinguishing trusted
(green) and untrusted (red) elements. Trust is assigned to CASQUE operations and the quantum computer (refrigerator), while transmission
links between users, cloud providers, and classical computers/controllers are considered untrusted.

A. Contributions

The contributions of this work are as follows:
• Design of CASQUE hardware architecture for supercon-

ducting qubit quantum computers which protects user’s
circuits and data with trusted hardware

• Development of novel qubit-switching as an obfuscation
mechanism for hiding control pulses from untrusted cloud
providers and malicious attackers

• Evaluation of hardware (FPGA) implementation of the
CASQUE logic

• Evaluation of security attack complexity
• Design of CASQUE+ with novel use of dummy qubits

and dummy gates for further increase of attack complex-
ity with low additional cost

II. BACKGROUND AND MOTIVATION

A. Control Pulses

Microwave pulses are typically used to control supercon-
ducting qubits. To operate each native gate on a quantum
computer, the necessary control pulses for each gate must be
created and supplied to the quantum computer. The pulses for
all native gates on IBM Quantum are published as part of the
specification of the quantum computers and their parameters
are routinely updated through calibrations to maintain fidelity
over time. A pulse is usually defined by the envelope, fre-
quency, and phase. As an instance of the superconducting qubit
control, the envelope specifies the shape of the signal which
is generated by the arbitrary waveform generator (AWG), a
common lab instrument, and the frequency and phase specify a
period signal that will be used to modulate the envelope signal.

B. Pulse-Level Circuit Description

To fully describe a quantum program, all pulses for all the
channels need to be defined, including when the pulses should
start relative to the starting point of the circuit, to what qubits
the pulses will be applied, and other physical operations like
frequency or phase change, need to be specified. This informa-
tion, referred to as pulse information, along with other useful
information forms a so-called pulse-level circuit description.
Pulse-level circuits and pulse information are important and
valuable to be provided to users, because they enable users to
verify quantum circuits and check execution details.

C. From Gate-Level to Pulse-Level Circuits

In order to actually generate pulse-level circuits, a number
of steps are needed. The first step in developing a quantum
circuit or pro-gram is to build a logic-level circuit with a
quantum development kit, such as Qiskit [10], Amazon Braket
SDK [20], Q# [38] and Cirq [36]. Analogous to classical
computing, logic-level quantum circuits usually contain high-
level descriptions. A series of operations need to be done
to transform them into low-level and hardware-specific in-
structions, which is similar to the preprocessing, compilation
and assembly process for classical computing programs. The
second step is then to transpile the circuits, which is the term
used by Qiskit to represent the operations and transformations
that are like preprocessing and compilation. The process of
transpiling involves many steps, including decomposing non-
native quantum gates into groups of native gates, grouping
and removing quantum gates to reduce the number of gates,
mapping the logic qubits in the original circuits to the physical
qubits on the specified quantum computers, routing the circuit
under limited topologies, potentially optimizing circuits to
lower error, and so on. The third step is termed schedule
in Qiskit, which transforms gate-level circuits into pulse-
level circuits. Scheduling further maps quantum circuits to
microwave pulses, which are the ultimate physical operations
used to regulate and control qubits. Based on previously
calibrated data for each basis gate on each qubit or qubit pair,
scheduling creates microwave pulse sequences that are ready
to be carried out for quantum programs. The end result is
a circuit composed only of control pulses representing basis
gates that can be executed on the target quantum computer.

D. Prior Work

1) Blind Quantum Computing (BQC): BQC is a method
designed to enable a client to conduct quantum computations
on a distant server while maintaining the confidentiality of the
computation’s content. The primary goal of BQC is to uphold
the privacy of quantum computations, ensuring that, despite
the server executing the computation, it remains unaware of
its nature or purpose. Nevertheless, the majority of BQC
protocols currently in use assume that the client possesses
a basic quantum device and relies on the existence of a
quantum network for communication between the client and
the server [6], [8], [12], [13], [24], [32]. Recent research has



put forth BQC protocols that alleviate the requirement for
clients to host a quantum device on their premises [12], [17],
[18], [21], [27], [40]. However, these protocols introduce a
novel approach by depending on the existence of multiple
quantum servers. Notably, these protocols operate on the
assumption that these servers do not engage in communication
with each other, necessitating a level of trust in servers that
would otherwise be considered untrusted.

2) Quantum Homomorphic Encryption (QHE): Homomor-
phic encryption is a cryptographic technique enabling compu-
tations to occur on encrypted data, resulting in an encrypted
output that, upon decryption, corresponds to the outcome of
operations executed on the plaintext [4], [15], [25], [41], [44].
In contrast to the interactive computation inherent in BQC,
homomorphic encryption provides a distinct approach. How-
ever, the realization of fully-secure Quantum Homomorphic
Encryption (QHE), as indicated by the “no-go theorem,” intro-
duces exponential computational overhead. This impracticality
arises, especially in the near term, as noisy quantum devices
struggle to manage the substantial noise accumulation asso-
ciated with such computations. Furthermore, the prevailing
challenge lies in the fact that most homomorphic encryption
schemes are specifically designed for classical binary data.
This poses a significant hurdle when attempting to adapt these
schemes to the intricate landscape of quantum information,
which is characterized by principles such as superposition and
entanglement. The intricacies of quantum information make
the incorporation of homomorphic encryption into quantum
contexts demanding.

E. Goal of this Paper

Previous techniques aim to protect arbitrary quantum pro-
grams, necessitating a classical client to be augmented with
quantum capabilities and quantum networking (BQC), or
incurring exponential computational overhead (QHE). For the
aforementioned reasons, these techniques are rendered imprac-
tical. In this paper, our goal is to secure the quantum circuits
while they are running on an untrusted cloud provider’s end.
This work, aims to timely address an important problem due to
the emerging of quantum computers by introducing a number
of software and hardware steps for switching of control pulses
between different drive and control channels with minimal
hardware modifications. In this way, the cloud provider is
unable to retrieve information of what actual circuit is executed
on the quantum computer.

III. THREAT MODEL

A. Entities in the Threat Model

In our threat model, we consider three entities: users,
cloud provider and quantum computer manufacturer. Users
may have sensitive data and computation that they want to
run on a quantum computer. Cloud provider manages the
quantum computers. Quantum computer manufacturer is the
entity who makes the quantum computers. Despite sharing
names, such as IBM, we treat cloud providers and quantum

computer manufacturers as distinct entities, separating run-
time security threats (from the cloud provider) from supply
chain and manufacturing security concerns (from the quantum
computer manufacturer). Numerous examples, like Amazon
Braket or Microsoft Azure Quantum, illustrate this separation.
Importantly, any hardware modifications by the cloud provider
are viewed as analogous to an untrusted manufacturer, a threat
model currently outside our scope but a potential focus for
future research.

B. Honest-but-Curious Cloud Provider

Our work considers the threat model of an honest-but-
curious cloud provider. The honest-but-curious cloud provider
assumption encompasses different attacks, ranging from the
cloud provider spying on users for intellectual property to po-
tential malicious insider actions. Our threat model treats these
scenarios as isomorphic, grouping them under the honest-but-
curious cloud provider category. In this model, cloud providers
are untrusted and capable of spying on quantum computer
operations without modification. The assumption of untrusted
cloud providers extends to the possibility of collusion and
our work operates independently of relying on non-colluding
cloud providers.

C. Threat Model Details

Our research is dedicated to safeguarding users’ quan-
tum circuits from untrusted cloud-based quantum computing
providers, focusing on defense against passive attacks like
eavesdropping and side channels. Active attack protection,
involving digital or analog data and signal modification, is
considered separately. In our system architecture, shown in
Figure 1, trusted and untrusted components overlay the cloud-
based quantum computer.

Assumptions include a trusted user and compiler generating
transpiled circuits implementing our obfuscation technique for
execution by the cloud provider. Correct information about
the quantum computers is assumed, allowing proper circuit
transpilation. The user verifies the public encryption key
for the new CASQUE hardware from a trusted authority.
Unencrypted, transpiled circuits are accessible to the cloud
provider for scheduling and execution, except for the encrypted
CASQUE pulse protection map (PPM), decrypted only by our
trusted hardware in the quantum computer.

The untrusted cloud provider is restricted from manipulat-
ing circuits or control pulses, but can observe information.
Classical data, including the encrypted pulse protection map,
is safeguarded with quantum-safe cryptography. Trusted hard-
ware within the quantum computer cannot be manipulated
without detection. For superconducting qubit machines, the
dilution refrigerator serves as the trust boundary, with any
intrusion causing detectable disturbances, ensuring the cloud
provider cannot access it without destroying the quantum
computation. All hardware within the dilution refrigerator is
assumed correct, verified and bug-free.
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Fig. 2: Overview of the software steps for the update of user’s circuits for CASQUE protection.

IV. CASQUE MAIN FEATURES

Our proposed architecture addresses protection against an
untrusted quantum computer cloud provider conducting pas-
sive attacks. By obfuscating and randomizing control pulses,
we aim to confuse the provider about executed quantum gates
and qubit assignments. This entails user-side software mod-
ifications involving random switching of transpiled program
control pulses and the generation of control information for
reassignment. Hardware alterations include incorporating RF
switches inside the quantum computer’s dilution refrigerator,
creating a network to switch incoming signals among qubits
or couplings. Notably, these modifications within the dilution
refrigerator require no additional signal generators, minimizing
power consumption within cooling constraints.

A. Pulse Switching
The key idea is pulse switching. Today, a cloud provider can

directly see which pulses execute on which qubit. However, if
new hardware is added to allow to switch any control pulse
to any channel, then for each time period there are

(n
k

)
, i.e. n

choose k, possibilities that k pulses can execute on n qubits;
a more detailed evaluation of the complexity is presented in
Section VI-B. Within limitations discussed later, after a circuit
is transpiled, the control pulses can be re-arranged in

(n
k

)
ways

in each time period and the re-arrangement information can be
saved so that the pulses can be switched back during execution.
The re-arrangement in software is a simple modification of
digital data representing the circuit. In the hardware, the re-
arrangement can be achieved by use of a Beneš Networks.

1) Single-Qubit Gates: Single qubit gates such as X and
SX gates can be switched between any qubit channel. The
amplitude of the pulses is different for different qubits, thus
if there is any switching, the amplitude has to be adjusted.
To simplify the CASQUE design, we assume all single qubit
pulses on all channels will be initially sent at maximum
amplitude, and then the trusted hardware attenuates them
according to the target qubit. Since each incoming pulse
regardless of the channel will have the same initial amplitude,
the attenuation hardware does not need to know the initial
amplitude or the channel, only the target channel. More details
are presented in the Section IV-F.

2) Two-Qubit Gates: Two qubit gates such as CNOT gate
cannot be switched between channels, at least in current IBM
Quantum computer designs. The reason is that for different
qubits and couplings, the exact pulses, not just their ampli-
tudes, are different for different couplings. In base CASQUE,

we assume that CNOT gates will not be switched. However, as
an extension, we present the CASQUE+ design in Section VII.
In CASQUE+ we discuss how to increase attack complexity
by adding dummy qubits to the user’s programs (as long as
the quantum computer backend has sufficient physical qubits
to accommodate the original qubits and the dummy qubits).
Dummy qubits increase the number of possible locations for
switching pulses, increasing n in the

(n
k

)
number of possible

combinations. We further leverage the dummy qubits to enable
the addition (and elimination) of dummy single-qubit gates, as
well as two-qubit gates, such as CNOT gates. The dummy gates
can be switched to the dummy qubits, effectively removing
them – while the cloud provider does not know this is
happening since they can only see the input circuit which
includes the actual and dummy qubits and actual and dummy
gates in the transpiled circuit specification.

B. Pulse Protection Map (PPM)

We propose to save the re-arrangement information in a new
data structure called Pulse Protection Map (PPM). The PPM
can be viewed as a list containing switching information for
each time period. The transpiled circuit can be easily modified
to quantize the time into fixed time periods. For example,
single-qubit gates on IBM Quantum today execute in 160dt
time, while two-qubit gates have variable timing, but can be
easily padded so that each two-qubit gate takes a duration
that is a fixed multiple of 160dt. As a result, the PPM can
be viewed as a list of control bits specifying the switching of
pulses at each time period. The PPM needs to be encrypted so
that the cloud provider does not access it. Inside the trusted
hardware, the PPM can be decrypted. The decrypted control
bits can be used directly to control the Beneš Network, and
no real-time computation is needed – simply the control bits
from PPM can be sent to the RF switches.

C. Attenuation and Phase Map (APM)

While control pulses can be easily switched between dif-
ferent channels, the same control pulse on different channels
is slightly different. For example, the control pulse specifying
X gate executing on qubit 0 may have a different amplitude
than the control pulse specifying X gate executing on qubit 1.
The phase of the pulses may also have to be adjusted. Further,
since we want to enable switching any pulse to any channel,
the input pulse should have the maximum amplitude of all the
channels. Thus, in the transpiled circuit, all the control pulses
are at maximum amplitude. This means, regardless of the



circuit, the input pulses going to the quantum computer will be
at maximum amplitude, and the attenuation amount does not
depend on the circuit. The attenuation amount and any phase
change information can be stored in the Attenuation and Phase
Map (APM). This is public information, since the properties
of the quantum computer, such as shapes and amplitudes of
control pulses, are known. The APM can be stored on trusted
hardware without any protection. The APM is used by our
trusted CASQUE logic for amplitude and phase controller
(APC) which we introduce into the dilution refrigerator.

D. Measurement Obfuscation

After all the pulses are switched and the circuit finishes
execution, there is a need to protect the measurements. To
obfuscate the measurement results, the best approach is to
randomly flip qubits before measurement by using X gates
at the end of the circuit. However, gates cannot be simply
“added” to the circuit in the dilution refrigerator. As an
alternative, we assume the user transpiles his or her circuit
with a layer of X gates at the end of the circuit, on half of
the qubits used by the circuit qubits. During execution of the
circuit, each X gate will be randomly switched to a different
channel. Half of the qubits will not have X gate applied and
their output is not flipped, while the other half will have the
X gate applied and the output will be flipped. Assuming there
are n qubits used, then there are

( n
(n/2)

)
possibilities for which

qubits are flipped and which are not.
The switching of the final gates can be further determined

at run-time, so for each shot different qubits have their output
flipped. To support this, TRNG can be used to generate
randomness used to determine which qubits to flip. This
information about which X gates actually, i.e. which qubits
were flipped, needs to be encrypted and sent back to the user
so he or she can recover the correct outputs. We note that, as a
side benefit, the addition of X before measurements may also
help to reduce measurement errors [45].

E. Software Overview

To realize the CASQUE architecture, both software and
hardware modifications are needed. On the user’s software
end, there are a number of modifications that are required
by CASQUE to be made to the user’s circuits. First, the user
needs to transpile their circuit for the target quantum computer.
Then, subsequent steps required by CASQUE are listed below
and shown schematically in Figure 2.

1) Pad each CNOT gate with delays such that all CNOT gates
with their associated padding take the same amount of
time, the duration including padding should be a fixed
multiple of single-qubit gate duration

2) Add padding between other gates if necessary to “line
up” all the gates so that each gate starts at a time that is
a multiple of single-qubit gate duration

3) Increase the amplitude of each control pulse to the
maximum amplitude needed by any channel

4) For each time period, randomly switch the pulses between
channels and add a layer of gates for flipping the output

5) Save the switching information in the pulse protection
map (PPM)

6) Encrypt PPM with the cryptographic key associated with
the trusted CASQUE hardware inside the target

The transpiled circuit (with all the modifications and with
pulses switched between channels) is sent to the cloud
provider, along with the encrypted PPM.

F. Hardware Overview

On the hardware end, the pulses need to be switched to the
correct channels, and possibly have their amplitude or phase
adjusted. We assume the control pulses are correctly generated
by the cloud provider, based on the user’s transpiled circuit that
they received. The untrusted cloud provider who we assume
can passively try to spy on the information should not learn
details of the circuit since they do not know how the pulses
are switched and on which qubits they actually execute. The
encrypted PPM cannot be read by the cloud provider who
does not have the decryption keys. However, the encrypted
PPM is sent to the hardware before the circuit executes so
that the trusted CASQUE Logic hardware can decrypt the PPM
and send the control bits to the switches and amplitude and
phase control. Compared to an unmodified quantum computer,
a number of operations are performed on the control pulses
which are input to the dilution refrigerator.

1) For each time period, based on the control bits from the
PPM, the incoming pulses need to be switched to the
correct channels; at each time period, the control bits are
loaded into the Beneš Network to re-configure the routing
of the incoming signals

2) After the pulses pass the Beneš Network, they pass
through amplitude and phase control; the APM specifies
the attenuation and any phase shifting needed

3) Finally, the control pulses are now sent to the mixers so
that the incoming control signals can be mixed with the
carrier signal at the frequency matching the channel

4) For the output protection, at runtime, TRNG generates
random bits used to determine how the final X gates will
be switched, this information is also encrypted and sent
back to the user

The details of the hardware design, as well as the reasons
for including the mixers inside the dilution refrigerator (while
keeping the waveform generators outside), are discussed next.

V. DESIGN OF CASQUE HARDWARE

Switching control pulses requires more than just redirecting
the control signals to different qubits. We need to consider
other features of the control signals, such as the frequency or
amplitude of the signals.

A. Pulse Switching with Beneš Network

Swapping of the control pulses between qubits and cou-
plings can be realized by a Beneš network. A Beneš network
can be used to switch signals between N inputs and N outputs,
where any rearrangement of the inputs can be achieved without
blocking. Beneš network of N inputs has 2 × log2(N)− 1
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Fig. 3: Schematic of a typical superconducting quantum computer
showing arbitrary waveform generators (AWGs) with local oscillators
(LOs) and mixers used to mix the I,Q pulses onto the target qubit’s
or coupling’s frequency.

stages, each containing N/2 two-by-two crossbar switches,
and use a total of N × log2(N)− N/2 two-by-two crossbar
switches. For specifying switching, rather than specify for
each qubit or coupling channel its target channel, we can
instead directly provide control bits for each switch in the
Beneš network at each time period. Recall that all gates in
transpiled circuit are padded to that they each start at a time
that is multiple of single-qubit duration. In effect, the circuits
are quantized into fixed time periods. In each time period,
N × log2(N)−N/2 bits are needed (i.e. one bit per switch to
determine if the switch should exchange its inputs, or let them
pass unchanged).

The Beneš network’s switches can be realized with standard
RF switches. For example, the CMD272P3 [39] is a low loss
broadband positive control double-pole, double-throw (DPDT)
transfer switch. The CMD272P3 covers DC to 10GHz and
offers a low insertion loss of 1.6dB and high isolation of 43dB
at 5GHz, which is the target frequency for many superconduct-
ing qubit quantum computers. The CMD272P3 operates using
complementary control voltage logic lines of 0/+5V that can
be easily generated by the control logic by converting typical
single-ended outputs to differential pair outputs.

B. Frequency Adjustment

In a superconducting qubit quantum computer, each qubit
has a target frequency. Pulses generated for one qubit will not
work on another if the frequency is incorrect. Figure 3 shows
a schematic of a typical superconducting quantum computer
showing arbitrary waveform generators (AWGs) with local
oscillators (LOs) and mixers used to mix the I,Q pulses onto
the target qubit’s or coupling’s frequency. The AWGs, LOs,
and mixers are located outside the dilution refrigerator.

In CASQUE, the Beneš network can switch pulses, but can-
not adjust the frequency. Further, we do not want to introduce
any high-power equipment, such as signal generators, into the
dilution refrigerator. A solution we propose for CASQUE is
to move the mixers into the dilution refrigerator. The I and Q
pulses are at the same frequency for all qubits, it is only the
frequency of the LO that changes for each qubit. Thus, the
I and Q pulses can be sent through the switching network to
switch the gates. Once the pulses are switched, they can be
mixed with the LO signal.

C. Amplitude and Phase Adjustment

One of the main differences between the control pulses,
besides the frequency, is the amplitude of the pulse. As
discussed before, in CASQUE all pulses are sent at the highest
amplitude, and then attenuated. The amplitude adjustment can
be achieved with a voltage-controlled attenuator, for example,
F2258NLGK8 from Renesas [35]. The example attenuator
works in range up to 6GHz, with 1.4dB insertion loss and
the control voltage can be from 0V to 3.6V. To generate the
attenuation control voltage from digital information, a digital-
to-analog converter is needed. Assuming 10 bits of resolution
for the digital-to-analog, we can control the amplitude with
resolution of over 0.001%. Detailed analysis of the type of
the needed attenuation levels, and any residual impact of the
attenuation on the control signals, is left for future work.

The phase of the control pulses also affects their operation.
The phase information is stored in I and Q signals. If needed,
the phase may have to be modified before the I and Q
signals reach the mixers. Phase adjustment can be achieved
with a phase shifter, for example, HMC649A from Analog
Devices [3]. The example phase shifter works in 3GHz to
6GHz frequency range, with 8dB insertion loss, and has a
resolution of 6 bits, corresponding to phase adjust resolution
of 5.625 degrees.

D. Combined Hardware Modifications

Figure 4a shows the combined modifications to the quantum
computer hardware that CASQUE introduces. The additions
inside the dilution refrigerator include the CASQUE logic,
switching network, APC and mixers. These are the trusted
components. Further, the CASQUE logic is made of one or
more decryption tiles and engines discussed later to support
various sizes of switching networks (and the number of control
bits they require). The only modification to the untrusted
hardware outside the dilution refrigerator is the removal of
the mixers, which are now moved inside the fridge.

E. PPM and APM Data Size and Bandwidth

The Beneš network requires N × log2(N)− N/2 control
bits for each time period to allow for arbitrary switching of
N channels. Further, 10×N control bits are needed for the
amplitude control on N channels, and 6×N control bits may
be needed for phase adjustment.

The control bits for Beneš network are stored in PPM, and at
each time period The Beneš network requires N × log2(N)−
N/2 bits need to be provided from the PPM to switch the
switches. Meanwhile, control data related to amplitude and
phase is stored in the APM. These control bits from APM
only need to be provided before the circuit starts to execute.
At each time period, for each channel, it is only needed to
specify the type of gate, so the appropriate APM data can be
used to adjust the amplitudes, for example. In IBM Quantum
there are X, SX, and CX basis gates that use real control
pulses, thus 2×N = log2(3)×N control bits are needed for
each time period, in addition to the switching bits. The time
period corresponding to the duration of single-qubit gates is



AWG

LO

AWG

LO

…

…

… ……

Dilution Refrigerator

…

Channel 1

Channel n

…

…

APC
Benes Network

…

… …

CASQUE Logic

Mixer

Encrypted PPM and 
Control Signals

Qubits

(a)

4x4 Benes Network

(b)

Fig. 4: (a) Combined hardware modifications for support of CASQUE. The additions inside the dilution refrigerator include the CASQUE
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today 160dt in IBM quantum computers, which is equivalent
to 35.5ns. This corresponds to a frequency of 28.5MHz and
which the switching network control bits need to be provided.

1) Kookaburra Example: As an example, we can consider
1,386-qubit Kookaburra quantum processing unit, which ac-
cording to IBM roadmap [16] should be available in a few
years. For 1,386-qubit Kookaburra, we have 1,386 qubit drive
channels, and a similar number of control channels. Because
Beneš network requires a power-of-two number of inputs, we
can use the next closest power of two, which is N = 2,048 for
a number of inputs for qubit channel switching.

With N = 2,048, the number of control bits needed at each
time period is 21,504 for determining swapping qubits. The
size of PPM for Kookaburra would then be on the order of
21,504×D, where D is the depth of the transpiled circuit.
Regardless of the depth of the transpiled circuit, at each time
period, Kookaburra would need 21,504 control bits sent to the
switching network plus 2,772 bits for specifying gate type (for
amplitude and phase adjustment). At 28.5MHz, this is approx-
imately 75GB/s bandwidth that is needed for communication
between the CASQUE logic and the switching network.

F. Security-Performance Tradeoff with Tiled Switching Net-
work Design

According to recent IBM roadmaps, large quantum com-
puter systems will be built from smaller quantum computers or
quantum computer chips on the order of 1000 qubits, such as
the 1,386-qubit Kookaburra quantum processing unit that can
be replicated multiple times to build a larger computer. In a ba-
sic approach, CASQUE hardware can be instantiated for each
quantum processing unit. Multiple CASQUE hardware can
work in parallel, each with its associated quantum processing
unit. While approximately 75GB/s bandwidth between each
CASQUE logic and its associated switching network is high, it
is within reach of today’s electronics (e.g. DDR5 can provide
51 GB/s data bandwidth per module, or HBM can provide
256 GB/s data bandwidth). However, so many switches are
not needed in practice. From a security perspective, if we
consider even circuits with an order of 6 qubits and 100s of
gates, our evaluation in Section VI, shows the complexity can
be above 2256. Thus, if we only switch a few channels, the
attack complexity is huge and there is no need to switch all
the channels each time and the 75GB/s bandwidth is unlikely

TABLE I: Number of control bits, number of possible permutations,
and corresponding bandwidth for different sizes of Beneš network.
Bandwidth computation is based on the number of control bits that
need to be provided in each 35.5ns time period.

Size Perm. Ctrl. Bits Bandwidth Num. Dec. Tiles

2×2 21 1 3.5MB/s 1

4×4 ∼ 24.5 6 21.1MB/s 1

8×8 ∼ 215.3 20 70.4MB/s 1

16×16 ∼ 244.3 56 197.2MB/s 1

32×32 ∼ 2117.6 144 507.0MB/s 2

64×64 ∼ 2296.0 352 1,873.0MB/s 3

to be actually needed, order or two smaller bandwidth could
be sufficient when only smaller number of qubits are switches
– while still having high security level.

1) Tiling of the Switching Network: N×N Beneš network is
actually built from two N/2×N/2 networks with added layers.
An example of 8× 8 a network built from 4× 4 networks is
shown in Figure 4b. As a result, it is simple to trade off the
number of possible permutations vs. the number of control bits
(and thus bandwidth) needed. Table I shows different sizes of
networks and the associated number of permutations, needed
control bits, and bandwidth. Based on the different sizes of the
network, a different number of control bits is needed. We note
that in our design of the decryption engine which decrypts the
PPM, discussed next, we use the AES algorithm, which has a
block size of 128 bits. Each decryption tile can provide 128
bits in a time period. Depending on the size of the switching
network, multiple tiles can be used in parallel.

G. CASQUE Logic and Decryption Engine Design

In this work, we also implement a hardware design for the
decryption engine, which is a key part of the CASQUE logic.
The decryption engine helps decrypt the encrypted PPM inside
the trusted hardware. For our evaluation, we consider AES-
GCM algorithm to encrypt the PPM on the user’s end. We use
an existing AES-GCM module [22] which can perform both
encryption and decryption and implement a wrapper consisting
of a controller which helps in loading the encrypted PPM from
the BRAM or DRAM, decrypt it, and write it back to the same
memory location block by block. We name this module as
decrypt_tile (shown in Figure 5). The decrypt_tile



has the capability of generating parameterized output width
for these decrypted PPM bits. Users can choose the width
arbitrarily based on the bandwidth requirement. Furthermore,
the decrypt_tile also supports a high-performance mode
where multiple decrypt_tile could be stacked together to
decrypt large PPMs efficiently. The key required by the AES-
GCM module is established using a quantum-safe public key
algorithm, e.g., Classic McEliece [2]. In our hardware design,
for the public key algorithm, we use the mceliece38864
decapsulation module described in Section 5.4 of [7]. Other
quantum-safe algorithms could be used as well.

In addition to the decryption engine, to protect the output
generated from the quantum computer (discussed in Sec-
tion IV-D), we also implement a True Random Number
Generator (TRNG). For the TRNG module, we use an existing
SHAKE256 module [7] and implement a wrapper around it to
feed an arbitrary size seed (we assume that there is a random
number generator (RNG) inside the trusted hardware boundary
that provides uniformly distributed random bits to our module
as an initial seed) and squeeze out the required number (N)
of random bits (RB), where N is the number of qubits for
the given quantum computer. As discussed in Section IV-D,
based on these bits, an X gate is either applied or not on the
output of the quantum circuit. The wrapper also facilitates
the encryption of RB using the AES-GCM module from the
decrypt_tile, which is sent to the user.

The TRNG module uses the SHAKE256 with the
smallest performance parameter configuration, i.e,
parallel_slices = 1 (described in [7]). The
top_module combines all other modules as shown in
Figure 5. The hardware utilization of our CASQUE hardware
module is as follows: 3,340 LUTs, 1,158 FFs, 10 BRAMs,
and it operates at a frequency of 103 MHz when targeted
to Xilinx Artix 7 xc7a100t. To handle a 1 MB PPM, our
hardware module takes 7.7 ns. These results do not include
the resources used for the public-key algorithm. we do not
report the BRAM utilization required for the PPM storage.
This is because the size of the PPM changes as per the target
quantum computer and quantum circuit. For large quantum
computers and large circuits, the size of the on-chip BRAM
may not be enough for the PPM storage, in which case
we could use off-chip storage units such as DRAM. Our
CASQUE hardware design supports the usage of either of
them. We also note that we chose to target a lightweight
hardware implementation for this evaluation. However, the
parameterizable capability of our design allows switching to
a high-speed parallel implementation easily.

1) Serializer-Deserializer for Outputs: Although the oper-
ating frequency of the CASQUE hardware module is higher
(103 MHz), the frequency at which the pulse switching
happens is much slower (i.e., 28.5 MHz, as described in
Section V-E). One possible solution to tackle this is to run
the complete design at the (slower) switching frequency, but
the bandwidth requirement of the Beneš network may not be
met. Consequently, we run our design at the fast frequency
and use an asynchronous FIFO (ASYNC_FIFO) to handle
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Fig. 5: Top-level design of CASQUE hardware module, which
implements key parts of the CASQUE logic. Quantum-safe public-
cryptographic modules (mceliece38864 decapsulation) for estab-
lishing the shared secret for use in the AES would be extra hardware.

the crossing clock domains. Figure 5 shows usage of two
sets of ASYNC_FIFOs, one for switching network and the
other to control the application of X gate on the output.
From the (ASYNC_FIFO), the decrypted PPM output is then
loaded into the Serializer-Deserializer to arrange bits as per
required bandwidth. We note that we successfully conducted
practical experiments by running our hardware design on
Xilinx Artix 7 xc7a100t FPGA and interfacing them with
the RF switches (described in Section V-A). We simulate the
quantum computer control pulses, going into the RF switches,
using a lab signal generator; and an oscilloscope is used to
validate that the switches attenuate the pulses when needed.

VI. EVALUATION

Our evaluation focuses on fidelity evaluation using Varia-
tional Distance (VD), as well as computation of complexity
of how many circuit the attacker would have to try based on
the obfuscation provided by the switching of the pulses. We
use selected QASMBench benchmarks [23] for the evaluation.
Fidelity evaluation is done on the 7-qubits real IBM Perth
quantum machine.

A. Fidelity Evaluation
Assuming ideal operation of the switches and other added

components, we focus on the impact of added delays due
to “lining up” of gates done as part of CASQUE software
steps. When CNOT gates are padded with delays to have fixed
duration, we observe that with more delays, the variational
distance increases, i.e. the fidelity decreases. For this reason,
we measure the Variational Distance (VD) between each of
the eight selected benchmarks and the unmodified benchmark
from the QASMBench benchmarks suite. Informally, the vari-
ational distance of two output probability distributions is the
measure of how one probability distribution is different from
the other. In general, the total variation distance between P
and Q is defined as: δ (P,Q) = 1

2 ∑ |P−Q|.
The impact of the extended duration of the selected bench-

marks is presented in Table II.

B. Security Analysis
In the computation of the security level and the security

analysis, we take into account the following aspects: number of
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Fig. 6: Software steps in the extended CASQUE+ architecture.

TABLE II: Variational Distance (VD) metric for selected QASM-
Bench benchmarks [23]. The Qubits, Gates (single-qubit gates) and
CNOT numbers are pre-transpilation.

Benchmark Qubits Gates CNOT VD

wstate 3 30 9 0.126
basis change 3 53 10 0.116

variational 4 54 16 0.080
vqe 4 89 9 0.195

qec en 5 25 10 0.642
error correctiond3 5 114 49 0.184

simon 6 44 14 0.195
qaoa 6 270 54 0.203

qubits (nqubits), total number of single-qubit slots (p), number
of single-qubit gate pulses in each slot (msi), total number of
CNOT slots (q), number of single-qubit slots within duration
of a CNOT slot (r), number of CNOT gate pulses we have in
each CNOT slot (c j), number of single-qubit gate pulses in
each slot within a CNOT slot (mc j,k):

C =
p−1

∏
i=0

(
nqubits

msi

)
×

q−1

∏
j=0

(
r−1

∏
k=0

(
(nqubits − (2× c j))

mc j,k

))
(1)

In the above equation, we use
(n

k

)
notation to represent n

choose k computation. In our implementation, each CNOT gate
slot is padded with delays such that all CNOT gates within the
circuit take the same duration of time (equal to the duration
of the longest CNOT gate on any of the coupling in the target
quantum computer). The CNOT gate duration of time including
padding is set to be a multiple of the single-qubit gate slot
duration, currently 160dt. Since all CNOT gate slots are of the
same duration, regardless which CNOT slot j is considered,
the number of single-qubit gate slots that fit within the CNOT
slot is the same and equal to r. As result r depends on the
quantum computer backend which determines the duration of
CNOT gates. Meanwhile, p, q, msi, mc j,k, and c j depend on the
user’s circuit, its structure and the gates used. nqubits depends
on the number of qubits used by the user’s circuit, but clearly
cannot be larger than the number of qubits available on the
target quantum computer. The approximate attack complexity
on selected bencharks is shown in Table III. The table also
shows the complexity for CASQUE+ extended architecture,
discussed next.

VII. CASQUE+ ARCHITECTURE

Our proposed CASQUE provides very good protection at a
very high obfuscation level. However, we observed that a novel
application of the switches can be realized if we assume that
additional dummy qubits can be added to the user’s circuit.
Specifically, if dummy qubits (qubits not otherwise used by
the original circuit) are added to the design, then it is possible
to switch control pulses from the other qubits to the dummy
qubits. Pulses switched to the dummy qubits do not affect nor
perform any useful computation, and thus they are effectively
eliminated from the circuit. Further, pulses can be added to the
dummy qubits, and pulses can be switched among the dummy
qubits, which also does not affect the actual computation.

A. Increasing Obfuscation with Added Dummy Qubits and
Dummy Gates

Adding dummy qubits and dummy gates increases the
number of possibilities for switching the gates – increasing the
complexity for the attacker. Considering our prior Equation 1,
adding dummy qubits increases nqubits. Adding dummy single-
qubit gates increases msi and mc j,k. Adding two-qubit gates
increases c j. However, the complexity increases further as in
Equation 1 and baseline CASQUE design we do not alter the
two-qubit CNOT gates. Now, with dummy qubits, we can add
dummy two-qubit gates on original qubits and then switch
them to the dummy qubits to eliminate them. As a result, the
attacker (cloud provider) no longer is certain that a CNOT gate
will execute (as it did in CASQUE). Rather, each CNOT could
be a real gate that executes or could be a gate that is eliminated
(by switching it to a dummy qubit) before execution. The
updated complexity for the number of possible circuits that
the untrusted cloud provider would have to guess from is:

C′ =
p−1

∏
i=0

(
nqubits

msi

)
×

q−1

∏
j=0

((
r−1

∏
k=0

(
(nqubits − (2× c j))

mc j,k

))
×2c j

)
(2)

B. Preventing Dummy Qubit Detection

Although the attacker does not know which are the dummy
qubits from the input circuit, they could use the circuit
structure to guess the dummy qubits. First, if the circuit can
be partitioned into two disjoint circuits not connected by a
two-qubit gate, then the attacker could easily say that one of
the two circuits is made up of the dummy qubits. Thus, we



TABLE III: Approximate attack complexity on selected QASMBench benchmarks [23]. Complexity calculated for zero, two, four and eight
number of added dummy qubits. The Qubits, Gates (single-qubit gates) and CNOT gates numbers are pre-transpilation.

Benchmark Qubits Gates CNOT Complexity
0 dummy qubits w/ 2 dummy qubits w/ 4 dummy qubits w/ 8 dummy qubits

(CASQUE) (CASQUE+) (CASQUE+) (CASQUE+)
wstate 3 30 9 28 215 219 225

basis change 3 53 10 243 266 280 2100

variational 4 54 16 220 226 230 236

vqe 4 89 9 245 264 277 295

qec en 5 25 10 217 222 226 232

error correctiond3 5 114 49 2103 2132 2155 2191

simon 6 44 14 220 225 228 233

qaoa 6 270 54 2268 2324 2365 2428

must ensure that there is at least one dummy two-qubit gate
that connects one of the original qubits with one of the dummy
qubits. Second, if there is no measurement on a qubit, it can be
identified as an ancillary qubit (actually used by the circuit, but
not measured) or as the dummy qubit. Thus, we must ensure
there is a measurement gate on all qubits, so that all qubits
look like they are part of the circuit, even if the measurement
will be discarded by the user.

C. Switching of Multi-qubit Gates

The current design of CASQUE does not switch multi-
qubit gates due to the complexity of the waveform of the
multi-qubit gates. However, this can also be done with enough
knowledge of the waveform of the multi-qubit gates. For
example, if the CNOT gates on different qubit pairs have the
same waveform, then this can be easily done with the same
scheme as in CASQUE. Nevertheless, the current design of
the CNOT gate on the IBM cloud introduces different duration
and pulse patterns, which may require additional hardware,
such as the hardware to change the duration of pulses. The
study of switching multi-qubit gates is left for future work,
but we acknowledge that switching CNOT gates would further
increase attack complexity.

D. Operation of CASQUE+

Figure 6 shows schematically the steps of extending the
user’s circuit with CASQUE+ protections. We assume that the
input is the CASQUE protected circuit. The steps are done on
top of, or in addition to, the protection applied by CASQUE.
The steps to add dummy qubits and dummy gates are:

1) Add dummy qubits to the circuit
2) Randomly add two-qubit gates in CNOT gate slots, ensure

that at least in one slot one of the added gates uses both
real and dummy qubits

3) Randomly add single qubit gates
4) Add measurement gates on all qubits
5) Update pulse protection map

E. Analysis of Increased Complexity

Based on Table III, we can achieve higher complexity by
adding additional dummy qubits to the circuits. We tested
for two, four, and eight additional dummy qubits for every
application. We observe the highest complexity for the 6-qubit
benchmark qaoa, as this benchmark has the highest number
of gates and CNOT gates among all the tested benchmarks.

We acknowledge that in CASQUE+ architecture, some extra
qubits for the machine are occupied and prevented from being
used by other applications to run in parallel, however, we
consider this to be a minor issue in larger quantum machines.

VIII. RELATED WORK

Relevant sets of research include work on blind quantum
computation, quantum homomorphic encryption and obfus-
cation of quantum computation. Considering protection of
programs from untrusted cloud computing providers, BQC
has been explored by various researchers [1], [6], [11], [14],
[19], [26], [28]–[31], [33], [34], [42]. Unlike our work,
blind quantum computation remains mostly theoretical since
it assumes existence of quantum networking to connect to
the cloud-based quantum computer, as well as, a trusted
quantum computer owned by the user. On the other hand, QHE
facilitates the inclusion of classical clients on a single server,
yet it encounters significant challenges, including exponen-
tial computational overheads and the necessity for advanced
quantum error correction [4], [15], [25], [41], [44]. Our work
removes need for these assumptions by leveraging trusted
hardware inside the quantum computer.

Our research aligns with recent works on arXiv, par-
ticularly [37], which lacks trusted hardware and adopts a
compile-time strategy, allowing users to insert RX gate pairs
for confusion. In contrast, our dynamic approach forces the
untrusted provider to test an exponential number of gate-
switching combinations. In [46], [47], trusted hardware is used
to attenuate decoy control pulses, akin to our work, but we
employ additional trusted hardware without extending user
circuits with idle decoy pulses.

IX. CONCLUSION

This work introduced a novel hardware architecture,
CASQUE, for securing computation on superconducting qubit
quantum computers by enabling dynamic runtime pulse
switching. CASQUE+ enhanced the protections further by
allowing users to add dummy qubits and dummy gates for
heightened security. The proposed protections can be espe-
cially useful in cloud-based quantum computing systems to
help protect from untrusted cloud providers. The architectures
allow users to select different obfuscation levels to balance
security and resource use.
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