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Abstract—Quantum Singular Value Transformation (QSVT)
is a powerful framework that can be applied across a wide
range of quantum applications, including solving linear systems
of equations, phase estimation, or amplitude amplification as
employed in Grover’s search algorithm. QSVT is in effect a meta-
algorithm that can be used to realize various other functionalities
or applications. QSVT is typically configured with different
polynomials to realize the different functions, and the polynomials
are in turn encoded into quantum gate operations that execute
on the quantum computer. If an adversary is able to recover
the gate operations, specifically gate rotations and their angles,
from the quantum computer, they can then attempt to recover
the polynomial used, and from the polynomial they can attempt
to recover the function that the victim is executing. This paper
evaluates different functions implemented in QSVT and how they
map to different polynomials and the phase angles. It focuses on
the correlation between the phase angle values and the number
of phase angles for the different functions implemented using
QSVT. The paper shows that knowing the phase angle values,
or even just the number of phase angles, something an attacker
can learn through a side channel, allows an attacker to learn the
type of functionality being implemented by QSVT.

Index Terms—quantum computing, side channels, QSVT

I. INTRODUCTION

In the current Noisy Intermediate-Scale Quantum (NISQ)

era, quantum hardware is mainly accessed through cloud-based

platforms. Leading providers, including IBM Quantum [1],

Amazon Braket [2], or Microsoft Azure Quantum [3], provide

remote execution services on their Quantum Processing Units

(QPUs). In addition to major cloud providers giving access

to quantum computers, many quantum computer developers

themselves have built their own cloud access, for example,

Quantinuum built Quantinuum Nexus [4] to give access to

their QPUs, or IQM built IQM Resonance [5] to give access

to their QPUs. In all the settings, QPUs operate under control

of the cloud providers and are multiplexed among different

users. This remote, shared-access model, while enabling broad

access, also introduces novel security considerations.

Emerging research has begun to explore various side-

channels in quantum computers, especially when considering

such cloud-based quantum computers. Broadly, research has

explored side-channels in two directions. First, research has

focused on side channels in quantum computer controllers [6],

[7]. A malicious cloud provider or an insider could collect
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Fig. 1. Overview of the threat model and attack on QSVT algorithm:
user submits a QSVT circuit to the quantum computer, while attacker
may use side channels in controller or QPU to try to learn about the
gates being executed and then the QSVT configuration information.

power traces from the controllers to attempt to recover the

quantum gate operations being executed. Second, research

has focused on side channels realized via crosstalk within

QPUs [8]. An attacker co-located with the victim learn the

two-qubit gate operations being executed by the victim, for

example. The second direction assumes multi-tenant quantum

computers, not deployed today, but widely researched.

Considering all the side-channel threats in quantum com-

puters, this work explores how such threats could affect the

Quantum Singular Value Transformation (QSVT) algorithm

executed on remote, cloud-based quantum computers. The

overview of the threat is shown in Figure 1. QSVT does not

solve a single problem, rather it is a general framework that

realizes many algorithms by choosing an appropriate target

polynomial within its configuration. Different configurations,

i.e. different polynomials, are used to implement different

functionality. The polynomials are in turn encoded into quan-

tum gate operations that execute on the quantum computer. If

an adversary is able to recover the gate operations from the

quantum computer via a side-channel, they can then aim to

recover the polynomial used, and from the polynomial they can

aim recover the functionality or algorithm. Unique feature of

QSVT is that the structure of the algorithm is fixed for all the

different functionalities, while the only difference is different

number and type of rotation gates (corresponding to different

polynomials). This can simplify potential security attacks as

the attacker only has to learn about the rotation gates and their
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angles from the side channels, as discussed later in this paper.

A. Contributions

The contributions of this work are:

• This work is the first study to consider how side channels

can be abused against QSVT algorithm.

• This work analyzes three different polynomials used with

QSVT: one for matrix inversion, one for cubic function,

and one for Grover’s amplitude amplification function.

• This work analyzes the rotation angle values and their

number and how they are related to the polynomials.

• This work further performs sensitivity study to understand

how noisy side-channel (resulting in rotation angle values

learned by the attacker containing some noise) could af-

fect the attacker’s efforts to learn the QSVT functionality.

II. BACKGROUND ON QSVT

QSVT is a powerful framework that enables quantum al-

gorithms to apply polynomial transformations to the singular

values of matrices embedded within unitary operators. By

leveraging this technique, quantum computers can efficiently

manipulate matrix properties such as eigenvalues and singular

values with exponential advantages over classical approaches.

This allows QSVT to be applied across a wide range of quan-

tum applications, including for matrix inversion via f(x) =
1/x, phase estimation via f(x) = sign(x), Hamiltonian sim-

ulation for approximating quantum time evolution, or ampli-

tude amplification as employed in Grover’s search algorithm,

among others. This versatility makes QSVT a foundational

tool in the development of advanced quantum algorithms.

The approximation degree is the primary driver of query

complexity and gate count in QSVT. In Hamiltonian simu-

lation, if H is provided via an (α, ·, ·) block-encoding, the

necessary and sufficient number of block-encoding invocations

to implement e−iHt within error ε is

Θ

(

α|t|+
log(1/ε)

log
(

e+ log(1/ε)/(α|t|)
)

)

,

matching optimal dependence on t and ε up to iterated

logarithms [9]. Within QSVT-based simulation, the choice

of amplitude-amplification subroutine affects constants and ε-

dependence: oblivious amplitude amplification (OAA) yields

O
(

α|t|+log(1/ε)
)

queries, while fixed-point amplitude ampli-

fication (FPAA) incurs O
(

α|t| log(1/ε)+log2(1/ε)
)

. Analyses

and numerics consistently favor OAA in query count across

a broad (t, ε) range [10]. On the approximation side, the

boundedness constraint inherent to QSVT (polynomials must

remain bounded on [−1, 1]) governs the attainable degree for

target functions. A practical ”bounded Chebyshev truncation”

meta-theorem provides degree bounds of the form O
(

b

δ
log b

δε

)

for piecewise-smooth functions on [−1, 1] (after rescaling),

directly translating into O(d) query complexity with d given

by the bound [11]. Moreover, for functions such as exp(βx)
used in Gibbs-style subroutines, imposing boundedness may

necessarily increase the required degree (and hence queries).

The imposed boundedness in some regimes increases the

Fig. 2. QSVT circuit

required degree by nearly a quadratic factor relative to un-

constrained approximation, which explains observed runtime

overheads in QSVT-based optimization pipelines [11]. Recent

generalized variants (GQSP/GQET/GQSVT) relax structural

constraints on implementable polynomials (allowing complex

coefficients and indefinite parity) while preserving the O(d)
query rule-of-thumb. Crucially, they improve the classical

phase-finding cost from Õ(d2) in QSP/QSVT to nearly linear

Õ(d), which can dominate end-to-end runtime when many

different polynomials are synthesized [12]. These generalized

schemes may require down-scaling by a factor β relating the

monomial- and Chebyshev-basis norms of the polynomial; β
is at most O(log d) in general and can be bounded by 2 in

certain structured cases, so scaling losses are modest in prac-

tice [12]. Overall, across standard and generalized frameworks,

degree/accuracy tradeoffs (with boundedness), block-encoding

normalization α, and amplification strategy together determine

the concrete query/gate complexity of QSVT-style algorithms.

QSVT encodes the f(x) functions through three main steps:

it first block-encodes the target matrix A into a larger unitary

U , then approximates the target function f(x) using a polyno-

mial, then converts it to a Chebyshev polynomial, and finally

uses Quantum Signal Processing (QSP) to generate a sequence

of controlled phase rotations, i.e. angles, to implement the

polynomial transformation on the singular values. The QSP

phase angles for the coefficients in the Chebyshev polynomial

are computed using methods such as Laurent method [13].

Based on these phase angles, the resulting quantum circuit

applies phase rotation gate (typically a Z-rotation). This is re-

peated for all the phase angles. Note that if the target function

f(x) is even, then only even Chebyshev terms appear; if the

target function f(x) is odd, then only odd Chebyshev terms

appear. However, the number of phase rotations corresponds

to the degree of the polynomial, and generally for d-degree

polynomial there will be d+ 1 angles; zero coefficient in the

polynomial does not mean the corresponding phase rotation

angle is zero. The final QSVT quantum circuit incorporates the

sequence of phase rotation gates with other gates in-between.

If an attacker gains access to these phase rotation angles

or their number, such as through side-channel analysis, they

may be able to infer type of the underlying function. In

this study, we explore the extent to which an attacker could

recover function from leaked phase angles, and analyze how

sensitive these angles are to small perturbations in f(x). These

perturbations are meant to represent noise in the side channel.
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III. THREAT MODEL

This work assumes an attacker has access to a side-channel

information about the quantum circuit executing on the remote

quantum computer. Existing work [6], [7], [8] has already

demonstrated various side-channel attacks in controllers or

QPUs them self. The attack setup is shown in Figure 1. From

these side channels, we assume the attacker is able to get

information about the types of gates being executed on the

quantum computer, especially the phase angle rotations.

To launch the attack, we assume the attacker knows that

the victim is executing a QSVT algorithm and thus knows the

typical QSVT circuit structure, but he or she does not know

specific target function f(x) being implemented. The threat

model in particular does not assume the attacker has access to

the full polynomial representation, the Chebyshev coefficients,

or direct measurements of the internal quantum state. All they

can access is the phase rotations and their number through

the side channel. The goal of the attacker is exactly to try to

recover the type of the target function being executed from

the side channel information about the phase rotations.

Due to noisy nature of side channels, we also consider case

where the attacker does not have exact information about the

quantum gates and the phase rotations, but has partial or noisy

access to the phase angle sequence {φ0, φ1, . . . , φd}. We later

simulate different noise levels in our experiments.

IV. EXPERIMENTAL METHODOLOGY

The experimental methodology in this work followed five

steps in order to analyze vulnerability of QSVT to side-

channel attacks:

(A) Code Survey: We identified publicly available QSVT

implementations from repositories such as GitHub.

(B) Function Approximation: Target functions were approx-

imated using Chebyshev polynomials, and their coeffi-

cients were extracted.

(C) Noise Injection: Controlled noise was introduced into

the coefficients; modifying coefficients results in changes

to the phase angles and this simulates noise in the

side channel.

(D) Phase Angle Computation: The PyQSP library’s

laurent method was used to convert the Chebyshev

polynomials (with coefficients with and without noise)

into a phase angle sequence.

(E) Phase Angle Comparison: The sequences of perturbed

phase angles were compared to the original sequences of

phase angles to evaluate the impact of the perturbations.

A. Code Survey

We identified a small number of publicly available repos-

itories with QSVT algorithms that could be executed. We

mainly leveraged Classiq’s code [14] from which we took the

optimization formula and the adjusting function. However, we

used the pyqsp library [15] for all three functions to generate

the phase angle sequences.

B. Function Approximation

The functions evaluated in this work include matrix in-

version (f(x) = 1/x), a cubic function (f(x) = x3), and

Grover’s amplitude amplification function. Each function was

represented in Chebyshev polynomial form.

For the matrix inversion case (f(x) = 1/x), we adapted

an implementation from Classiq’s library [16] which includes

QSVT functionality that approximates the function over a

bounded singular value interval [σmin, σmax], typically con-

strained to (0, 1]. Due to the difficulty of approximating 1/x
near zero, the method required a high-degree polynomial

specifically, a 30-degree Chebyshev approximation. Classiq’s

approach uses convex optimization to minimize the maximum

approximation error over the specified spectral interval, re-

sulting in a high-fidelity polynomial tailored to the singular

value distribution of the input matrix. Note that the inversion

polynomial must be odd, since 1/x itself is an odd function

and QSP only works with polynomials that respect this parity.

When the input is a degree-30 polynomial, Classiq treats the

input degree as an upper bound and automatically rounds it

down to the nearest odd degree so that the approximation

stays inside the odd-only constraint. The result is a degree-

29 polynomial with corresponding 30 phase angle rotations;

recall that for degree-d polynomial there will be d+1 angles.

For the cubic function case (f(x) = x3), we constructed

the polynomial exactly using its Chebyshev expansion. In

particular,

f(x) = 1

4

(

T3(x) + 3T1(x)
)

,

so the target polynomial is degree-3 with nonzero coefficients

only for the odd Chebyshev terms T1 and T3, which are:

T1(x) = x

and

T3(x) = 4x3 − 3x

Because x3 is already an odd function, it naturally satisfies

the parity requirements of the Laurent-based QSP synthesis,

and no adjustment to enforce parity is needed. Also, since the

representation is exact and minimal, no convex optimization or

high-degree approximation is required here. The QSP Laurent

synthesis therefore produces a degree-3 polynomial, which

corresponds to 4 phase rotations in the final sequence.

For the Grover’s amplitude amplification function we use

cubic Chebyshev basis function that has support only on the

T3 term, i.e.,

f(x) = T3(x)

so the target polynomial is degree-3, and the T3 term is:

T3(x) = 4x3 − 3x,

with coefficients {0, 0, 0, 1} in the Chebyshev expansion basis.

Because T3(x) is an odd polynomial, it is naturally compatible

with the parity constraints required by the Laurent-based QSP

synthesis. Similar to the x3 case, the synthesis produces a

degree-3 polynomial, resulting in 4 phase rotations in the

final sequence.
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TABLE I
FIRST FOUR PHASE ANGLES FOR THE TESTED ALGORITHMS.

Alg. Angle 1 Angle 2 Angle 3 Angle 4

Matrix Inv. 4.9294 3.1011 3.1754 3.0951
Cubic 4.3741 2.0309 2.0309 -8.1923
Grover’s 3.1591 3.1398 3.1398 -9.4073

C. Noise Injection

To simulate noisy side-channel information, noise was

added to the coefficients. Section VI contains more details for

the sensitivity study. In brief, we tested various magnitudes of

noise from 1×10−1 to 1×10−4 introduced into the coefficients

of the polynomials.

D. Phase Angle Computation

The Laurent method is standard in Quantum Signal Pro-

cessing (QSP) for computing the phase angles that implement

a target polynomial. Starting from a polynomial expressed in

the Chebyshev basis, it recursively factorizes the associated

unitary matrix into a sequence of single-qubit rotations (phase

angles) interleaved with the signal operator. This method

produces exact phase sequences that satisfy unitarity and parity

constraints, enabling precise implementation of polynomials

on quantum circuits without iterative optimization. It is imple-

mented by PyQSP library’s laurent method. This was done

for the polynomials with coefficients with and without noise.

Resulting in two different sets of angles for each polynomial,

with and without noise respectively.

E. Phase Angle Comparison

The sequences of perturbed phase angles were compared to

the original sequences of phase angles to evaluate the impact

of the perturbations. A simple difference between the angle

values was computed for this.

V. CLASSIFYING QSVT FUNCTIONALITY FROM PHASE

ANGLE VALUES

To demonstrate the potential for side channels, we devel-

oped a very simple classifier. The key observation is that the

phase rotation angles are unique to each of the function: matrix

inversion, cubic function, and amplitude amplification from

Grover’s search. Since each function may contain different

number of phases, we put in a limit that attacker has access

to only first four phase angles. The first four angles for the

three functions used in this work are shown in Table I.

The classifier simply computes the Euclidean distance be-

tween the input vector being tested and each of the three

reference vectors. Each vector contains four phase angles. The

output of the classifier is the class of the reference vector that

is closest to the input being tested. We tested the classifier by

adding small amounts of noise to the values of the reference

vectors and using these as test inputs. More detailed study of

the noise is presented in Section VI.

Table II shows the confusion matrix. It can be seen that with

small changes in the values in the vectors, i.e. small changes

to the rotation angles, the predicted class always matches the

TABLE II
CONFUSION MATRIX FOR CLASSIFICATION OF THE THREE ALGORITHMS.

True / Predicted Matrix Inv. Cubic Grover’s

Matrix Inv. 100% 0 0
Cubic 0 100% 0
Grover’s 0 0 100%

true class. This indicates that an attacker who has access to

a small subset of the rotation angle values, e.g., obtained

through a side channel, can easily classify the algorithm being

used by the victim – assuming the attacker has access to the

reference values.

VI. NOISE SENSITIVITY ANALYSIS

In this section, we further analyze how noise affects the

ability of attacker to learn about the type of function being

executed by the victim. To simulate noisy side channel, we add

noise to the coefficients in the polynomial, and then generate

new rotation gate angles. This simulates noisy side channels

where the phase angles obtained by the attacker are different

from the actual ones used in the algorithm.

A. Matrix Inversion: f(x) = 1/x

First, we evaluated the phase sensitivity of the QSVT

implementation for the matrix inversion function (f(x) = 1/x)

under two types of perturbations to the phase sequence.

In the first experiment, additive noise with a magnitude of

1 × 10−1 was applied to 15 odd-indexed coefficients at

indices [1, 3, 5, . . . , 29]. Recall that if target function f(x) is

odd, then only odd Chebyshev terms appear, and that due

to rounding down we have degree-29 polynomial with 30
phase angles {φ0, φ1, . . . , φ29}. This modification resulted in

a maximum phase deviation of approximately 0.2126 radians.

In the second experiment, additive noise with a magnitude of

1×10−2 was applied to 15 odd-indexed coefficients at indices.

This rounding introduced a smaller maximum deviation of

0.0203 radians.

The results are shown in Figures 3 and 4. With the added

noise, the QSVT phase sequences still look almost identical.

Further, the added noise does not change the number of phase

angles used. With or without noise, the attacker is able to

identify the 30 phase rotations, corresponding to the degree-

29 polynomial that was used.

B. Cubic Function: f(x) = x3

Second, we performed a phase sensitivity analysis on the

QSVT implementation for the cubic function (f(x) = x3),

using a degree-3 Chebyshev polynomial approximation. In

this experiment, noise with a magnitude of 1 × 10−2 was

added to three odd-indexed coefficients at positions [1, 3]. The

resulting phase difference yielded a maximum deviation of

approximately 0.0773 radians

The results are shown in Figure 5. The added noise did not

significantly change the rotation angles. For the noise level of

1 × 10−4, the maximum deviation in radians was bigger for

this cubic function compared to the matrix inversion case. This
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Fig. 3. Phase rotation angles for the matrix inversion function (f(x) =
1/x) where 30 rotations are used. This figure shows original phases and the
perturbed, noisy phases where the side-channel noise is emulated by adding
random additive noise with a magnitude of 1×10−1 radians to phase angles.
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Fig. 4. Phase rotation angles for the matrix inversion function (f(x) =
1/x) where 30 rotations are used. This figure shows original phases and the
perturbed, noisy phases where the side-channel noise is emulated by adding
random additive noise with a magnitude of 1×10−2 radians to phase angles.
Note that the changes compared to Figure 3 are very minimal and the figures
look almost identical.

may be related to having fewer terms in the polynomial. Still,

the added noise does not change the number of phase angles

used. With or without noise, the attacker is able to identify the

4 phase rotations, corresponding to the degree-3 polynomial.

C. Grover’s Amplitude Amplification Function

Third, we analyzed the phase sensitivity of the QSVT

implementation for Grover’s amplitude amplification function,

represented using a Chebyshev polynomial approximation.

A degree-3 polynomial was used. To evaluate the effect of

perturbations, noise with a magnitude of 1×10−4 was added to

two odd-indexed coefficients at positions [1, 3]. This modifica-

tion resulted in a maximum phase deviation of approximately

0.0075 radians.

The results are shown in Figure 6. The cubic function and

Grover’s amplitude amplification function use polynomials

of same degree. But noise added to coefficients in Grover’s

amplitude amplification function was less than that in cubic

function, and the resulting maximum phase deviation was less

as well, as could be expected. This time again, the added

noise does not change the number of phase angles used. With

or without noise, the attacker is able to identify the 4 phase

rotations, corresponding to the degree-3 polynomial.
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Fig. 5. Phase rotation angles for the cubic function (f(x) = x3) where 4
phase rotations are used. This figure shows original phases and the perturbed,
noisy phases where the side-channel noise is emulated by adding random
additive noise with a magnitude of 1× 10−2 radians to phase angles.
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Fig. 6. Phase rotation angles for Grover’s amplitude amplification function
where 4 phase rotations are used. This figure shows original phases and the
perturbed, noisy phases where the side-channel noise is emulated by adding
random additive noise with a magnitude of 1×10−4 radians to phase angles.

VII. DISCUSSION

Our findings suggest that Quantum Signal Processing phase

angles encode the target polynomial in a structured manner.

While this regularity contributes to the robustness of QSVT

circuits, it also introduces potential side-channel risks. An

adversary with partial access to the phase sequence could

exploit this structure, particularly if the function’s properties,

e.g., parity or degree are known, to reconstruct the original

function. Ironically, the inherent resilience of QSP to noise

may increase its susceptibility to reverse engineering via side-

channel or statistical attacks.

In particular we have found that:

1) For same phase index, phase angles have different magni-

tudes for different functions, for example cubic function

and Grover’s have different angles by about 1 radian

or more, and are quite unique. A simple classifier can

classify the function type based on knowledge of first

few angles (Section V).

2) Even with noisy phase angles, the attacker who can

find just the number of rotations gains the knowledge

of the degree of the polynomial. This can be easily

exploited as, for example, matrix inversion has vastly

larger polynomial than Grover’s algorithm, attacker could
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identify these two just by observing number of rotations

without knowing detailed angles (Section VI).

VIII. DEFENSES

To mitigate these risks, we recommend that QSVT imple-

mentations adopt strategies of phase obfuscation. One such

approach is angle randomization, where a secret global or

local shift is applied to the phase angles and later reversed.

Another defense involves function padding or camouflage,

wherein harmless modifications are introduced to the target

function. For example, approximating a modified function such

as f(x) = 1

x
+ ex

3

instead of 1

x
alone can obscure the

original computational intent and hinder reverse engineering.

Additionally, alternative phase synthesis methods, such as us-

ing nonlinear basis functions or Fourier-type expansions, may

provide increased resilience against side-channel attacks while

preserving approximation fidelity. These techniques represent

promising directions for future work in secure and privacy-

preserving quantum algorithm design.

Our findings were based on assumption of availability of

side-channel information. Hardware methods could be used to

limit the side-channels. For example, control pulses could be

obfuscated [17] to limit ability of attackers to launch side-

channel attacks in the first place. On the software side, if

the side-channel is due to co-location of the attacker and

the victim, an anti-virus like solutions could be used [18]

to detect malicious attackers who are trying to collect side-

channel information, and prevent from executing.

IX. CONCLUSION

In this work, we showed that if an adversary is able to

recover the gate operations, specifically gate rotations and

their angles, from the quantum computer as a victim QSVT

algorithm executes, they could then identify the specific QSVT

function that the victim was executing. This paper evaluated

three different functions implemented in QSVT (matrix inver-

sion, cubic function, and amplitude amplification from grover’s

search) and how they mapped to different polynomials and the

phase angles. It focused on the correlation between the phase

angle values and the number of phase angles for the different

functions implemented using QSVT. The paper showed that

knowing the phase angle values allows the attacker to identify

the function, if they have the reference values for the rotation

angles of each candidate function. Further, even just knowing

the number of the phase angles allows an attacker to guess

the type of functionality being implemented by QSVT, such

as they can guess whether it is matrix inversion (due to

many rotations) or cubic function (due to few rotations). This

work demonstrates the need to consider protection for QSVT

running on quantum computers, and presented few initial

defense ideas.

REFERENCES

[1] “IBM Quantum,” https://quantum-computing.ibm.com/.

[2] “Amazon Braket,” https://aws.amazon.com/braket/.

[3] “Azure Quantum,” https://azure.microsoft.com/en-us/products/quantum.

[4] “Quantinuum Nexus,” https://nexus.quantinuum.com/.
[5] “IQM Resonance,” https://meetiqm.com/products/iqm-resonance/.

[6] F. Erata, C. Xu, R. Piskac, and J. Szefer, “Quantum circuit reconstruction
from power side-channel attacks on quantum computer controllers,” in
Transactions on Cryptographic Hardware and Embedded Systems, ser.
TCHES, September 2024.

[7] C. Xu, F. Erata, and J. Szefer, “Exploration of power side-channel
vulnerabilities in quantum computer controllers,” in Proceedings of

the Conference on Computer and Communications Security, ser. CCS,
November 2023.

[8] N. Choudhury, C. N. Mude, S. Das, P. C. Tikkireddi, S. Tannu, and
K. Basu, “Crosstalk-induced side channel threats in multi-tenant nisq
computers,” 2024. [Online]. Available: https://arxiv.org/abs/2412.10507

[9] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value
transformation and beyond: exponential improvements for quantum ma-
trix arithmetics,” in Proceedings of the Annual ACM SIGACT Symposium

on Theory of Computing, ser. STOC ’19, 2019, p. 193–204.

[10] K. Toyoizumi, N. Yamamoto, and K. Hoshino, “Hamiltonian simulation
using quantum singular value transformation: complexity analysis and
application to the linearized vlasov-poisson equation,” 2023. [Online].
Available: https://arxiv.org/abs/2304.08937

[11] E. Tang and K. Tian, “A cs guide to the quantum singular value
transformation,” 2023. [Online]. Available: https://arxiv.org/abs/2302.
14324

[12] C. Sünderhauf, “Generalized quantum singular value transformation,”
2023. [Online]. Available: https://arxiv.org/abs/2312.00723

[13] L. Laneve and S. Wolf, “On multivariate polynomials achievable with
quantum signal processing,” Quantum, vol. 9, p. 1641, 2025.

[14] “Qsvt example notebook,” https://github.com/Classiq/classiq-library/
blob/main/functions/qmod library reference/classiq open library/qsvt/
qsvt.ipynb.

[15] “pyqsp: Python quantum signal processing,” https://github.com/ichuang/
pyqsp.

[16] T. Goldfriend, I. Reichental, A. Naveh, L. Gazit, N. Yoran, R. Alon,
S. Ur, S. Lahav, E. Cornfeld, A. Elazari et al., “Design and
synthesis of scalable quantum programs,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.07372

[17] T. Trochatos, S. Deshpande, C. Xu, Y. Lu, Y. Ding, and J. Szefer,
“Dynamic pulse switching for protection of quantum computation on
untrusted clouds,” in International Symposium on Hardware Oriented

Security and Trust, ser. HOST, May 2024.

[18] S. Deshpande, C. Xu, T. Trochatos, H. Wang, F. Erata, S. Han, Y. Ding,
and J. Szefer, “Design of quantum computer antivirus,” in Proceedings of

the International Symposium on Hardware Oriented Security and Trust,
ser. HOST, May 2023.

6


	Introduction
	Contributions

	Background on QSVT
	Threat Model
	Experimental Methodology
	Code Survey
	Function Approximation
	Noise Injection
	Phase Angle Computation
	Phase Angle Comparison

	Classifying QSVT Functionality from Phase Angle Values
	Noise Sensitivity Analysis
	Matrix Inversion: f(x) = 1/x
	Cubic Function: f(x) = x3
	Grover's Amplitude Amplification Function

	Discussion
	Defenses
	Conclusion
	References

