
Temporal Thermal Covert Channels in Cloud FPGAs
Shanquan Tian and Jakub Szefer

Yale University
{shanquan.tian,jakub.szefer}@yale.edu

ABSTRACT
With increasing interest in Cloud FPGAs, such as Amazon’s EC2
F1 instances or Microsoft’s Azure with Catapult servers, FPGAs in
cloud computing infrastructures can become targets for information
leakages via convert channel communication. Cloud FPGAs lever-
age temporal sharing of the FPGA resources between users. This
paper shows that heat generated by one user can be observed by an-
other user who later uses the same FPGA. The covert data transfer
can be achieved through simple on-off keying (OOK) and use of mul-
tiple FPGA boards in parallel significantly improves data through-
put. The new temporal thermal covert channel is demonstrated on
Microsoft’s Catapult servers with FPGAs running remotely in the
Texas Advanced Computing Center (TACC). A number of defenses
against the new temporal thermal covert channel are presented at
the end of the paper.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Malicious design modifications;

KEYWORDS
Covert Channels, Cloud FPGA, Ring Oscillator, FPGA Security
ACM Reference Format:
Shanquan Tian and Jakub Szefer. 2019. Temporal Thermal Covert Channels
in Cloud FPGAs. In The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19), February 24–26, 2019, Seaside, CA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3289602.
3293920

1 INTRODUCTION
FPGAs are increasingly being used in cloud computing infrastruc-
tures to allow users to accelerate their computation through use of
custom hardware logic. Many cloud providers now support Cloud
FPGAs, including Amazon’s EC2 F1 instances [6] (for generic use),
Microsoft’s Azure with Catapult [7] servers (for AI), or Alibaba
Cloud’s F3 instances [4] (currently “available for testing by in-
vited users”). Cloud FPGAs are also available for remote sharing
by academics through deployments such as at the Texas Advanced
Computing Center (TACC) [14] (for generic research use).

The business model of Cloud FPGAs focuses on temporal shar-
ing of the hardware between users. When one user is not using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293920

the FPGA, it can be assigned to other users. Cloud providers such
as Amazon now charge by the minute or even by the second for
certain instance types [2], and an FPGA can be almost instantly
rededicated to other users once one user is finished using it. In addi-
tion to temporal sharing, there is also possibility of spatial sharing.
One FPGA can be assigned to multiple users at the same time –
this has been explored in academia but so far is not deployed in
real Cloud FPGA infrastructures as far as the authors are aware.
Interestingly, most researchers have focused on exploring spatial
side and covert channels in FPGAs. For example, they have explored
cross-talk based channels, e.g., [12]. Meanwhile, channels not re-
quiring spatial proximity or sharing of FPGA have not been widely
explored. We present one such new channel, the Temporal Thermal
Covert Channel, in this work.

To realize the covert channel, a ring oscillator (RO) heater and
RO sensor modules are used. An RO is a temperature-to-frequency
transducer suitable for thermal monitoring on FPGAs [3]. With
proper calibration, ROs can be used as temperature sensors; com-
paring oscillation counts of an RO at a fixed location on an FPGA
board at different times allows one to observe relative changes
in the temperature of the FPGA board over time. Meanwhile, for
controlling temperature, a free running RO can be used to generate
heat, by constantly toggling transistors and maximizing dynamic
power [1]. Use of a sensor diode for measuring temperature is also
possible, and potentially more accurate. However, cloud providers
can easily disable the access to the diode, or physically remove it
to prevent temperature sensing. Use of RO sensors eliminates the
need to depend on access to the sensor diode.

In the temporal thermal channel, to transmit information, the
sender can either enable RO heater (to generate heat and send 1) or
not enable it (to keep FPGA temperature low and send 0). Once the
sender vacates the FPGA, a receiver may load their design with RO
sensors on the same FPGA to read the current FPGA temperature.

RO based heater and sensor modules were developed for this
project and tested both in lab setting and on Texas Advanced Com-
puting Center (TACC) with Microsoft’s Catapult servers. With
TACC, users can remotely access Altera Stratix V FPGAs which
are in the Catapult servers [14], and load their custom logic into
the FPGAs. This work shows that without endangering the FPGAs
(as first tested on local Stratix V FPGAs) a heater module is able to
sufficiently raise the temperature of FPGA that the change can be
observed up to 2 minutes later without use of error correcting codes
(ECC) for the transmission, and about 3 minutes later when error
rates in transmission of the data are less than 30% and can be cor-
rected with use of ECC. This already includes effects of data center
cooling which constantly cools the servers and the FPGAs, which
cannot be controlled by the attacker as the FPGAs are accessed
remotely by the cloud users.

Furthermore, due to abundance of FPGAs in TACC (and likewise
in other deployments such as Amazon F1 or Microsoft Azure), the

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

298

https://doi.org/10.1145/3289602.3293920
https://doi.org/10.1145/3289602.3293920
https://doi.org/10.1145/3289602.3293920

FPGA ’19, February 24–26, 2019, Seaside, CA, USA Shanquan Tian and Jakub Szefer

Figure 1: Block diagram of an RO sensor: a free running RO (top-
left) drives RO Counter, meanwhile a clock from FPGA’s crystal os-
cillator is used to drive Clock Counter; the outputs from two coun-
ters are compared to measure the RO loop’s frequency and deduce
the temperature; software running on the server attached to the
FPGA is used to start and stop the sensor and obtain the RO counts.

heaters and sensors can be run on multiple FPGAs in parallel. The
OOK scheme can be used to encode data into heat, and use of
multiple FPGAs in parallel linearly increases the bandwidth.

1.1 Contributions to Cloud FPGA Security
This paper makes a number of new contributions:

• Development of the new temporal thermal covert channel
based on ring oscillator heaters and sensors.

• Deployment and evaluation of the temporal thermal covert
channel on real Cloud FPGA using Catapult servers in TACC.

• Design of defense strategies to mitigate temporal thermal
covert channels.

2 BACKGROUND
This section provides background on ring oscillator (RO) circuits
on FPGAs. It also gives brief overview of Cloud FPGA deployments
that allow for remote access to FPGAs.

2.1 RO Temperature Sensor
A ring oscillator temperature sensor can be built by using an odd
number of inverters which are connected in a loop, as shown in
Figure 1. The RO sensor further includes an AND gate to enable or
disable the oscillation of the loop. The sensor works by counting
number of oscillations of the loop, compared to some reference
counter. The delay through the inverters and wires of the RO de-
pends on the temperature, while the crystal oscillator used for the
reference counter is not significantly affected by temperature.

More gates, higher the accuracy, but the lower sensitivity of the
sensor to the temperature (T). As T increases, the average inverter
gate delay (d) increases, and frequency (f) of the RO oscillations is
reduced, the relationship is shown in Equation 1.

T ↗=⇒ d ↗=⇒ f ↘ (1)
Specifically, frequency is linearly proportional to temperature. Fur-
thermore, the frequency is inversely proportional to number N of
inverter gates in the RO. These relationships are shown in Equa-
tion 2 below.

Figure 2: Block diagram of an ROheater: an array of RO loops with
3 inverters each is used; software running on the server attached to
the FPGA is used to start and stop the heater.

f ∝ T and f ∝ N−1 (2)

Based on the design shown in Figure 1, number of RO counts
can be used as relative frequency if clock counting time is fixed.
Frequency (f) can be replaced by RO counts in Equation 1 and 2.

The RO sensor should be manually placed on the FPGA (via
constraints directives in the design tools) so that it is always at
same location on the FPGA fabric. Note that the sensor’s operation
itself will generate heat, thus the sensor should be turned on for as
short time as possible so as not to influence the temperature.

The same logical 3-inverter RO placed in different parts of the
FPGA, or in same location but on different FPGAs, will give different
RO counts for the same temperature. This is due to manufacturing
variations as well as different wire lengths that connect different
logic blocks on the FPGAs. However, RO placed in the same location
on the same FPGA, even after the FPGA is reprogrammed, will have
same behavior. And, regardless of the placement, the frequency and
temperature keep their relationship, shown in Equations 1 and 2. By
reprogramming the FPGA with the same RO in the same location,
and measuring the frequency changes, the relative temperature
changes can be observed.

2.2 RO Heater
The RO heater is designed as an array of free-running ROs with an
odd number of inverters each. An RO heater diagram is shown in
Figure 2. Recall from Equation 2 that the frequency (f) is inversely
proportional to the size N the RO. Meanwhile, dynamic power (P)
is proportional to frequency and number of switching elements.
Smaller ROs have higher frequency, but also have smaller number
of inverters in the RO. Consequently, an RO with 3 inverters gives
the highest power density by allowing most number of ROs to fit
in an unit area. The relationship is shown in Equation 3.

N ↘=⇒

(
P

area

)
↗ (3)

The RO heater should typically also be manually placed on the
FPGA to control the location of the inverters. Especially, the whole
RO heater array can be constrained to a pre-specified region of the
FPGA to maximize heat density.

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

299

Temporal Thermal Covert Channels in Cloud FPGAs FPGA ’19, February 24–26, 2019, Seaside, CA, USA

2.3 Cloud FPGA Platforms
Increasing number of cloud computing providers are adding FPGAs
to their deployments, the so-called Cloud FPGAs. Cloud FPGAs
allow users to deploy custom logic into the FPGAs and use them
along with other servers and compute resources maintained by the
cloud provider. Benefits of Cloud FPGA include on-demand access,
and all the tools and licenses are maintained by the cloud provider.

Many existing Cloud FPGA deployments are available today.
Amazon’s EC2 F1 instances [6] allow access to servers with Xilinx
UltraScale+ FPGAs. Microsoft’s Azure also includes access to FP-
GAs and their Catapult servers [7] which Intel (previously Altera)
Stratix V FPGAs. Meanwhile, Alibaba Cloud’s F3 instances [4] give
access to Xilinx VirtexUltraScale+ FPGAs. The Texas Advanced
Computing Center (TACC) includes option to access Microsoft’s
Catapult servers [14] which are the same Catapult servers (and
FPGAs) as deployed by Microsoft in their data centers.

The Cloud FPGA deployments typically involve FPGA connected
to the server via PCIe bus, and users are able to write software that
communicates with the FPGAs via memory mapped registers or
through direct memory access (DMA). Users can load their designs
on the FPGA, and today each user is dedicated whole FPGA for
their use. Spatial sharing does not seem to be deployed in practice,
while temporal sharing, explored in this paper, is widely used.

3 DEVELOPING TEMPORAL THERMAL
COVERT CHANNEL ON FPGAS

The temporal thermal covert channel on FPGAs is motivated by the
fact that Cloud FPGAs are shared in time by different cloud users.
While the logical state of the FPGA is erased (or overwritten) when
a new bitstream is loaded, the physical state may not be “erased”
between when different users use the FPGA. In particular, this work
shows that thermal energy of the FPGA takes time to dissipate. In
the performed experiments on real Cloud FPGA deployment, the
time for the heat to dissipate is on the order of minutes, allowing a
user to observe the physical thermal state left over when prior user
finished using the FPGA.

3.1 Covert Channel Overview
The timeline of the operation of the new covert channel is shown in
Figure 3. It assumes that the sender and receiver share or can access
the same set of FPGA boards; and that the sender and receiver
are able to load custom logic designs onto the FPGAs. We assume
the design will comply with Cloud FPGA provider’s design rules
and does not violate any Cloud FPGA restrictions1. Since multiple
FPGAs are used, the sender, Alice, and receiver, Bob, need to pre-
agree on which FPGA will be used to send which bit of data.

To transmit information, simple on-off keying (OOK) is used
in this project. OOK is a simple form of amplitude modulation,
where a logical 1 corresponds to presence of a signal and logical 0
corresponds to absence of a signal. In this work, presence of signal
corresponds to high temperature of the FPGA chip, while absence
of a signal corresponds to low temperature of FPGA chip. Heating
is achieved by use of RO heater. Temperature sensing is achieved
by use of RO sensor. Neither operation requires special permissions
1Section 5 discusses defenses cloud providers can deploy, such as special design rules,
and how some design checking rules fail to prevent this attack.

Figure 3: Cloud FPGAs are shared by different users. The timeline
shows the six timeperiods relevant to theTemporal ThermalCovert
Channel with 4 FPGAs. Blue dots indicate FPGA is a steady state
idle temperature. Red dots indicate the FPGA is at elevated heated
temperature. Orange dots indicate the FPGA is still heated above the
idle temperature, but heat has dissipated somewhat and it is not as
hight as just after heating (red dots). In this example Alice sends
0101 and Bob is able to receive 0101.

or hardware, and can be readily executed on today’s Cloud FPGA
deployments, such as Catapult servers in TACC.

3.2 Threat Model and Assumptions
Our covert channel assumes that the sender, Alice, is in possession
of some secret information, such as encryption keys, that she wants
to leak to Bob. Further, Alice and Bob can obtain access to the same
set of FPGAs in a cloud computing setting and identify each FPGA
so they know which FPGA is sending which bit (using unique serial
numbers or hardware fingerprinting [13]). The details of how the
FPGAs are identified are beyond the scope of this paper. Especially,
we assume the idle period, discussed shortly, is sufficiently long to
identify the FPGAs. Our evaluation shows this is true in TACC.

3.3 Data Transmission with One FPGA
This section first explains how the transmission works with one
FPGA, and later section expands on how multiple FPGAs can be
used in parallel.

The reconfiguration periods (see Figure 3) are needed to account
for the time the sender or the receiver take to load their design
onto the FPGA. During reconfiguration period for Alice she loads
the design with the RO heater, while during reconfiguration period
for Bob he loads the design with the RO sensor.

To begin transmission, the waiting period may be needed so
the sender, Alice, can ensure that the FPGA is at a steady state
temperature corresponding to the FPGA having been unused for a
long time. The FPGA is unused at this time to allow to fully cool off,
e.g. by loading the RO heater design but not enabling it yet. If Cloud
FPGA allows for operations such as explicitly resetting the FPGA,
that can be used instead to reset the FPGA and let it stay idle.

Next, the sender enables their actual bitstream (which contains
RO heatermodule), and starts the heating process during the heating
period. If the senderwants to transmit a logical 1, the FPGA is heated;
if the sender wants to transmit a logical 0, the FPGA is not heated
and remains at the steady state temperature from the first step.
Once the FPGA has been heating for desired amount of time, the
sender can log out from the remote machine.

If the required heating period is similar to the waiting period, i.e.
cooling period, the two can actually be overlapped, setting heating
period to zero. This is because while some FPGAs that are needed

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

300

FPGA ’19, February 24–26, 2019, Seaside, CA, USA Shanquan Tian and Jakub Szefer

to transmit a logical 1 are being heated, the other FPGAs that are
needed to transmit a logical 0 are cooling. Our evaluation shows
this is actually possible for the TACC scenario.

Following, there is the idle period when no user is using the re-
mote machine. The idle period assumes the cloud provider enforces
that no design is loaded into FPGA between users, e.g., the FPGA is
reset after user logs out of the remote machine. During idle period,
no heating of the FPGA occurs. It is possible that a zombie period
occurs instead of the idle period. Zombie period occurs if the cloud
provider allows the FPGA to keep running with existing configu-
ration, even when user logs out. If zombie period occurs, then the
duration of the idle period is effectively zero as the sender’s design
keeps running and heating the chip up to until the receiver loads
their design.

Finally, the receiver loads a new bitstream with the RO sensor
during the sensing period. After the RO sensor runs and the receiver
observes the frequency, the receiver can compute the current tem-
perature of the FPGA chip, and can deduce if a logical 1 (high heat)
or logical 0 (low heat) were transmitted by the sender2.

3.4 Data Transmission with Multiple FPGAs
Using multiple FPGAs in parallel can be used to linearly increase
the transmission bandwidth. With Cloud FPGAs, sender can use
almost arbitrary number of FPGAs, only limited by their financial
cost. Most cloud providers already provide 1 FPGA and 8 FPGA
setups by default [6], thus use of multiple of 8 FPGAs seems natural
fit for covert transmission.

To transmit the data in parallel, the sender can synchronize the
servers with FPGAs, e.g. using network time protocol, and begin
transmission at the same time. The sender and receiver need to
pre-agree which FPGA will transmit which data bit. Once agreed,
the sender starts the transmission by heating selected FPGAs.When
idle period begins, the receiver needs to locate each FPGA through
unique serial numbers, or by use of hardware fingerprinting meth-
ods [13]. Once located, the receiver does not have to wait to read
all data bits in parallel at same time, but can read each bit individ-
ually as soon as each FPGA’s temperature is measured with the
RO sensor.

3.5 Limits of RO Sensor and Transmission of
Multiple Bits per FPGA

Existing work has shown that it is possible to heat up different
regions of the FPGA [1]. However, observing the differences in
temperature of different parts of the FPGA over time is not trivial.
The existing work [1] used high-resolution thermal cameras and
observed the FPGA at what is equivalent to 0s of the idle period, i.e.
at the moment when the FPGA is being heated, and not afterwards.

For this work, we have explored heating up different regions of
the FPGA, and indeed, 2 or 4 regions can be possibly distinguished

2If the receiver has not previously used the RO on this particular FPGA, he will not
know what frequency corresponds to the steady state or the heated FPGA. However,
he can simply measure the RO frequency, and then wait for the duration equivalent to
the sender’s waiting period, and measure the RO frequency again, knowing the second
measurement corresponds to the steady state idle temperature. Comparing the two
reveals if the FPGA was in steady state or not during the first measurement. Next
time the FPGA is used to transmit a bit of data, the second measurement is no longer
needed as the receiver remembers the steady state frequency for the RO on this FPGA.

Figure 4: Left figure shows the frequency of the RO sensor as three
different sized heaters are turned on at time 0. It can be seen that the
heater size determines themaximum temperature reached at differ-
ent times. Right figure shows the actual temperatures collectedwith
built-in temperature sensor diodes.

when RO sensor is active at the same time as the heater. However,
with non-zero idle period, the heat from one region of the FPGA
spreads quickly to the whole FPGA and transmission of 2 or more
bits per FPGA in the temporal thermal covert channel is not possible
in devices we evaluated. As described before, however, multiple
bits can trivially be transmitted using multiple FPGAs which are
leased from the cloud provider in parallel.

4 EVALUATION
The evaluation was performed on Cloud FPGA instances from
TACC. The servers in TACC are the same as Microsoft’s Catapult
servers, and use Altera Stratix V 5SGSMD5H2F35I3L FPGAs. The
experiments were performed using heaters of three different sizes,
7789, 20926, and 41855 ALMs3, corresponding to 4.5%, 12.1% and
24.2% logic utilization out of whole FPGA in the Catapult servers.

4.1 Heating Time Evaluation
Figure 4 (left side) shows the heating time it takes to achieve steady
state temperature for the three different heater sizes. The tempera-
ture is measured by an RO sensor. Recall, number of RO counts (or
RO sensor frequency) decreases as temperature increases, and same
RO placed at same location but on different FPGAs will give differ-
ent RO counts for the same temperature. Thus this graph shows
the normalized numbers of RO counts for comparison. Based on
the evaluation of the Stratix V FPGAs, for the heaters with 7789,
20926, and 41855 ALMs, it took about 60, 120, and 240 seconds to
achieve steady state frequency respectively.

Figure 4 (right side) also shows reference temperature obtained
from a built-in temperature sensor which is included in Stratix V.
It can be seen the temperature rises much more slowly than the
RO frequency. This can be explained by the fact that in Figure 4
(left side) the heater and RO sensor are running at the same time.
Therefore, the initial sharp drop of the RO sensor counts is due to
FPGA supply voltage change as the large heater array turns on at
0s. The remaining, more gradual frequency reduction after that is
due to the thermal processes.

3ALMs (Adaptive Logic Modules) are basic logic cell units in Intel (previously Altra)
FPGAs, they are equivalent to Slices in Xilinx FPGAs.

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

301

Temporal Thermal Covert Channels in Cloud FPGAs FPGA ’19, February 24–26, 2019, Seaside, CA, USA

Figure 5: Top-left figure shows the frequency of the RO sensor as
three different sized heaters are turned off at time 0. It can be seen
that heater size determines the cooling speed and time. Top-right
figure shows the actual temperatures collectedwith built-in temper-
ature sensor diodes. Bottom figure shows the RO sensor frequency
after heater is turned off – this is a zoom-in of the top-left figure.

4.2 Cooling Time Evaluation
Figure 5 shows the time it takes for the FPGA to dissipate all the
heat generated by the heater. The RO counts (frequency) increase
as temperature decreases as the FPGA cools off. Based on the eval-
uation of the Stratix V FPGAs, for the heaters with 7789, 20926,
and 41855 ALMs, it took about 40, 90, and 180 seconds for FPGA
to return to idle state temperature. The large initial increase in
frequency (Figure 5, top-left, at 0s) is due to FPGA voltage changes
as the large heater array turns off. Figure 5 (bottom) shows the
zoom-in of the frequency changes after the heater is turned off,
showing more gradual increase due to cooling off of the FPGA.

4.3 Bandwidth Evaluation
First, the bandwidth for one FPGA to transmit one bit can be com-
puted using the formula shown in Equation 4.

bandwidth =
H (1/2 + e/2) − (1/2) × H (e)

((tr + tw + th) + ti + (tr + ts))
bits/s (4)

where tw is the waiting time required for sender to wait for the
FPGA to cool off, th is the heating time, ti is the idle time between
when the sender and receiver are using the FPGAs, ts is the sens-
ing time, tr is the reconfiguration time for every new project on
FPGA, and e is the error rate. H is binary entropy function where
H(x) = −x log2 x − (1 − x) log2(1 − x) [5].

Expected bandwidths are computed based on below values. The
tw can be set to 0s as the cooling time and waiting time are about
the same (based on data such as from Figures 5 and 4). The th can
be 240s (based on using heater with 41855 ALMs, from Figure 4).
The ti is variable and depends on the cloud provider setting. The
tr is approximately 4.12 seconds on TACC. The ts is 30s (time to
run a software program on the server and read the RO counts from
FPGA on TACC).

Figure 6: Left figure shows the error rate in the transmission of
data using heater of size 41855 ALMs. As the measurement time ap-
proaches the cooling period time, the error rate approaches 100%.
Right figure shows the ambient TACC temperature as measured
using built-in temperature sensor diodes over a period of 30 days,
showing steady data center temperature around the FPGAs. 13B09,
13B12, 14B03 and 14B06 are server names.

Bandwidths for using a set of N FPGAs running in parallel to
transmit N bits for different idle time periods ti , are shown in
Figure 7, computed using Equation 4 multiplied by N , where N ∈

{1, 8, 16, 32, 64, 128, 256}.

4.4 Noise and Error Evaluation
To evaluate the errors in transmission, 8 FPGAs in TACC were
used in parallel. Figure 6 (left) shows the data transmission error
rate as a function of the length of the idle time between sender
and receiver. As expected from the evaluation of the heating and
cooling time shown in Figures 4 and 5 data can be successfully
transmitted with 100% success rate when the idle time is up to 120s
(2 minutes). Many error correction algorithms are able to support
error rates up to 30%. If such error correction is deployed, the idle
time can be extended to 160s or more.

Noise in the measurements can be influenced by temperature
changes in the environment of the FPGA. Figure 6 (right) shows
30-day measurement of the temperature in the TACC FPGAs that
were used in this project. The figure shows very steady data center
temperature around FPGAs. Thus the noise due to temperature
changes in the environment is not factored into this evaluation.

4.5 Total Channel Bandwidth and Cost
Figure 7 shows the possible bandwidth for idle times of 0, 1, 2, 3 and
4 minutes and for 1, 8, 16, 32, 64, 128 and 256 FPGAs used in parallel.
The bandwidth is linear in relation to the number of FPGAs used;
and the number of FPGAs is only limited by the available FPGAs
in cloud provider or the cost that attacker can incur.

To better quantify the cost of leaking a key, an example of leaking
128-bit AES encryption key using 128 FPGAs on Amazon EC2 is
shown in Table 1. The cost is surprisingly small and can be used to
assign monetary value to the covert channel.

5 DEFENSE STRATEGIES
A number of defense strategies can be deployed by the Cloud FPGA
providers to defend against the new covert channel.

EnforceMinimum Idle Period: The best strategy is to enforce
a minimum idle period between users, so the FPGA is allowed to
cool off to a steady state temperature. Some cloud providers charge
by the minute, or even by the second, for use of their resources [2],

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

302

FPGA ’19, February 24–26, 2019, Seaside, CA, USA Shanquan Tian and Jakub Szefer

Figure 7: The figure shows the possible bandwidths for different
idle times and number of FPGAs used parallel. The bandwidths ac-
count for the error rate. Bandwidths are computed using Equation 4
multiplied by the number of FPGAs used in parallel.

Table 1: Estimated cost to leak 128-bit AES key on Amazon EC2. As
of September 2018, F1 instances cost $1.65 per hour or $0.0275 per
minute. Thus cost for 128-bit key is computed by: 128 instances ×
time to leak 1 bit per FPGA × $0.0275 per minute. Time is computed
using tr = 4.12s plus tw = 0s plus th = 240s plus ti (variable and
listed in table) plus tr = 4.12s plus ts = 30s .

AES Key Idle Period (ti) Time to Leak Key Cost
128 bits 0 s 4.64 min. 16 $
128 bits 30 s 5.13 min. 18 $
128 bits 60 s 5.64 min. 20 $
128 bits 120 s 6.64 min. 23 $

so each idle minute is lost income, but a few minutes of idle period
seems reasonable trade-off for eliminating the temporal thermal
cover channels. Based on our evaluation, a period of about 10 min-
utes can fully ensure that FPGA has dissipated all excess heat.

Aggressive Heating or Cooling: A potential alternative is to
heat or cool the FPGA to a known temperature before next user
is able to use the FPGA. This is a trade-off in shorter idle time,
but higher energy cost for the cloud provider to do the heating or
cooling. If FPGA is always at a constant known temperature before
a user uses it, there is no means for thermal data transfer.

Enact Design Rules to Check Bitstreams: Another defense
strategy is to enact design rules that check the FPGA design or
bitstream before it is allowed to be loaded onto the FPGA. Already
some cloud providers, notably Amazon F1, perform checks on the
designs they allow to load. Limitation of the approach is that it is a
cat-and-mouse game. For example, the designs could be checked
to prevent combinatorial loops from existing in the design, which
would prevent RO from being able to be loaded on the FPGA. How-
ever, heater or sensor does not have to be based on RO design.

6 RELATEDWORK
When two users’ designs are loaded onto the same FPGA at the
same time, for example, cross-talk between wires on the FPGA chip
can be used to steal secrets [12]. Researchers have also explored
how partial reconfiguration can be abused when multiple users
share the same FPGA to steal another user’s IP [9], or reconfigure
the FPGA with a malicious bitstream [10].

Non-FPGA researchwhich focuses on temperature includeswork
on multi-core platforms, where temperature can be used as a covert
communication channel [11]. In addition, temperature can also be
used to build side channels [8] in smart cards.

To best of our knowledge, this is the first work that explores
security issues of temporal sharing of FPGAs and the new temporal
covert channel in FPGAs. Furthermore, none of the listed related
works have actually evaluated their designs on FPGAs in real cloud
computing data centers as we have, rather evaluation is almost
always done on local FPGAs “simulating” cloud deployments.

7 CONCLUSION
This paper presented a new temporal thermal covert channel in
Cloud FPGAs for covert transmission of sensitive data between
users of FPGAs shared in a cloud environment. This work showed
cooling of FPGAs in a real cloud deployment such as TACC is
slow enough to allow for data transmission through the thermal
state of the FPGA chips, and the evaluation showed that even with
up to a few minutes of idle period it is possible to transmit data.
All software and hardware code used in this paper will be made
available under open-source license and can be downloaded from
http://caslab.csl.yale.edu/code/temporalthermalcc.

ACKNOWLEDGEMENT
The authors would like to thank TACC for the access to their Cata-
pult infrastructure. The authors would also like to thank Dan Hol-
comb, Rob Moon, Remy Scott, Russell Tessier, and Wenjie Xiong,
for their help and/or feedback. This work was made possible by
NSF grant 1651945 and FPGA donations from Altera (now Intel).

REFERENCES
[1] Andreas Agne, Hendrik Hangmann, Markus Happe, Marco Platzner, and Chris-

tian Plessl. 2014. Seven recipes for setting your FPGA on fire–a cookbook on
heat generators. Microprocessors and Microsystems 38, 8 (2014), 911–919.

[2] AWS News Blog. 2018. AWS News Blog – Per-Second Billing for
EC2 Instances and EBS Volumes. https://aws.amazon.com/blogs/aws/
new-per-second-billing-for-ec2-instances-and-ebs-volumes/.

[3] Eduardo Boemo and Sergio López-Buedo. 1997. Thermal monitoring on FPGAs
using ring-oscillators. In International Workshop on Field Programmable Logic and
Applications. Springer, 69–78.

[4] Alibaba Cloud. 2018. Alibaba Cloud – Create an f3 instance. https://www.
alibabacloud.com/help/doc-detail/71545.htm.

[5] Thomas M Cover and Joy A Thomas. 2006. Elements of information theory 2nd
edition. Willey-Interscience: NJ (2006), 187–188.

[6] Amazon F1. 2018. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/.

[7] Microsoft Azure FPGA. 2018. Microsoft Launches FPGA-Powered Ma-
chine Learning for Azure Customers. https://www.top500.org/news/
microsoft-launches-fpga-powered-machine-learning-for-azure-customers/.

[8] Michael Hutter and Jörn-Marc Schmidt. 2013. The temperature side channel and
heating fault attacks. In International Conference on Smart Card Research and
Advanced Applications (2013). Springer, 219–235.

[9] Daehee Jang, Hojoon Lee, Minsu Kim, Daehyeok Kim, Daegyeong Kim, and
Brent Byunghoon Kang. 2014. Atra: Address translation redirection attack against
hardware-based external monitors. In Proceedings of the Conference on Computer
and Communications Security. ACM, 167–178.

[10] Markus Kucera and Michael Vetter. 2007. FPGA-Rootkits Hiding Malicious
Code inside the Hardware. In Proceedings of the Fifth Intemnational Workshop on
Intelligent Solutions in Embedded Systems. IEEE, 262–272.

[11] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,
Lothar Thiele, and Srdjan Capkun. 2015. Thermal Covert Channels on Multi-core
Platforms. In USENIX Security Symposium (2015). 865–880.

[12] Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George Prove-
lengios, Sebastien Pillement, Daniel Holcomb, and Russell Tessier. 2018. FPGA
side channel attacks without physical access. In International Symposium on
Field-Programmable Custom Computing Machines. 45–52.

[13] G Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for
device authentication and secret key generation. InDesign Automation Conference.
IEEE, 9–14.

[14] TACC. 2018. Catapult - Texas Advanced Computing Center. https://www.tacc.
utexas.edu/systems/catapult.

Session 8: Devices and Security FPGA ’19, February 24–26, 2019, Seaside, CA, USA

303

http://caslab.csl.yale.edu/code/temporalthermalcc
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://www.alibabacloud.com/help/doc-detail/71545.htm
https://www.alibabacloud.com/help/doc-detail/71545.htm
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.top500.org/news/microsoft-launches-fpga-powered-machine-learning-for-azure-customers/
https://www.top500.org/news/microsoft-launches-fpga-powered-machine-learning-for-azure-customers/
https://www.tacc.utexas.edu/systems/catapult
https://www.tacc.utexas.edu/systems/catapult

	Abstract
	1 Introduction
	1.1 Contributions to Cloud FPGA Security

	2 Background
	2.1 RO Temperature Sensor
	2.2 RO Heater
	2.3 Cloud FPGA Platforms

	3 Developing Temporal Thermal Covert Channel on FPGAs
	3.1 Covert Channel Overview
	3.2 Threat Model and Assumptions
	3.3 Data Transmission with One FPGA
	3.4 Data Transmission with Multiple FPGAs
	3.5 Limits of RO Sensor and Transmission of Multiple Bits per FPGA

	4 Evaluation
	4.1 Heating Time Evaluation
	4.2 Cooling Time Evaluation
	4.3 Bandwidth Evaluation
	4.4 Noise and Error Evaluation
	4.5 Total Channel Bandwidth and Cost

	5 Defense Strategies
	6 Related work
	7 Conclusion
	References

