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Abstract—Discrete Gaussian samplers are used to sample
integers from a discrete Gaussian distribution. Since this func-
tionality is used in operations such as key generation, signing, or
key encapsulation of lattice-based schemes, it is a fundamental
building block of these cryptographic algorithms. One required
feature of modern discrete Gaussian samplers when used in
cryptographic algorithms is to be constant-time, to ensure se-
curity against timing side-channel attacks. Further, it is often
desired to minimize potential for power or EM side-channel
attacks by limiting how much information an attacker can gain
from measuring power traces. To address the need for having
a Gaussian sampler with these features in hardware, this paper
presents a novel hardware implementation of a constant-time
discrete Gaussian sampler with fixed memory access pattern
realized on FPGAs. The design uses an approach based on
Cumulative Distribution Table (CDT). Further, the new sampler
uses a merge-exchange sort algorithm that enables generating
the samples in batches. In the hardware, due to the use of
the merge-exchange sort algorithm, the memory access pattern
is always fixed, regardless of the values of the secret samples.
This increases the resistance of the sampler to potential power
or EM side-channel attacks as memory usage and accesses
are independent of the secret values. The presented sampler
can be fully parameterized at compile-time with the following
Gaussian parameters: standard deviation, precision, and tail cut,
generating a hardware design that matches the exact parameters
required by the cryptographic algorithm. In addition, it can
be parameterized, at compile-time, with the batch size for the
number of samples to generate at a time. The design evaluation
is based on synthesis data for various Xilinx FPGAs.

Index Terms—Gaussian Sampler, FPGA, Lattice-Based Cryp-
tography, Post-Quantum Cryptography

I. INTRODUCTION

Lattice-based cryptography, and in general post-quantum
cryptography, has been recently gaining attention due to its
ability to withstand attacks using quantum computers; once
such computers become available. Post-quantum cryptography
especially focuses on digital signature schemes and public-
key encryption schemes. Among these, there are a number
of lattice-based proposals. Many of the proposals are within
a standardization process [|] run by the National Institute for
Standards and Technology (NIST). To help NIST’s process, the
software and hardware performance results of these candidates
are needed for understanding the practicality of the different
cryptographic schemes, as well as to understand how they can
be designed to eliminate the different side-channels.

Key generation, signing, or key encapsulation are core
operations in lattice-based schemes, which usually require
sampling integers from a Gaussian distribution. Depending on

the scheme, different variants of Gaussian distributions are
used, but they can be in general parameterized by the Gaussian
parameters: standard deviation o, precision A, and tail-cut 7.

To gain understanding of the hardware demands of the
Gaussian sampler for a variety of parameters (o, A, 7), we have
developed a new Gaussian sampler in hardware on FPGAs.
The sampler is based on Cumulative Distribution Table (CDT)
that allows for an efficient implementation without requiring
the use of floating-point operations. Further, the design uses
a new approach based on merge-exchange sort [2] algorithm.
Due to the merge-exchange sort approach, the implementation
is constant-time, defending against timing attacks by design.
Moreover, the memory access pattern generated during execu-
tion of the sampler is always fixed, and this makes our design
potentially more resistant against power or EM side-channel
attacks on the hardware implementation.

Since typical lattice-based cryptographic algorithms require
the generation of hundreds of samples at a time, e.g., [3], [4],
[5], our approach is to generate a batch of random samples
at a time. This is achieved by generating uniformly random
input numbers, then sorting them with the CDT table based on
each entry’s index (to effectively find the closet index for each
random input value) and then extracting the samples from the
sorted list. The cost of sorting is amortized among all samples
in the batch. As different schemes use different batch size, our
design is parameterized, at compile-time, with the batch size n.

Any Gaussian sampler requires generation of random num-
bers, and our hardware design leverages cSHAKE-256 hash
algorithm for pseudo-random number generation (PRNG). The
cSHAKE algorithm is a subset of the SHA-3 standard for
cryptographic hashes, and is widely used in candidates in the
NIST PQC standardization process. We present evaluation data
for both cases of PRNG overhead included and excluded;
especially as the algorithms are still being tweaked, future
lattice-based algorithms may use different hash algorithms so
data with PRNG excluded can help evaluate overhead of only
the core sampling algorithm.

A. Contributions
The contributions of this paper include:

e A hardware implementation of a fully parameterized
merge-exchange sort module, which can sort any number
of values, not necessarily a power-of-two.

¢ A Gaussian sampler based on the CDT approach and
using the merge-exchange sort module; the Gaussian sam-



pler supports compile-time Gaussian parameters: o, A, T
and the batch size n, which can all be freely chosen by
the designers.

o A constant-time design that also has a constant memory
access pattern, defending against timing side-channel
attacks, and limiting potential for power or EM based
side-channel attacks on the implementation.

The source code for the Gaussian sampler module is available
under open-source license at https://caslab.csl.yale.edu/code/
merge-exchange- gaussian-sampler.

II. BACKGROUND

In this section, we present background on discrete Gaussian
sampling and the different methods presented in literature. An
in-depth survey of Gaussian sampling methods can be found,
for example, in [0].

A. Discrete Gaussian Sampling

The centered Discrete Gaussian Distribution (DGB) over Z
with standard deviation o (denoted by Dy ) is defined such
that the probability of sampling a value x € Z is given by
po(2)/ S5, where p,(z) = exp(gj;) and S, = p,(Z) =
> e . Po(k) ~ V/27mo. The specific value of the standard
deviation used is usually defined by the algorithm’s designers.
For example in qTESLA [7] the standard deviation is mainly
chosen such that the corresponding Ring Learning With Errors
(R-LWE) problem [8] yields sufficient hardness.

When implementing a Discrete Gaussian Sampler (DGS),
the resulting implemented distribution (denoted by D’Z’U)
differs from the theoretical distribution due to the infinite
representation of p,(x)/S, and the infinite tail of the Gaussian
distribution, while only finite values are possible in hardware
(or software). Hence, the precision (\) and the tail-cut (7) are
defined to realize and analyze a DGS. Both A and 7 are related
to the security parameter  of the cryptographic scheme that
uses the DGS. The precision A should be larger than |p, — p.,|
where p,, (resp., p.,) is the probability of sampling z according
to Dz, (resp., Dy ). In other words, the probability p!, is
represented by A. Typically A = k is recommended to fix the
lower bound of the statistical distance of Dz, and Dy , at
about 2. Saarinen [9], however, argues that a precision of
A = k/2 is sufficient for a security level of  bits in most
cases, since there is no known algorithm able to distinguish
a sampler with statistical distance 2~"/2 from one with 27,
For example, in qTESLA [7], the precision A is chosen larger
than /2 plus a few extra bits to be more conservative, e.g.,
for k = 95 a precision of A = 64 is chosen. The tail-cut
7 determines the bounded support that can be implemented,
i.e., instead of sampling values over Z, they are sampled over
ZN[-oT,07].

B. Sampling Techniques

There are several techniques described in the literature for
implementing Gaussian samplers for lattice-based schemes.
We briefly summarize the most popular options and highlight
their advantages and limitations in the following paragraphs.

Rejection sampling [10] works by first sampling z in
[~oT,07] NZ and y in [0,1) uniformly at random. If y <
po(x), © is accepted as a valid output. Otherwise, z is
rejected and the process is repeated again with a new pair
(z,y). The repeated need for generating the values p,(z)
and a potentially high rejection rate in this method are dis-
advantageous: Computing p,(x) during run-time can be very
expensive in hardware; using a table of pre-computed values
po(z) Yo € [—oT,07] N Z, on the other hand, may result in
increase of required memory.

An optimization of the basic rejection sampling technique
is Bernoulli sampling [11]. Essentially, the idea of Bernoulli
sampling approach is to combine uniform sampling over
U({0,...,¢ —1}) with the distribution & - Dy+ ,, for a width
parameter £. The desired distribution Dz, with 0 = o3
is then obtained by rejection sampling guided by the so-
called Bernoulli distributions . [11]. This method reduces
drastically the rejection rate but is hard to be implemented in
constant-time in both hardware and software.

Another popular sampling method is the Knuth-Yao al-
gorithm [12] which is based on a binary tree called the
discrete distribution generating (DDG) tree. The DDG tree
is constructed from the binary representation of p),. Sampling
a value with DGD is achieved by a sequence of uniformly
sampling over {0,1} to decide on the path through the tree
until a leaf is reached. Due to the heights of different leaves,
sampling using this approach is highly non-constant time, and
hence, it requires countermeasures against timing attacks, e.g.,
the Fisher-Yates shuffle [13] is used in [14], [15] to randomly
swap all the values in every block of the generated samples.

Yet another efficient method to realize Gaussian sampling
is cumulative distribution sampling, first proposed for cryp-
tographic applications by Peikert [16]. This method consists
of pre-computing a so-called Cumulative Distribution Table
(CDT) containing values of the Cumulative Distribution Func-
tion (CDF) scaled to the range [0,2*) for a given precision
A. A sample of the DGD is derived as follows: First a value
x is chosen uniformly at random in the range [0,2"). Then
the index z in the CDT is found such that CDT[z] < z <
CDT[z + 1]. The CDT-based method is one of the most
efficient and flexible methods in the literature. It is portable
and can be combined with other techniques for improved
performance. CDT based samplers are for example used in
qTESLA [7] and FrodoKEM [4] — two candidates of NIST’s
PQC standardization process [!]. In addition, the applicability
of the CDT-based approach to other lattice-based schemes was
recently shown by [17]. The efficiency of this approach can be
limited for larger standard deviations o due to the size of the
CDT. However, if large o is required, Peikert’s convolution
lemma [I8] can be applied which transforms the problem
to equivalently building two samplers with much smaller o4
and o7. Therefore, multiple CDT-based samplers with smaller
standard deviations can be used as building blocks to construct
samplers requiring a big standard deviation [15].

The CDT based samplers are greatly affected by the size of
the CDT. Typically, the width of the CDT is determined by
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the sampling precision A, which determines how many bits are
needed in total to represent one sample. Meanwhile, the depth
of the CDT is determined by the standard deviation ¢ and the
tail-cut 7, since o7 determines the range of the samples. Note,
since the Gaussian distribution used in Gaussian sampling is
symmetric in the z axis, only values in range [0, o7] are need
to be sampled, and a random sign {—1,1} can be generated
to get samples from the full range [—oT,o7].

C. Problems in Existing CDT Samplers

Commonly used CDT samplers usually work as follows: A
random number is first generated, then it is compared against
the CDT in order to extract one sample after the comparison
process; for generating multiple such samples, this processed
is repeatedly carried out until enough samples are collected.
There are two main existing approaches for scanning the CDT.
A binary search on the CDT can be performed efficiently.
However, this method is susceptible to timing side-channel
attacks in software since the branching depends on the private
uniform samples. To mitigate such timing-based side-channel
attacks, a more conservative software method can be used:
A full scan on the CDT is always carried out, regardless of
the input random number value. However, this approach is
very inefficient especially when the size of the CDT table is
relatively large since a full CDT scan is always needed each
time a random sample is needed.

When implemented in hardware, both binary search and full
scan CDT sampling methods can be designed to be constant-
time. Unfortunately, the binary search based hardware design
of CDT sampler can be potentially vulnerable to power or EM
based side-channel attacks since the memory access pattern
during the CDT binary search is uniquely determined by
the secret random samples. For example, in [19] a Single
Trace Analysis (STA) based power attack was proposed and
demonstrated on the implementation of a CDT-based gaus-
sian sampler by observing the Hamming weight differences
between values used in computation or memory addresses.

This vulnerability is mitigated by use of the full scan
method, however, a limitation of a naive full scan based
hardware design of CDT sampler is that it leads to poor
performance when a large number of random samples are
needed (which is the case for most of the modern lattice-based
schemes): For each sample the full CDT needs to be scanned
to hide the true value that was searched for. Therefore, a better
solution is needed for designing a CDT sampler in hardware
which mitigates secret-dependent memory accesses and at the
same time maintains a good performance for generating a
relatively large batch of random samples.

The solution we propose in our design to solve these issues
is discussed in detail in the next section (Section III). Details
of the hardware implementation of our CDT sampler are
presented in Section V. A thorough evaluation of the CDT
sampler with different parameters are provided in Section V.
Comparisons with the state-of-the-art software implementa-
tions and hardware implementations of the CDT sampler is
given in Section VI.

Algorithm 1 CDT-based Gaussian sampling using Batcher’s odd-
even mergesort algorithm (adapted from [20] and modified to reflect
our hardware implementation details).

INPUT: integer n of requested random numbers, a CDT (of ¢ positive
values of precision A, where t = [o7])
OUTPUT: a list z of n Gaussian samples

> The depth of the list (memory) samp is n + ¢, where the first
n entries store random numbers (initially empty), the rest store
CDT values. Each entry has 3 parts s, k, g.

> At compile-time, initialize part of samp with the CDT, and
append an index to each entry to keep track of their original
Gaussian indices:

1: for 0 <i¢ < tdo
2: sampli + n].s <= oo // search sentinel
3: sampli + n].k < cdt[i]
4: samp[i + n].g 4
5: end for
> At run-time, Generate n random values (size of each value is the
precision A) and fill in the list (memory) samp and keep track
of their original sampling order:
6: for 0 <i < n do
7: sampli].s « 4
8: sampli].k <5 {0,...,2* — 1}
9: sampli].g < 0 // placeholder
10: end for
> Sort samp list (memory) in constant-time according to k field

using merge-exchange sort approach:
11: BatcherMergeExchange(samp, key: k, data:s,g)
12: Set each entry’s Gaussian index g: the values of g of each random
value entry get updated with the g value of the closest CDT entry.
> Sort samp list (memory) again in constant-time, now according
to s field. Because s values for CDT are all infinity, random
numbers will be at the top of samp, and in their original order:
13: BatcherMergeExchange(samp, key:s, data:g)
> Discard the trailing entries of samp and output the rest as
samples with k[0] determining sign bits:
14: for 0 < i < n do
15: if samp[i].k[0] > O then

16: z[i] - 1 - samp[i].g
17: else

18: z[i] + —1- sampli].g
19: end if

20: end for

21: return z

III. CDT METHOD WITH BATCHER’S ODD-EVEN
MERGESORT ALGORITHM

Since typical lattice-based applications require the genera-
tion of hundreds of samples at a time, one possible way to
increase the throughput during Gaussian sampling is to use
the CDT method combined with a suitable sorting algorithm,
as proposed by Alkim et al. [20]. The basic idea is to sort a
batch of uniformly random samples together with the CDT,
and then identify the unique CDT entry immediately below
each sample in the list. The cost of sorting is thus amortized
among all the samples in the batch.

Since the sorting needs to be done efficiently and in
constant-time, Batcher’s odd-even mergesort algorithm [21],
also called merge-exchange sort [2], is used in [20] in the
software implementation of the sampler in qTESLA [7]. Com-
pared to most of the other sorting algorithms, one important



feature in the merge-exchange sort algorithm is that the data
comparisons during the sorting process have a fixed pattern,
regardless of the values to be sorted. This feature is ideal
for our hardware design since one of our main targets of
the Gaussian sampler is to eliminate the potential leakages
due to secret-dependent memory accesses, which could be
abused in power or EM based side-channel attacks. Therefore,
we follow the approach as used in the qTESLA software
implementation [20] and present the first implementation of
CDT sampler based on merge-exchange sort in hardware.

Let BatcherMergeExchange((sequence), key : (key),
data: (data)) be a constant-time implementation of Batcher’s
sorting algorithm for (sequence), using the field (key) of each
of its entries for ordering, and carrying the corresponding
field(s) (data) as associated data. Algorithm | generates n
Gaussian samples using the algoritm from Alkim et al. [20]. In
contrast to [20], the generation of the sign bit in the hardware
design does not require another sampling process. Instead,
when outputting samples, samp(i].k[0] is used to determine
the sign of its corresponding sampl[i].g: If samp[i].k[0] is 1,
our Gaussian sampler will output 1 - sampli].g, otherwise it
will output —1 - sampi].g."

Algorithm | gets as input a number n of requested random
values and a CDT with t entries of width \ bits (recall the
precision is \), the entries represent the absolute values of the
CDF. )\ is usually > k/2, as discussed in Section II-A. The
algorithm outputs n values of the Gaussian samples.

Let S be a finite set, then we denote sampling an element s
uniformly random in S by s <—g S. As shown in Algorithm 1,
A-bit precision CDT of depth t is pre-calculated and later
combined with a sequence of n uniformly random values of
A-bit precision, forming a new list samp of n + ¢ elements.
The first n entries store random numbers, and the rest store
CDT values. Each element in samp is further expanded as a
triple of form (s, k,g) where s holds a record of the entry
type (index 0,1,...,n — 1 for random numbers and infinity
for CDT), k denotes the actual value and g keeps track of
the CDT index (zero for random numbers). Accessing the -
th entry in samp is denoted by sampli].s, samp[i].k, and
sampli].g. Two merge-exchange sorting steps are needed: The
first sort blends the n random values with the CDT in a sorted
order; then the values of g of the random value entries get
updated with its closest CDT entry’s Gaussian index; once
all the entries of samp have an updated Gaussian index, the
second sort starts by use of s, which records the entry type
(random value or CDT), as the key. Finally, the random values
entries are lifted to the upper part of samp and the Gaussian
indices carried by these entries are returned as the output.

IV. HARDWARE IMPLEMENTATION

This section presents details of the hardware implementation
of our Gaussian sampler. Figure | shows the top-level view of

IRe-use of k[0] bit for determining the sign is done to reduce the required
number of random numbers needed, use of the bit for both data and sign may
introduce some correlation, and security of this design decision needs to be
further evaluated.
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Fig. 1. High-level block diagram of the CDT-based Gaussian sampler, two
key parts are the sampler itself and a module in this case cSHAKE, that is
used for pseudo-random number generation (PRNG) needed by the sampler.

the sampler. The top module contains the sampler module and
the pseudo-random number generator (PRNG) module, which
is used for generating random numbers.

The top module communicates with the outside world
through an AXI-like interface. There are five signals: start
to start the sampling process, ready to indicate that sam-
pled data can be read out, and dout, dout_valid, and
dout_ready for reading samples from the module. The
interface can be easily extended to, for example, AXI4, for
integration with other cryptographic modules, or some of the
proposed APIs for PQC algorithms. A similar interface is used
internally within the module for communication between the
sampler and the PRNG module.

A. CDT Sampler Design Parameters

Depending on the user needs, the proposed CDT sampler
can be tuned by defining the following parameters at synthesis
time: Batch size n, which determines how many samples are
generated after one complete process of CDT sampling; CDT
table width W4, with W,4, = A; and CDT table depth D g,
where D.qg: = [o7].

In the following evaluation sections, we will show the effect
of these parameters on the performance of the CDT sampler,
while here we give a brief overview. The batch size n most
affects the runtime of the PRNG, as bigger batches require
pre-generation of more random numbers. Further, bigger batch
size requires more time for sorting the numbers and generating
the output. CDT table width W 4; does not affect the runtime
of the sampler as it only changes the widths of the memories,
however, W_4; has a major impact on the logic usage of the
CDT sampler as it determines the size of the basic computation
units in the design (e.g., register size, comparator size). CDT
table depth D.4; has similar effects as n on the performance
of the CDT sampler, as the size of the list to be sorted depends
onn +t.

B. CDT Sampler Module

The hardware design of the CDT sampler follows the Algo-
rithm | as proposed in Section III. Details of the CDT sampler
are shown in Figure 2. A dual-ported memory memgqmy is
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Fig. 2. Diagram showing main components of the sampler module: one memory for storing CDT table and random numbers, of which each entry is of form
(s, k, g); logic for the merge-exchange sort, output generation, and control logic. Smaller elements such as MUXes or details of the signals are not shown.

needed in the CDT sampler module to store CDT table and
random numbers. It has n 4+ ¢ entries, each stores a triple
(s,k,qg), of which the bit widths are (log(n) + 1), (\), and
(log(t)), respectively. The highest bit in s is reserved to
distinguish infinity from regular indices. % is used to store CDT
values or random numbers generated by a PRNG module, thus
needs A bits. The CDT values are pre-initialized at compile
time with the CDT table defined by the lattice-based scheme.

Apart from the memory block, four main submodules are
needed to build a full CDT sampler: Control Logic
functioning as the bridge between different submodules and
the memory block; a PRNG module is used for generat-
ing random numbers; Merge-Exchange Sort module for
sorting random numbers following Batcher’s odd-even merge-
sort algorithm; and Update Gaussian Index module for
updating ¢ values for the final output samples.

1) Control Logic: When the CDT sampler starts, the
Control Logic is responsible for controlling generation of
a batch of samples. The control logic accepts as input the size
of batch n, which determines how many outputs the PRNG
generates to initialize memsqmp.

Once memgqmp is fully initialized with the randomly-
generated  values, the control logic triggers the
Merge—-Exchange Sort module for the first time, to sort
the whole memory according to k. After sorting is done, the
Update Gaussian Index module updates g values of
random numbers with their closest CDT entry’s Gaussian
indices. Then the Merge-Exchange Sort module is
triggered again to sort the whole memory according to s.
After that, the samples stored in the first entries of memsqmyp
can be read out through control logic once instructed by the
cryptographic module (or the testbench).

2) PRNG Module: Different PRNG modules can be used
in our design, including ones base on XORs or using con-
stant values for testing. For full evaluation, we use a PRNG
module constructed based on an area-efficient cSSHAKE mod-
ule proposed by Jungk and Apfelbeck [22]. ¢cSHAKE is a
subset of the SHA-3 standard and is used widely in modern

cryptographic algorithms, such as the lattice-based signature
scheme qTELSA [20]. When a request is made to generate a
batch of samples, the first module triggered is the cSHAKE
which starts generating the pseudo-random numbers. The seed
and domain separator of cSHAKE module are initialized at
compile time. The top module controls how many samples
need to be generated, i.e. n. Since the output of cSHAKE
is written in a unit of 32 bits, in total A/32 - n outputs are
generated. As showed in line 6-10 in Algorithm I, cSHAKE
is called at the beginning of Gaussian sampler operation to
initialize the first n entries of the mem qm;, memory.

3) Merge-Exchange Sort Module: The design of the
Merge-Exchange Sort module closely follows the
Batcher’s odd-even mergesort algorithm [21]. This module
is triggered twice, with k& or s as the sorting key (line
11 and 13 in Algorithm 1). This module is built upon a
core submodule Sort Core, which is called for a fixed
number of rounds where within each round data pairs are
chosen and sorted sequentially following a fixed pattern. When
Merge-Exchange Sort module starts the computation, a
local parameter set (p, q,r,d), which determines the location
of the comparison pairs, is initialized and sent to Sort Core.
The values (p, ¢, 7, d) are initialized with: p < 2%~1 where a
is the least integer such that 2% > N (IV is the list size, and
in our work N =n +1t), ¢ < 2% 1, r « 0, and d < p[2].
Sort Core then sequentially chooses comparison pairs with
indices (4,4 + d) from the sorting list, where 0 < i < N —d
and {ANDp = r. Once the memory contents mapping to
indices (7,7 + d) from the list are read out, the two values are
compared. Depending on the comparison result, the values are
either written back to the memory in the original order, or in
a reversed order. These main steps in Sort Core (memory
reads, data comparison, memory writes) are implemented in
a fully pipelined fashion. While Sort Core is running,
the parameter set (p,q,r,d) is updated, waiting to be fed
to the next round once the current computation in Sort
Core finishes. (p,q,r,d) is updated as follows: If ¢ # p, set
q < q/2, 7 < p, d< q—p; Else, set p < |p/2], g + 2°7L.



n Cyc. Sampler  Cyc. Total LUT FF LUT FF BRAM Time X Area Time (us) Fmax
Sampler  Sampler  Total  Total per Sample per Sample  (MHz)
1 4048 4331 630 681 3056 1053 3 13.2 x 108 38.1 114
2 4012 4299 624 685 3048 1057 3 6.55 x 106 19.0 113
4 4230 4525 635 695 3070 1067 3 3.47 x 106 9.69 117
8 4490 4801 647 705 3072 1077 3 1.84 x 108 5.06 119
16 4994 5337 721 715 3144 1087 3 1.05 x 108 3.01 111
32 6130 6637 655 725 3081 1097 3 639 x 103 1.86 111
64 8799 9634 702 751 3131 1123 3 471 x 103 1.39 108
128 14,315 15,806 791 760 3246 1132 3 401 x 103 1.01 123
256 27,287 30,090 866 787 3319 1159 3 390  x 103 0.991 119
512 56,929 62,256 907 812 3336 1184 3 406 x 103 1.06 115
1024 125,451 135,826 820 837 3261 1209 5 433 x 103 1.12 119
80 10,155 11,154 786 758 3187 1130 3 444 x 103 1.25 112
100 11,947 13,126 793 760 3197 1132 3 420 x 103 1.11 118
160 17,081 18,900 798 768 3206 1140 3 379 x 103 1.01 116
320 34,039 37,398 866 795 3267 1167 3 382  x 103 0.977 120
640 73,301 79,840 836 820 3260 1192 3 407 x 103 1.02 123
1000 121,643 131,722 826 837 3226 1209 5 425  x 103 1.15 115
1280 164,607 177,506 819 844 3267 1216 5 453 x 103 1.20 116
2560 376,973 402,492 833 871 3224 1243 10 507  x 103 1.38 114
5120 868,001 918,860 869 896 3280 1268 22 589  x 103 1.57 114
TABLE I

EVALUATION OF THE PERFORMANCE FOR DIFFERENT VALUES OF 7. THE DATA IS FOR (W g4, Degt) = (64,78), ON ARTY A7-100T DEVELOPMENT
BOARD, USING ARTIX-7 FPGA CHIP. SPECIFIC FPGA DEVICE IS XC7A100TCSG324-1. IN TIME X AREA PER SAMPLER, TIME IS IN TOTAL CYCLES,
AREA IS IN TOTAL LUTS.

r = 0, d = p[2]. This process is repeated until p and g are
both equal to 1.

Given the size N of the list to be sorted, in total 1/2 X
log(N) x (log(N)+1) rounds are needed to finish the merge-
exchange sort process. Due to the pipelined design of the
Merge-Exchange Sort module, the cycles needed for one
complete sorting approaches the theoretical limit: For example,
with N = 512, in total 45 rounds, 9,727 comparisons are
required, and for each comparison one cycle is needed for
memory read and write respectively, this leads to a theoretical
limit of 19,454 cycles; by use of our hardware design, in total
22,382 cycles are needed to sort a list of N = 512 elements,
which is very close to the theoretical limit. As we can see
from the above analysis, the memory access pattern in the
Merge-Exchange Sort module are fully dependent on
the parameter set (p, ¢, 7, d) which is further decided only by
the size of the list IV, therefore, the memory access pattern is
fixed and will not leak any secret-dependent information.

4) Update Gaussian Index Module: Between two merge-
exchange sorts, the g values of random number entries are
updated (line 12 in Algorithm 1). The memqmy is scanned
and updated from the beginning to the end, while each update
operates differently based on the entry type (CDT or random
values): If the entry stores a CDT value, its Gaussian index
is saved in an internal register reg_g and the memory entry
gets written with the same content; on the other hand, if the
entry stores a random number, the module will write the same
memory content with the g part updated with the value stored
in reg_g to the same memory entry. This way the Update
Gaussian Index module also runs in constant time with
a fixed memory access pattern.

V. EVALUATION

As described in Section [V, the CDT sampler module
can be flexibly configured by tuning three parameters: Batch
size n, CDT table width W 4, and CDT table depth D, 4.
In this section, a detailed analysis on the effects of these
parameters on the performance of the CDT sampler is given.
The logic usage data provided in the following tables exclude
the cSHAKE overhead unless pointed out specifically.

A. Sensitivity to Batch Size (n)

In modern lattice-based schemes, a large number of random
gaussian-distributed samples are usually needed. For example,
for qTESLA, in total 5120 random samples are needed in
variant gTESLA-p-1 and for variant gTESLA-p-1II, 12288 are
needed [7]. To generate such random samples, a simple
solution would be to use our CDT sampler with batch size
equals to the number of expected samples. However, this will
lead to a big memory overhead for storing a large number of
random numbers. A more time-area efficient solution would
be to repeatedly use a smaller-sized CDT sampler until all the
needed samples are collected.

Table | shows the sensitivity of the design to the batch
size n. Note that n can be chosen randomly without being
constrainted as a power-of-two. Further, when n = 1, this
is equivalent to the design of full scan CDT approach (as
discussed in Section II-C). The evaluation is based on gen-
erating n samples for gTESLA-p-I with security parameters
(o,A\,7) = (8.5.64,9.06) leading to a derived CDT of size
(Weat, Dear) = (64,78). As we can see from Table I, the
batch size n has a big impact on the design efficiency: As
n increases starting from n = 1, “TimexArea per Sample”



Wear  Cyc. PRNG  Cyc. Total LUT FF BRAM Fmax D.gt Cyc. Total LUT FF BRAM Fmax
(MHz) (MHz)
32 999 18,100 590 543 2 113.4 20 14,300 706 752 3 111.9
64 1820 18,900 798 768 3 116.5 32 15,200 699 752 3 116.8
96 2640 19,700 988 994 4 112.7 40 16,000 786 760 3 124.8
128 3360 20,400 988 1215 4 114.6 64 18,000 784 760 3 114.2
160 4180 21,300 1102 1443 5 117.0 80 19,500 787 768 3 115.7
192 5000 22,100 1224 1663 6 117.8 128 24,700 859 785 3 118.6
224 5720 22,800 1361 1893 7 113.6 160 28,000 864 793 3 119.6
256 6540 23,600 1762 2118 8 114.5 256 37,900 868 793 3 116.3
320 44,400 784 801 3 108.8
TABLE II 512 68,800 821 816 3 119.1
EVALUATION OF THE PERFORMANCE FOR DIFFERENT VALUES OF W 4, 640 84,900 913 824 3 113.4
(EXCLUDING PRNG). (n, D.g¢) = (160, 78). THE DATA IS FOR ARTY 1280 177,000 905 847 5 115.0
A7-100T DEVELOPMENT BOARD, USING ARTIX-7 FPGA CHIP. SPECIFIC 2560 391,000 925 871 10 120.2
FPGA DEVICE IS XC7A100TCSG324-1. 28 [1] 14,900 706 752 3 114.1
78 [7] 19,400 798 768 3 116.5
110 [7] 22,800 863 785 3 116.0
1718 [3] 244,000 907 847 5 115.0

and “Time per Sample” both decrease; however, when n is
too large, e.g., n = 1280, the efficiency of the design starts
dropping with an increasing memory overhead. In terms of
time-area product per sample, the design is most efficient in
when n = 160, therefore, n = 160 is chosen in the discussions
in the following subsections.

B. Sensitivity to CDT Width

Table II shows the sensitivity of the CDT sampler to the
precision. Recall that implemented precision is slightly larger
than /2 to ensure a security margin. Further, with the current
approach, 32-bit numbers are generated by the cSSHAKE-based
PRNG. Consequently, as expected, the number of required
cycles for generating random numbers increases linearly with
the increase of the precision. However, for the merge-exchange
sort, the cycles are not affected by the precision since the size
of the memory is fixed given n. In terms of logic utilization,
the precision has a big impact since it determines the size
of the basic computation units, e.g., register size, comparator
size, etc.

C. Sensitivity to CDT Depth

Table III shows the sensitivity of the design to different
CDT table depth. Recall that CDT table depth is equal to
[o7]. Gaussian sampling parameters are chosen as (o, A\, 7) =
(0,64,9.00) with o being a variant. This leads to a CDT of
size Deg: = [9.00 - 0| and W, 4 = 64. For a fixed batch size
n = 160, as expected, the performance is impacted similarly as
being impacted by n shown in Table I, since merge-exchange
sort module sorts the whole memory of depth n + [o7]. The
area increases slightly due to the change in the size (depth)
of the CDT memory. For comparison with existing work, [4],
[71, [3], the Table III also lists the evaluation of CDT table
depths of: 28, 78, 110, and 1718.

VI. COMPARISON AND RESULTS

This section compares the presented work with the software
CDT-based implementations of Gaussian samplers proposed
in qTESLA [20], and the state-of-the-art CDT-based hardware
implementation based on the binary search method as dis-
cussed in Section II-C.

TABLE III
EVALUATION OF THE PERFORMANCE FOR DIFFERENT VALUES OF o AND
FIXED 7 = 9.00, THUS DIFFERENT D4;. n=160 (BEST TIME X AREA
PRODUCT) EXCLUDING PRNG. THE DATA IS FOR ARTY A7-100T
DEVELOPMENT BOARD, USING ARTIX-7 FPGA CHIPS SUGGESTED BY
NIST. SPECIFIC FPGA DEVICE IS XC7A100TCSG324~-1. NOTE, BOTTOM
PART OF THE TABLE SHOWS DATA FOR SPECIFIC PARAMETERS MATCHING
THE CORRESPONDING CRYPTOGRAPHIC ALGORITHM DESIGNS CITED IN
THE BRACKETS.

A. Comparison with Software-Based CDT Samplers

Table I'V shows comparison to software based CDT sampler
used in qTESLA [20]. For the sampler itself, the data for Intel
Core 17-6700 was provided by qTESLA developers, while data
for ARM Cortex-M4 is estimated by us.” The entry “Total On-
Chip Power” in the Vivado synthesis report, which is generated
by Power Analysis Tool in Xilinx Vivado IDE, is adopted as
measure of energy consumption of the sampler on FPGAs.

Comparing high-end CPUs and FPGAs, the software imple-
mentation is faster than the hardware design when synthesized
for a high-end UltraScale+ FPGA in terms of the run-time
given the much higher CPU frequency. However, based on
average 65W power usage by the high-end CPU, the high-end
FPGA has about 3x slower runtime, but is about 20 x better
in power. Therefore, the FPGA design of the CDT sampler
is much more efficient in terms of power usage compare to a
CPU-based implementation.

Meanwhile, for comparing low-resource CPUs and FPGAs,
on ARM Cortex-M4, the software implementation does have
lower power usage compared to low-resource Artix-7 FPGA,
but in terms of running time, the low-resource FPGA is over
100x faster than the low-end ARM CPU. Therefore, our
hardware-based CDT sampler is more efficient compared to
the software implementations when taking both run-time and
power consumption into account.

2While we do not have data for the software sampler for ARM Cortex-
M4, based on comparison of whole qTESLA software on ARM, data from
https://eprint.iacr.org/2019/844.pdf, and on Intel, data from https://eprint.iacr.
org/2019/085.pdf, the M4 is about 6 slower in cycles and has 150 slower
clock. ARM Cortex-M4 power estimates are from https://developer.arm.com/
ip-products/processors/cortex-m/cortex-m4, assuming 151 uW/MHz.


https://eprint.iacr.org/2019/844.pdf
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Design Implementation Method Device Parameters Fmax Cycles Cycles Time Power
(o, A, 7) Total PRNG (W)
p-1 SW, [20] CDT Intel i7 (8.5, 64, 9.06) 3400 MHz 228,704 36,345 673 us  65.000 W
p-1II SW, [20] CDT Intel i7 (8.5, 125, 12.94) 3400 MHz 344,894 77,894 101.4 us  65.000 W
p-1 SW, [20], Our Est. CDT ARM M4 (8.5, 64, 9.06) 24 MHz 1,372,224 218,070  60,570.0 us 0.004 W
p-11I SW, [20], Our Est. CDT ARM M4 (8.5, 125, 12.94) 24 MHz 2,069,364 467,364  91,260.0 us 0.004 W
p-I HW, Our CDT Artix-7 (8.5, 64, 9.06) 115 MHz 62,256 5,327 541.2 us 0.299 W
p-1II HW, Our CDT Artix-7 (8.5, 128, 12.94) 118 MHz 71,328 10,375 603.0 us 0332 W
p-1 HW, Our CDT UltraScale+ (8.5, 64, 9.06) 236 MHz 62,256 5,327 264.2 us 3254 W
p-1II HW, Our CDT UltraScale+ (8.5, 128, 12.94) 259 MHz 71,328 10,375 275.2 us 3.284 W

TABLE IV

PERFORMANCE COMPARISON OF OUR HARDWARE BASED CDT SAMPLER WITH THE SOFTWARE SAMPLER IMPLEMENTATION IN QTESLA [

], WHICH 1S

MOST CLOSELY RELATED TO OUR HARDWARE DESIGN. SW INDICATES SOFTWARE IMPLEMENTATION, WHILE HW INDICATES HARDWARE
IMPLEMENTATIONS, BOTH GENERATE 512 SAMPLES. ALL IMPLEMENTATIONS ARE CONSTANT TIME AND HAVE FIXED MEMORY ACCESS PATTERNS.
ARTIX-7 1S THE XC7A100TCSG324-1 AND ULTRASCALE+ IS THE XCVU13P-FHGA2104-3-E.

Design Method Const. Const. Device LUT FF BRAM Fmax Cycles
Time  Acc. Pattern
PRNG Overhead Excluded
[15] CDT, binary search v X Virtex-6 53 17 1 193 Mhz 2560
PRNG Overhead Excluded
Our CDT, merge-exhange sort v v Virtex-6 946 813 3 126 Mhz 50,700
Our CDT, merge-exhange sort v v Artix-7 893 796 3 113Mhz 50,700
Our CDT, merge-exhange sort v v UltraScale+ 839 796 3 251 Mhz 50,700
PRNG (¢cSHAKE) Overhead Included
Our CDT, merge-exhange sort v v Virtex-6 3949 1222 4 126 Mhz 56,000
Our CDT, merge-exhange sort v v Artix-7 3334 1168 3 113 Mhz 56,000
Our CDT, merge-exhange sort v v UltraScale+ 3074 1168 3 251 Mhz 56,000
TABLE V

PERFORMANCE OF THE CDT SAMPLER AND COMPARISON WITH RELATED WORK [

THIS TABLE ARE ALL FOR GENERATING 512 SAMPLERS. FOR DATA FROM [

1, ALL WITH (0, A, 7) = (3.33,64,9.42). CYCLES PROVIDED IN
], WE SHOW ONLY THEIR DESIGNS WHICH STORE CDT IN BRAMS, AS WE

DO. VIRTEX-6 IS 6 VLX75T-2FF484, ARTIX-7 1S XC7A100TCSG324-1, AND ULTRASCALE+ IS XCVU13P-FHGA2104-3-E.

B. Comparison with Hardware-Based CDT Samplers

Howe et al. [15] provided a comprehensive evaluation of
discrete Gaussian samplers in hardware and, among others,
presented one implementation of binary-search based CDT
sampler, which works in constant time. The binary search and
sort-based CDT samplers are both constant-time in hardware
(although binary search is not constant-time in software and
sort-based CDT sampling is constant-time in software). When
implemented in hardware, the binary-search based CDT sam-
pler is efficient both in area and performance, however, as
discussed in Section [I-C, the memory access pattern in the
design is uniquely determined by the random uniform sample,
therefore their design et al. [15] is possibly vulnerable to
power or EM side-channel attacks.

We synthesized our CDT sampler with the same parameters
as in [15], that is (o, A\, 7) = (3.33,64,9.42). Table V shows
the results for various FPGA boards. Based on the data, as
expected, our design is less efficient compared to the binary-
search based CDT sampler [15]. However, our design fully
eliminates the memory-trace dependency on secret samples
and therefore is much more resistant to potential power or
EM side-channel attacks.

VII. CONCLUSION

This paper presented a novel hardware implementation of
a constant-time discrete Gaussian sampler with fixed memory
access pattern realized on FPGAs. The design used an ap-
proach based on Cumulative Distribution Table and a merge-
exchange sort algorithm that enables generating samples in
batches. Due to the use of the merge-exchange sort algorithm,
the memory access pattern is always fixed, regardless of
the values of the secret samples. The presented sampler can
be fully parameterized at compile-time based on the needed
standard deviation, precision, tail cut, and the batch size. It is
the first CDT based design in hardware that is constant-time
and has fixed memory access pattern.
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