
Towards Fast Hardware Memory Integrity Checking
with Skewed Merkle Trees

Jakub Szefer
Computer Architecture and Security Laboratory

Yale University
jakub.szefer@yale.edu

Sebastian Biedermann
Security Engineering Group

TU Darmstadt
biedermann@seceng.informatik.tu-darmstadt.de

ABSTRACT

Protection of a computer’s memory’s integrity is crucial in
situations where physical attacks on the computer system
are a threat. Such attacks can happen during physical break
in into a data center or when a mobile device is lost or
stolen. Since the memory modules can be easily removed
or manipulated, the integrity of their contents cannot be
trusted under threat of physical attacks. To counter this,
hardware memory integrity checking schemes have been pro-
posed, and realized in a number of security microprocessor
architectures. At the core of these schemes is usually some
form of a Merkle tree. All previous work on security ar-
chitectures, however, uses full, balanced Merkle trees. In
this paper, we propose a new solution to hardware memory
integrity checking based on skewed Merkel trees. Because
not all memory locations are accessed equally frequently in
a modern computer system, a skewed Merkle three offers
better performance as the frequently accessed memory lo-
cations can be located on the leaves of the skewed Merkle
tree that have shorter path to the root – thus fewer nodes of
the tree have to be accessed during integrity checks. Skewed
Merkle trees offer better system performance when consid-
ering realistic memory access patterns where some page are
accessed more frequently than others, they do not impact
caches as much as full Merkle trees, and they do not require
more storage than full, balanced Merkle trees.

Keywords

Hardware Memory Integrity; Merkle Trees; Skewed Merkle
Tree

1. INTRODUCTION
When a threat of physical attacks on memory modules in

a computer system is a possibility, then the confidentiality,
integrity and availability of the DRAM memory contents
needs to be protected. In this work, we focus on the in-
tegrity property. To protect integrity of DRAM memory’s
contents, various integrity protection schemes have been pro-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
HASP ’14, June 15, 2014, Minneapolis, MN, USA.
Copyright is held by the author(s). Publication rights licensed to ACM.

posed. Most common approaches are based on Merkle trees.
A Merkle tree is a tree data structure where the leaves con-
tain the items which need to be checked for integrity (e.g.
memory pages of DRAM). Each interior node’s value is gen-
erated using a cryptographic hash over contents of its chil-
dren nodes (or in case of last level of nodes, the contents of
the leaves). Through this construction, the root node of the
Merkle tree contains a hash of the entire set of leaf nodes
(e.g. all the memory pages of DRAM). If the root node is
stored securely, such as in a special on-chip register, then
the tree nodes can be stored in the insecure DRAM memory
(details about Merkle trees and certain caveats, e.g. use of
nonces for freshness, are discussed in Section 2).

If a secure microprocessor architecture uses Merkle trees
for memory integrity checking, then special hardware is in-
troduced inside the microprocessor chip to realize the Merkle
tree and to walk the nodes of the tree on memory accesses
to verify that the DRAM contents has not been maliciously
modified. The root node is securely stored in the micro-
processor register and can always be trusted. If a Merkle
tree was not used, then on each memory access the whole
memory would have to be read, hashed and the hash value
compared to the one stored securely on-chip. With Merle
tree, only the nodes (and their sibling nodes) on the path
for the leaf (which represents the particular memory page) to
the root need to be read and hashes compared at each level,
until the root is checked. Finally, the memory access can
proceed. These architectures can protect against realistic
attacks, such attacks on memory contents have been previ-
ously done in the real world, for example the Windows 7
password injection attacks using Firewire [1].

Problem Overview: The various hardware memory in-
tegrity checking designs which have been previously pro-
posed use full, balanced Merkle trees. Even when certain
optimizations are introduced, such as Bonsai Merkle trees
[16], to significantly improve performance, still, at the heart
of the scheme is a full, balanced Merkle tree. With a full,
balanced tree, each path from a leaf node to the root is of the
same length. This means, that each memory access requires
same amount of work to check the integrity of the memory;
even if cached trees are used [11].

In a modern computer system, however, not all memory
pages are made equal: some memory pages are accessed
more often than others. Thus, the efficiency of the memory
integrity checking schemes can be improved if paths from
the leaf nodes representing the frequently accessed memory
pages could be shorter. We propose that this can be realized
through the use of a skewed Merkle trees.

Our insight to use skewed Merkle trees for integrity verifi-
cation is based on observations, such as those shown in Fig-
ure 1. The graph shows frequency of physical memory ad-
dress accessed during the first 1.4×109cycles of boot up and
runtime of an ARM-based system with 256MB of DRAM.
It can be clearly seen that the addresses at low physical
memory and high physical memory are accessed dispropor-
tionately frequently.

Figure 1: Distribution of accessed to physical memory,

during first 1.4 × 109 cycles of boot up and runtime of

an ARM-based system with 256MB of DRAM. OS re-

lated accesses are much more frequent and located at

the low and high ends of the physical memory. Userland

accesses are more in-between, also, as more applications

are started, more accessed will be in the middle address

ranges as indicated by the arrow in the figure.

On the bottom range of physical address are the logical
Linux kernel addresses (used during early boot) and on the
top are the Linux kernel virtual addresses [6]. The user-
land (virtual) memory is usually mapped to the physical ad-
dresses in between the two ends, so as more applications are
started after boot up, more accessed will be made to mem-
ory and the graph will grow inwards form the high-memory
side. Again, note this graph shows the physical memory of
a Linux system, as this is what memory integrity checking
is concerned with.

Solution Outline: We propose to use skewed Merkle
trees as basis for hardware memory integrity checking. Sec-
tion 3 gives details of the solution and the skewed Merkle
tree structure and we evaluate design in Section 4. In sum-
mary, we design a skewed Merkle tree which has shorter
paths corresponding to low and high physical memory ad-
dress ranges, while the paths for less frequently accessed
middle pages are extended. This results in a design that
requires accessing fewer internal tree nodes for verification
as the system runs. Moreover, the total memory overhead
of the skewed trees is the same as for a full, balanced tree,
thus not adding any storage overhead. These improvements
can be applied to the variety of other proposals for different
schemes based on Merkle trees, as discussed in the section
on research challenges and opportunities, Section 5.

Paper Organization: Section 2 provides background
on hardware memory integrity checking. Section 3 presents
the new skewed Merkle tree approach to memory integrity
checking. Section 4 presents results of the evaluation. Sec-
tion 5 lists interesting research challenges and opportunities
that skewed Merkle tree design open. Related work is de-
scribed in Section 6 and the paper concludes in Section 7.

2. HARDWARE MEMORY INTEGRITY

CHECKING
This section presents background on Merkle trees and

their use in hardware memory integrity checking. Note that
all proposals we are familiar with are based on full, bal-
anced Merkle trees. Next section, Section 3 presents details
of a new approach to hardware memory integrity checking:
skewed Merkle trees. Related work section, Section 6 lists in
detail various types of previously proposed trees and opti-
mizations of trees that have been proposed or implemented
in different security architectures.

2.1 Memory Integirty Checking
Integrity checking is crucial when the integrity of the con-

tents of a computer system’s (DRAM) memory cannot be
trusted. This is true whenever physical attacks are consid-
ered. Today, as much personal data is stored on mobile
devices which can be easily lost or stolen, physical security
of the memory is very difficult to guarantee. To tackle this
threat, also present in server setting, not just mobile devices,
secure architectures such as AEGIS [20] or Bastion [5] have
been proposed which incorporate memory integrity check-
ing. Figure 2 shows a high-level diagram of a computer
system and the trusted and untrusted parts in threat mod-
els such as those considered by AEGIS, Bastion or similar
designs. In particular, the memory is not trusted. This is
the DRAM memory that holds the code and data, as well as,
it can hold values used to help integrity checks (e.g. internal
nodes of a Merkle tree). What is trusted, is the processor
chip, on-chip caches and registers inside the processor which
can hold values such as the root hash of a Merkle tree, as
described next.

Figure 2: Trusted and untrusted components of a

typical secure microprocessor design that incorporates

Merkle trees for memory integrity checking.

2.2 Integrity Checking with Merkle Trees

Merkle trees are used as basis of most hardware mem-
ory authentication schemes. The leaves of a Merkle tree
are notes which values need to be checked for integrity, i.e.
these are the DRAM memory pages that need to be checked.
Merkle trees use hash functions to generate values for the
intermediate notes in the tree; for example in a 2-ary Merkle
tree, given child nodes Node1 and Node2 values, a parent
node’s value is hash(Node1||Node2) (where “||” represents
concatenation). A sample integrity checking tree is shown in
Figure 3. Using this construction, the root node of the tree
is a hash value that depends on all the leaf nodes’ values.
If the root node is stored securely, then all the intermedi-
ate values need not be stored securely1. Consequently, as
Figure 2 showed, the root node is most often stored in an
on-chip register, while the other nodes are stored in memory.

Figure 3: General model of a 2-ary Merkle tree used for

integrity checking of 4 leaf nodes.

All memory integrity checking constructions, of which we
are aware, that have been previously presented are based
on a full, balanced Merkle tree; such sample tree is show
in Figure 3. To validate the integrity of a leaf node, all
the intermediate nodes on the path from the leaf node to
the root node need to be consulted. Thus, the validation
or checking depends directly on the number of levels of the
tree. With a full, balanced tree, the number of tree levels
NL is defined by: NL = logA(M), where A is the arity of
the tree.

Often, the node size of the tree is selected such as to
match the cache line size. E.g. SHA-256 algorithm gen-
erates hashes which are 32 Bytes in size, so that can be
conveniently used with caches that have cache line size as a
multiple of 32 Bytes. The leaf nodes are often assumed to be
4 KBytes in size to match the operating system’s memory
page size (although this can change in different operating
systems). There are, however, many changes to this basic
scheme and many optimizations that have been presented.

3. INTEGRITY CHECKING BASED ON

SKEWED MERKLE TREES
In this section we present our proposal for using skewed

Merkle trees for memory integrity checking. The key dif-
ference between regular Merkle tree and a skewed Merkle
tree is that the paths from different leaf nodes to the root
note have different lengths, depending on type of the skewed
tree. Thus, checking integrity of the leaf nodes which are on
the shorter path to the root takes less time and has lower
overhead in terms of memory accesses. By carefully struc-

1Note that to ensure freshness and prevent replay attacks,
nonces are often used when generating the hash values of
the nodes as well, this is not show for simplicity.

turing a skewed Merkle tree, we can significantly improve
the performance of the memory checking schemes.

Figure 4: Sample Merkle trees showing distinction be-

tween (a) full, balanced Merkle tree, (b) right skew-by-

one Merkle tree and (c) middle skewed-by-one Merkle

tree.

The insight behind this work is that not all physical mem-
ory pages are made equal. Our evaluation of a modern com-
puter system shows (c.f. Figure 1) that certain memory
pages, especially those associated with the operating sys-
tem, are accessed significantly more than others, on average.
Also, these pages tend to be located at predictable addresses:
low and high physical memory pages. Thus, by structuring
the skewed Merkle tree such that these frequently accessed
pages correspond to the leaf nodes with shorter path to the
root, performance can be improved.

3.1 Types of Skewed Merkle Trees
Different designs for skewed Merkle trees are possible.

Figure 4 (a) show a full, balanced tree, and two other de-
signs. Figure 4 (b) shows a right skewed Merkle tree since
nodes on the left side have shorter paths to root and go-
ing to the right, the paths get extended. Note, there can
be a mirror, left skewed tree. Figure 4 (c) shows a middle
skewed Merkle tree. In the middle skewed tree, just like in
the right skewed tree, some of the nodes have shorter paths.
These nodes, however, have been located on the both ends
of the tree, and the longer paths are in the middle. Note
that while Merkle tree has all paths from leaves to root of
same length, with the right and middle skewed trees, some
paths are shorter, while some are longer.

For 2-ary trees, such as those presented in Figure 4, if
there are L leaves of a full tree, then for a skewed tree, L/4
nodes have path to the root shorter by 1 hop, L/4 have same
path as for full tree and L/2 have a path that is 1 hop longer.
Likewise, the shortest path can be recursively shortened by
extending the long path. By careful structuring the tree
to match the memory access patterns we observe in mod-
ern systems, we can gain the benefit of the shorter paths,
without adversely being affected by the longer paths.

Similar skewed Merkle trees have been explored before in
context of certificate revocation schemes [13, 10], for exam-
ple. The key contributions of these works are on how to
efficiently traverse different types of Merkle trees which are
not a full, balanced tree. The insights from these works can
be applied to the design of the secure processor hardware
that would actually walk such a skewed tree and authenti-
cate the memory. In this work, we focus on a simple scheme
where the nodes are walked sequentially, but plan to incor-
porate the past work in future designs.

3.2 Tree Skewness
The skewed Merkle trees do not only have different shapes,

but can have different levels of tree skewness. As shown in
Figure 4, the tree in (c) is skewed-by-one compared to (a).
I.e. the minimum length form leaf to root is one less than for
a full tree. There are other skewness levels possible, such as
skewed-by-two, etc. With each level, the shorter paths gets
shorter, but the longest path also gets longer. Moreover, the
are 1/2 as many nodes on the short path as there are on the
long path, so skewing the tree too much can actually hurt
the performance.

4. EVALUATION
The evaluation presented in this section was performed on

an mobile device like configuration of ARM processor and
Linux system. In particular, GEM52 simulator was used
to obtain memory traces. Custom skewed Merkle tree sim-
ulation was written to simulate extra accessed due to the
integrity checking and to generate updated memory traces.
The DineroIV3 cache simulator was then used to evaluate
the overheads of the basic Merkle tree scheme and the pro-
posed skewed Merkle tree scheme.

4.1 Simulation Configuration
Simulated Hardware Configuration: 32-bit ARM-

based processor was simulated using GEM5 simulator. De-
tails of the various configurations used are shown in Table 1.
For each DRAM memory configuration, different cache con-
figurations were simulated. (Due to limitation of the GEM5
simulator, only up to 256MB of DRAM was simulated.)
Physical memory access traces were obtained from GEM5,
and used to drive cache simulation.

For the cache simulations, the caches were set to use the
least recently used (LRU) replacement policy. If an L2 cache
was present, then it was simulated as a shared cache. Ta-
ble 1 shows approximate architectures which each cache con-
figuration represents. The cache configurations were varied
slightly from the actual ones to introduce a variety of cache
sizes and set sizes in the tests.

Software Configuration: The simulated system was
used to boot up and run Linux 2.6.38.8, compiled for the
ARM platform and the GEM5 simulator.

4.2 Impact on Memory Hierarchy
In this paper we focus on evaluating the impact of the

full Merkle trees and the new skewed Merkle trees on the
memory hierarchy. Since fetching of the nodes of the merle
tree will pollute the caches, use of Merkle tree will degrade
the performance and introduce new cache demand misses.

2http://www.gem5.org
3http://pages.cs.wisc.edu/˜markhill/DineroIV/

Table 1: Simulated system configurations

Component Details

CPU 32-bit ARMv7

DRAM 256MB

Caches (ARM Cortex-A5 approx.)
L1 Dcache: 32 KB, 32 B/line, 4-WAY
L1 Icache: 32 KB, 32 B/line, 4-WAY
L2 cache: none

(ARM Cortex-A7 approx.)
L1 Dcache: 64 KB, 32 B/line, 8-WAY
L1 Icache: 64 KB, 32 B/line, 8-WAY
L2 cache: 1 MB, 64 B/line, 16-WAY

(ARM Cortex-A8 approx.)
L1 Dcache: 32 KB, 32 B/line, 4-WAY
L1 Icache: 64 KB, 32 B/line, 4-WAY
L2 cache: 512 KB, 64 B/line, 8-WAY

(ARM Cortex-A9 approx.)
L1 Dcache: 32 KB, 64 B/line, 2-WAY
L1 Icache: 32 KB, 64 B/line, 2-WAY
L2 cache: 2 MB, 128 B/line, 8-WAY

(ARM Cortex-A15 approx.)
L1 Dcache: 32 KB, 64 B/line, 4-WAY
L1 Icache: 32 KB, 64 B/line, 4-WAY
L2 cache: 1 MB, 64 B/line, 16-WAY

We show, however, that with the use of skewed Merkle tree,
this impact can be significantly reduced.

To evaluate the impact, we simulate boot up and runtime
of the ARM system with Linux and collect physical mem-
ory access traces. It was already shown that the memory
accesses tend to be quite localized, e.g. as was shown in
Figure 1.

4.2.1 L1 Caches

Running cache simulation on the raw memory accesses,
gives the cache behavior described in Table 2. This and
following tables list demand misses. The L1 data cache
misses are broken down to read misses, write misses and
“tree” misses. The reads and writes are of data, and “tree”
are access to the Merkle tree nodes. In Table 2 there is no
tree in use, so last column is empty.

Table 2: Cache behavior during boot up and runtime

without integrity checking overheads.

Config L1 I L1 D L1 D L1 D

read write tree

A5 0.0153 0.0373 0.0423 n/a

A7 0.0086 0.0296 0.0386 n/a

A8 0.0092 0.0373 0.0423 n/a

A9 0.0114 0.0309 0.0237 n/a

A15 0.0106 0.0278 0.0230 n/a

Introduction of a full, balanced Merkle tree degrades the
cache performance, as shown in Table 3. Instruction caches
are not affected as the tree nodes are treated as data. De-
pending on the cache configuration, the L1 cache miss rate
increased by 6.5x (reads) and 3.2x (writes) on average of the
five configurations.

The use of a right skewed-by-one tree, gives cache perfor-
mance, as shown in Tables 4. The L1 cache miss rate now

Table 3: Cache behavior during boot up and runtime

with a full Merkle tree in use.

Config L1 I L1 D L1 D L1 D

read write tree

A5 0.0153 0.2176 0.1102 0.064

A7 0.0086 0.1523 0.0773 0.0329

A8 0.0092 0.2176 0.1102 0.064

A9 0.0114 0.2595 0.1204 0.0664

A15 0.0106 0.2095 0.0815 0.0491

increases 5.6x (reads) and 2.7x (writes) on average of the
five configuration over baseline in Table 3.

Table 4: Cache behavior during boot up and runtime

with a right skewed-by-one Merkle tree in use.

Config L1 I L1 D L1 D L1 D

read write tree

A5 0.0153 0.1867 0.0948 0.0364

A7 0.0086 0.1162 0.0642 0.015

A8 0.0092 0.1867 0.0948 0.0364

A9 0.0114 0.2298 0.1030 0.065

A15 0.0106 0.1861 0.0719 0.0385

The use of a middle skewed-by-one tree, gives cache per-
formance, as shown in Tables 5. The L1 cache miss rate
is further improved, increasing only 4.8x (reads) and 2.3x
(writes) on average over the five configurations, over the
base with no Merkle tree.

Table 5: Cache behavior during boot up and runtime

with a middle skewed-by-one Merkle tree in use.

Config L1 I L1 D L1 D L1 D

read write tree

A5 0.0153 0.1636 0.0817 0.0217

A7 0.0086 0.0900 0.0543 0.0036

A8 0.0092 0.1636 0.0817 0.0217

A9 0.0114 0.2051 0.0894 0.0554

A15 0.0106 0.1652 0.0620 0.0286

We also characterize the extra memory fetches due to the
use of the different styles of Merkle trees. Figure 5 shows
the extra L1 data fetches (recall the Merkle tree nodes are
treated as data accesses in our simulation). It can be seen
that the right skewed Merkle tree is actually worst than
the regular full tree. On the other hand, use of the middle
skewed tree gives about 1.3× 109 fewer accesses.

4.2.2 L2 Caches

Our L2 cache evaluation focuses on the extra misses in-
duced through the use of the different types of Merkle trees.
Figure 6 shows the L2 cache demand misses. The fours bars
correspond to four tested configurations which had L2 cache
(recall A5 does not have L2 cache). It can be noticed that
the number of misses is related to the cache configuration,

Figure 5: Extra fetches due to different Merkle tree

configurations.

e.g. A8 always has the highest number of misses. Further-
more, pattern similar to one observed in L1 caches emerges.
The right skewed tree actually adds more misses than the
full tree. On the other hand, the middle skewed tree is bet-
ter (fewer cache misses) than both the full tree and the right
skewed tree.

Figure 6: L2 misses for different simulated configura-

tions of Merkle tree.

4.3 Evaluation Summary
Based on our results, it can be seen that the type of the

skewed Merkle tree has large impact on the memory hier-
archy performance. The middle skewed tree beats both the
full tree and the right skewed tree. In all cases of using a
Merkle tree there is a significant overhead. We are able to,
however, cut down the overhead from 6.5x to 4.8x which is
a 27% improvement. Nevertheless, further work is needed,
e.g. combine middle skewed Merkle trees with cached hash
trees proposals, to reduce the number of misses and miss
rates even further.

5. RESEARCH CHALLENGES AND OPPOR-

TUNITIES
This work is only a first step in what we have will be

believe to be a new and potentially very fruitful research
area on efficient hardware memory integrity checking using
skewed trees. There are many open challenges, and oppor-
tunities which they bring.

5.1 Skewed Tree Structure
The exact structure of a skewed tree is an important

research problem. We have presented two possible struc-
tures, the right skewed tree and the middle skewed tree.
Within these structures, we presented the skewness level
(i.e. skewed-by-one, skewed-by-two, etc.). Other structures,
however, are also possible. In the extreme, there could be
trees which have different path lengths from the root to dif-
ferent leaf nodes, not necessarily related to the position of
the leaf node in the tree. For example, a random-like tree
could be constructed.

The structure of the tree depends on in-depth knowledge
of the physical memory access patterns. More experiments
(and on different types of systems) are needed to under-
stand how different memory regions are accessed. Such un-
derstanding will allow one to generate an optimal tree for a
specific setup.

5.2 Tree Traversal
Once a tree design is selected, then one needs to consider

the tree traversal problem. There is a choice of how and
where to store the tree nodes in memory. Naive selection
can lead to poor performance as accessing the tree nodes
will cause cache misses which could be avoided with better
tree layout in memory.

5.3 Dynamic Skewed Trees
So far we have focused on static tree design. However,

the tree could be re-structured just as the system runs and
memory access statistics are gathered. Similar idea could be
used with the skewed tree. Rather than re-balance the tree,
however, the goal is to move the tree nodes around so the the
currently frequently accessed memory pages (leaf nodes) are
on the shortest path. This will significantly increase hard-
ware complexity, however, may be worth the performance
improvements. The dynamic trees should be studied to un-
derstand their tradeoffs.

5.4 Extending Previous Schemes
A large number of memory checking schemes have been

proposed. Many have also included encryption to provide
both confidentiality and integrity protections. All these sche-
mes, however, are based on a full, balanced trees. Updating
these schemes with a skewed Merkle tree design would give
best of both worlds. Previous optimizations, such as the
Bonsai tree [16] or the cached trees [11] could further be im-
proved if the number of memory accesses to the tree nodes
is reduced through the use of a skewed tree. Also, an inter-
esting question is the tree structure and how the skewness
would differ when used in plain hash tree versus use within
one of these previous optimizations.

5.5 Hardware-Software Co-Design
Conversely to matching the tree structure to the mem-

ory access pattern, software could optimize memory accesses
given a fixed tree structure. If the software and hardware
are designed together, the software could be informed how to
allocate the memory so that the frequently accessed pages
are on the short paths of the tree. Given that it is very
difficult to change hardware after manufacturing, and that
software changes more rapidly, this may be a good design
direction. Just as software can optimize memory accesses

for cache sizes, the software could optimize them for the
particular memory checking scheme currently implemented.

6. RELATED WORK
Many designs for memory integrity checking, with various

optimizations have been previously proposed by researchers.
There are a number of surveys, e.g. [7], which detail existing
hardware memory authentication techniques. Below is only
a brief summary for some of these works.

6.1 Memory Checking with Hash Trees
Hash trees were originally presented in a patent by R. C.

Merkle published in 1982 [14], after whom they are named.
The original use of hash trees was for checking signatures
in public key crypto systems. In 1994, Blum [2] presented
a paper that describes on-line and off-line memory checkers.
The work also established a bound of O(log(N)) of private
secure memory needed to check a string of size N.

Works on memory integrity checking in computer sys-
tems, such as in [11], presented numerous designs for hash
tree based schemes for memory integrity verification: chash,
mhash or ihash; in addition to using a tree structure, these
designs also store hashes in the processor cache to improve
performance. Researchers have explored secure and fast ar-
chitectures for authenticating memory when memory pages
are accessed, or shared, by multiple processing elements [18].
Integrity checking tree designs which allow for paralleliza-
tion of both the checking and update procedures have been
presented as well [12].

To reduce the hash tree size, [4] introduces reduced ad-
dress space (RAS) which is a virtual address space but ex-
cludes pages not used by the program – the tree is built
over the RAS and thus has a smaller size. In [17], on the
other hand, a one-level scheme for memory protection in
distributed shared memory (DSM) systems is presented; in
the scheme typical counters are used to protect the memory.
The counters are securely shared between processors so they
can be sent to requester ahead and so data from home node’s
memory can be sent directly to requester (no re-encryption)

Energy efficiency considerations have also been proposed,
and researchers have looked at augmenting the tree struc-
ture with timestamps and timestamp cache to speed up the
checking procedure [15]. Previous work on hash trees focuses
on using full, balanced trees. Publications, e.g. [21], show
how to select optimal block size and depth for Merkle tree.
However, non-full, balanced trees have not been previously
proposed for memory integrity checking.

6.2 Integrity Checking Combined with Encryp-
tion

Numerous works have combined hash checking with en-
cryption to provide both integrity and confidentiality pro-
tections. For example, [19] presented an incremental hash
of logs of memory operations combined with an encryption
scheme based on one-time-pads and time stamps. In [9], au-
thors present a parallelized encryption and integrity check-
ing architecture. In [8], a Tamper Evident Counter Tree
(TEC-Tree) is presented which uses encryption and nonces
to protect integrity of the system’s memory.

Meanwhile, [22] gives a good introduction to latency and
throughput considerations and to the combination of en-
cryption and hashing. For example, using Galois/Counter
Mode (GCM) mode for integrity and confidentiality can im-

prove the performance. Also, address independent seed en-
cryption (AISE) [16] has similarly been proposed which uses
symmetric encryption algorithm (such as AES) in counter
mode to protect memory. In the work [16], a Merkle tree
based integrity verification that extends the tree to protect
off-chip data and Bonsai Merkle Trees (BMT) are proposed.

6.3 Use of Integrity Checking in Secure Ar-
chitectures

Secure architectures such as AEGIS [20] and Bastion [5]
have incorporated hardware memory integrity verification.
Thanks to use of the hash trees (and encryption) such ar-
chitectures can reduce the trusted hardware to only the mi-
croprocessor chip.

6.4 Skewed Merkle Trees
The idea of skewed Merkle trees has been proposed be-

fore in other scenarios. Motivated by the fact that mem-
ory layout of full, balanced Merkle trees can hinder the tree
traversal (e.g. cache misses due to accessing sibling nodes
and parent node), researchers have explored skewed Merkle
trees, and how their use can optimize binary search tree per-
formance [3]. With careful layout, we also benefit from this
fact as we use a skewed tree. Skewed Merkle tree traversal
or search has also been explored in context of certificate re-
vocation schemes [13, 10]; in certificate revocation, efficient
traversal of hash tree is important and the tree may not be
a full, balanced tree depending on which certificates have
been revoked and placed in the tree.

7. CONCLUSION
We presented a new solution to hardware memory in-

tegrity checking based on skewed Merkel trees. Because not
all memory locations are accessed equally frequently in a
modern OS, our skewed Merkle three design offers better
performance as the frequently accessed memory locations
can be located on the leaves of the skewed Merkle tree that
have shorter path to the root. The tree can be designed
such that fewer nodes of the tree have to be accessed during
integrity checks of the frequently accessed pages. Skewed
Merkle trees offer better system performance, do not im-
pact caches as much as full Merkle trees, and do not require
more storage than full, balanced Merkle trees.

7.1 Ongoing and Future Work
Our ongoing and future work focuses on integration of the

skewed merle trees with some of the other proposals (such as
the cached trees or parallelzable trees). We believe the new
type of hash tree can be substituted for the full, balanced
trees previously used in the other schemes, and thus give
even further performance improvements.

8. REFERENCES
[1] Inception, a FireWire physical memory manipulation

and hacking tool. http://www.breaknenter.org/
projects/inception/.

[2] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Naor. Checking the correctness of memories.
Algorithmica, 12(2-3):225–244, 1994.

[3] G. S. Brodal and G. Moruz. Skewed binary search
trees. In Y. Azar and T. Erlebach, editors, Algorithms
– ESA 2006, volume 4168 of Lecture Notes in

Computer Science, pages 708–719. Springer Berlin
Heidelberg, 2006.

[4] D. Champagne, R. Elbaz, and R. Lee. The reduced
address space (ras) for application memory
authentication. In T.-C. Wu, C.-L. Lei, V. Rijmen,
and D.-T. Lee, editors, Information Security, volume
5222 of Lecture Notes in Computer Science, pages
47–63. Springer Berlin Heidelberg, 2008.

[5] D. Champagne and R. Lee. Scalable architectural
support for trusted software. In Proceedings of the
16th International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12, Jan.
2010.

[6] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
device drivers, chapter 15, memory mapping and dma.
http://lwn.net/images/pdf/LDD3/ch15.pdf.

[7] R. Elbaz, D. Champagne, C. Gebotys, R. Lee,
N. Potlapally, and L. Torres. Hardware mechanisms
for memory authentication: A survey of existing
techniques and engines. In M. Gavrilova, C. Tan, and
E. Moreno, editors, Transactions on Computational
Science IV, volume 5430 of Lecture Notes in Computer
Science, pages 1–22. Springer Berlin Heidelberg, 2009.

[8] R. Elbaz, D. Champagne, R. Lee, L. Torres,
G. Sassatelli, and P. Guillemin. Tec-tree: A low-cost,
parallelizable tree for efficient defense against memory
replay attacks. In P. Paillier and I. Verbauwhede,
editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, volume 4727 of Lecture Notes
in Computer Science, pages 289–302. Springer Berlin
Heidelberg, 2007.

[9] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin,
M. Bardouillet, and A. Martinez. A parallelized way
to provide data encryption and integrity checking on a
processor-memory bus. In Proceedings of the 43rd
Annual Design Automation Conference (DAC), pages
506–509, 2006.

[10] F. F. Elwailly, C. Gentry, and Z. Ramzan. Quasimodo:
Efficient certificate validation and revocation. In
F. Bao, R. Deng, and J. Zhou, editors, Public Key
Cryptography (PKC), volume 2947 of Lecture Notes in
Computer Science, pages 375–388. Springer Berlin
Heidelberg, 2004.

[11] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches and hash trees for efficient
memory integrity verification. In Proceedings of the
9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 295–306, Feb.
2003.

[12] W. Hall and C. Jutla. Parallelizable authentication
trees. In B. Preneel and S. Tavares, editors, Selected
Areas in Cryptography, volume 3897 of Lecture Notes
in Computer Science, pages 95–109. Springer Berlin
Heidelberg, 2006.

[13] M. Karpinski and Y. Nekrich. A Note on Traversing
Skew Merkle Trees, 2004.
eccc.hpi-web.de/report/2004/118/.

[14] R. C. Merkle. Method of providing digital signatures,
1982. U.S. Patent 4309569.

[15] S. Nimgaonkar, M. Gomathisankaran, and S. P.
Mohanty. Tsv: A novel energy efficient memory

integrity verification scheme for embedded systems.
Journal of Systems Architecture, 59(7):400–411, 2013.

[16] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin.
Using address independent seed encryption and bonsai
merkle trees to make secure processors os- and
performance-friendly. In Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 183–196, 2007.

[17] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and
Y. Solihin. Single-level integrity and confidentiality
protection for distributed shared memory
multiprocessors. In Proceedings of the 14th
International Symposium on High Performance
Computer Architecture (HPCA), pages 161–172, Feb.
2008.

[18] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu.
Architectural support for high speed protection of
memory integrity and confidentiality in multiprocessor
systems. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 123–134, 2004.

[19] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and
S. Devadas. Efficient memory integrity verification and

encryption for secure processors. In Proceedings of the
36th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 339–350, 2003.

[20] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Aegis: Architecture for tamper-evident
and tamper-resistant processing. In Proceedings of the
17th Annual International Conference on
Supercomputing (ICS), pages 160–171, 2003.

[21] D. Williams and E. G. Sirer. Optimal parameter
selection for efficient memory integrity verification
using merkle hash trees. In Proceedings of the 3rd
IEEE International Symposium on Network
Computing and Applications (NCA), pages 383–388,
Aug. 2004.

[22] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and
Y. Solihin. Improving cost, performance, and security
of memory encryption and authentication. In
Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), pages
179–190, 2006.

