
Predicting Program Phases and Defending Against Side-Channel Attacks
using Hardware Performance Counters

Junaid Nomani Jakub Szefer
Yale University

{junaid.nomani,jakub.szefer}@yale.edu

Abstract
Sharing of functional units inside a processor by two

applications can lead to to information leaks and micro-
architectural side-channel attacks. Meanwhile, processors
now commonly come with hardware performance counters
which can count a variety of micro-architectural events,
ranging from cache behavior to floating point unit usage. In
this paper we propose that the hardware performance coun-
ters can be leveraged by the operating system’s scheduler
to predict the upcoming program phases of the applications
running on the system. By detecting and predicting program
phases, the scheduler can make sure that programs in the
same program phase, i.e. using same type of functional unit,
are not scheduled on the same processor core, thus helping
to mitigate potential side-channel attacks.

1. Introduction
Today, the scheduler has limited insights into the opera-
tion of the applications that it is scheduling, and detailed
software-based analysis of programs may be prohibitively
expensive. Thus, a scheduler has to make best-effort deci-
sions about how to schedule applications.

With regard to security, scheduling can impact which ap-
plications run concurrently on which processor and thus
can impact potential side-channels between the applications.
With better knowledge of the operation of the applications,
the scheduler could mix and match the applications to pro-
cessor cores so that there is the least temporal sharing of
specific functional units among applications running on the
same processor. To achieve this, however, there needs to
be a fast and low-overhead method for obtaining detailed
information about the operations that the application is per-
forming. In addition, once an attacker and victim application
execute on the same processor and share a functional unit,
there is already potential for side-channels. The scheduler
thus needs to predict the upcoming operations and then use
that information in scheduling to prevent side channels from
occurring.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HASP ’15 Portland, OR, USA
Copyright 2015 ACM. ISBN 978-1-4503-3483-9/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2768566.2768575

1.1. Security and Performance Benefits

In addition to having potential security benefits, non-sharing
of functional units can give performance improvements as
well. Using synthetic memory, integer and floating point
benchmarks, we have analyzed how much performance can
be gained, when comparing applications that fight for same
functional unit, and when they are scheduled such that each
is running on separate processor or core and thus using dif-
ferent functional units. We can observe improvements up to
25% in execution time when contention for hardware func-
tional units is minimized. Today, however, the scheduler is
not able to detect program phases of an application and may,
for example, schedule two memory intensive applications
on same the core, thus they will share the same cache. If
instead it could detect the memory phases of the applica-
tions, it could schedule them on different cores, giving the
25% or more performance improvement. Similarly, integer,
floating-point and other applications can gain performance if
they are scheduled so as to minimize contention for specific
hardware units.

1.2. Leveraging Hardware Performance Counters

We propose that the existing, and continually improved upon,
hardware performance counters in processors can be used
by the scheduler to learn and classify operations and phases
of different applications to use for scheduling decisions. In
particular, the scheduling decision may focus on how to
help defend against temporal sharing of functional units
by different applications, and thus help reduce side chan-
nels. Many hardware side-channels exist due to sharing
of different functional units inside the processor [17]. The
most well-known among these are the cache side-channels
[14]. With our proposed new hardware performance counter
enhanced scheduling, the scheduler could detect that two
processes are memory intensive and attempt to schedule
them on different processor cores. Now the attacker does
not share the processor (and cache) with the victim at the
same time and chances of a side-channel are reduced. Simi-
larly, side-channel attacks based on sharing of floating point
units, branch predictors, and others have been proposed [2].
Conveniently, there exist today performance counters that
count exactly such events.

1.3. Performance Counters and Program Phases

Hardware performance counters, also called hardware per-
formance monitors, are a set of registers which contain infor-
mation about counts of different events occurring inside the
processor. On Intel processors [1], performance-monitoring



counters can be set, and then read based on the counter index,
or event number. For example, 0x43 is the data_mem_refs
counter which counts any memory loads and stores. Another
counter, 0xC1 is the flops counter which counts a number
of floating point operations. These events, however, can not
all be measured at the same time. Usually, there are 2 or 4
performance counter registers, corresponding to the number
of measurements can be collected in parallel [3]. There are
also configuration registers that are used to specify which
events should be counted in each counter.

Program phases represent the different periods of a pro-
gram’s execution, and have been shown to repeat as the
application runs [10]. Program phases can include mem-
ory intensive phases, floating-point computation intensive
phases, idle phases, etc. The program phases change as
the program executes, e.g., memory phase to read in data,
followed by integer computation phases when data is com-
puted on. Each program phase also necessarily corresponds
to some hardware in the processor, e.g., the floating point
unit is only used in the floating point phase. Understand-
ing program phases can be very powerful for scheduling,
but also for detecting which piece of hardware inside the
processor is being used by a particular application.

2. New Scheduler Architecture
This work proposes to augment the OS scheduler with the
ability to read performance counter data, and then use ma-
chine learning approaches to detect and predict program
phases. A high-level architecture is shown in Figure 1.

2.1. Threat Model

This work aims to protect systems against malicious applica-
tions, in particular ones which aim to exploit micro architec-
tural side-channels. While applications are untrusted, this
work assumes that the OS or hypervisor scheduler is trusted.
The scheduler code should be also free of bugs and correctly
implemented. The core Linux scheduler code is less than
10000 lines of code [7] and along with other scheduler code
should be amiable to some level of software verification.
The machine learning portion of the code in our prototype is
done with help of the FANN C library [5] and the machine
learning code is around 19000 lines of code, of which we
only use a small percentage, which could be verified as well.
The machine learning portion is a trusted user-level program
that interfaces with the kernel. The hardware performance
counters are assumed to correctly count events for which
they are configured and too report these values acurately, as
specified in the processor manufacturers’ manuals.

2.2. Scheduler Architecture

The scheduler, show in figure Figure 1, collects performance
counter data as each application runs. Right before an ap-
plication is scheduled, the performance counters are reset,
then they are configured to count desired events (different
events can be counted for different applications), and the
application runs. When the time quantum expires, or ap-
plication yields, the scheduler first reads the performance
counter values and stores them in the task structure for that

application. After that it can select another application to
run, and process repeats.

Asynchronously, the PMC module runs and reads the per-
formance counter values for the applications, by accessing
the task structures from the kernel. When it reads counters
for an application, it communicates, via a netlink socket, to
the user-level machine learning module.

The machine learning module implements a neural net-
work that uses as inputs the history of performance counter
values for the application. The neural network outputs a
prediction of what is the next expected program phase.

Once the prediction is made, it is communicated back to
the PMC module, which in turn can access the task structure
and write the prediction into a new location in the task
structure dedicated for that purpose. With the information
stored in the task structure it can use the prediction in its
scheduling decisions. The prediction is used only for placing
the thread on the appropriate processor, and does not tamper
with the CFS (Completely Fair Scheduler) in Linux which
deals with the actual time slicing of the programs. Dissimilar
tasks are migrated to be on the same processor, but there is a
threshold to how many migrations can occur to prevent over-
migration due to malicious or heavy loads. This maintains a
balance between migration overhead, and security.

2.3. Machine Learning for Program Phases Prediction

The learning algorithm used was a 7 layer (5 hidden layers)
feed forward neural net with basic gradient descent back
propagation training [12]. The input layer received counter
data for one counter for the last 15 context switches. This
counter data was simplified to 5 clusters per counter using
the k-means algorithm [6]. The centroids for each of the
5 clusters were unique to each program and based on that
program’s long term counter data. The input layer was 5*15
neurons, and each hidden layer was kept as 5*15 neurons
as well while being fully connected. The output layer is 5
neurons, corresponding to the next predicted cluster for the
next context switch for that counter. The training dataset
was taken from running SPEC2006 benchmarks [11]. As
a benchmark ran, the performance counters were recorded
for an entire run and then used to train the neural net offline.
This approach takes advantage of the fact that neural nets
only need to be trained once per program, and although they
have slow training, they have fast activation. Thus, although
training time is in the order of minutes, prediction can be
done in about 210us on our setup.

2.4. Timing Considerations

Machine learning has been considered for scheduling related
approaches before, however, they have been mostly offline
approaches and timing was assumed to be too long to be
feasible. In Linux, on average an application runs for 2500us
between context switches. In comparison, communication
between the task structure and the machine learning module
is on order of 5um. Inside our machine learning module,
we use a feed-forward [12] type of neural network, which
requires about 210us to make a prediction. Thus in one time
quantum, predictions can be made for about 10 applications,



Figure 1: Hardware performance counter enhanced scheduler with there components: base scheduler modified plus two new components.
Arrows show data communication among components, while timing for select operations is shown for reference.

and they all should finish before scheduler runs again. This
is sufficient for commodity processors with up to 8 cores or
threads. As more and more cores and programmable GPUs
are available, our design allows to run prediction on multiple
programs in parallel for even better performance.

3. Evaluation

The evaluation was carried out on Dell Precision T7600
workstation with Intel’s Xeon E5-2609 running Linux 3.16.1.
The various tests used synthetic benchmarks, as well as the
SPEC2006 benchmarks [11].

3.1. Interference Evaluation

When applications use same functional units, there is inter-
ference that can be observed as changes in the performance
of the application. Thus, observing changes in applica-
tion performance is a proxy for observing the interference,
which is in turn related to the capacity of the side-channels.
A set of synthetic benchmarks was designed that included
a memory based program which only has heavy random
memory accesses, an integer-arithmetic only program that
is not memory demanding, and a floating-point-arithmetic
only program that also is not memory demanding.

We ran two groups of tests to check for interference. Pro-
grams had three categories: FP, INT, and INT-MEM, where
FP is floating point intensive programs, INT are integer
intensive programs, and the MEM are programs that are
also very memory intensive. One group were very simple
programs that ran single instructions in a loop to determine
maximum possible interference, and the other were SPEC
2006 benchmarks (bzip2, mcf, milc) to determine more re-
alistic interference from benchmarks that approximate real
user applications.

Programs were ran alone to determine base speeds, and
then ran in pairs for every combination. Programs ran
roughly 25 percent slower in the simple group when two
memory intensive programs were ran on the same core.
Additionally, FP programs tended to interfere with other
non-FP programs, for about 35 percent degradation. The
SPEC group had similar but diluted results with around a
10-20 percent decrease in speed when there was memory
contention or interference from FP programs. This shows
possibilities for large interference from poor scheduling.

3.2. Predicting Program Phases

For fine grain prediction we use a neural network as de-
scribed above, to make predictions at the context switch
granularity. We train on all data points from counters for an
entire size=ref run on the SPEC benchmarks.

As a comparison we used a simple last-only predictor that
predicts the next context switch to have the same counter
values as the last context switch. This last-only approach
is actually quite common in literature. It works somewhat
well because program phases usually span multiple context
switches, meaning much of the time programs don’t change
behavior much from the last context switch. However, our
approach has a noticeable decrease in mispredictions for the
12 SPEC benchmarks tried (astar, bzip2, dealII, gobmk, hm-
mer, lbm, libquantum, mcf, milc, namd, perlbench, povray).
On average predicting memory with our predictor had an
error rate of 30 percent, while the simple last-only predic-
tor had an error rate of 50 percent, showing a significant
reduction in error. For FP prediction, average results were
roughly the same between predictors at 22 percent error
rate. However, this is likely because most benchmarks had
either no FP activity and so could be easily predicted as
0 FP operations throughout, or had very long and easy to
predict program phases which skewed the results. So its not
that our predictor is poor for FP operations, simply that for
these benchmarks FP operations are usually in a phase that
is exceptionally easy to predict.

4. Minimizing Side-Channels
Given a prediction about upcoming program phase, the
scheduling algorithm can attempt to schedule applications
such that different functional units on each processor are
shared among applications least often. With a pool of ap-
plications to choose from, the scheduler can user the in-
formation about predicted program phase. For example, if
two applications have an upcoming memory phase, they
should be scheduled on different processor cores, so that
they do not interfere with each other. But they can be sched-
uled on same core as an application with upcoming integer
phase. This is done by assigning processes initially to spread
memory intensive programs as evenly as possible, hopefully
so that they each get their own core. This process then
reoccurs periodically when the scheduler calls its normal
load balance function, but thresholds are in place to prevent
over-migration.



There is, however, a potential performance penalty from
the fact that applications will be re-scheduled from processor
core to processor core. For example, a memory intensive
application may be moved among different cores, causing
increased cache missies. This performance aspect needs to
be further evaluated, however we hope by putting thresholds
on frequency of migration this issue can be minimized in
the common case.

5. Related Work

Earlier work [10] has shown that programs have reoccurring
behavior identified as program phases. There are many ways
to identify the phases, some requiring binary rewriting or
analysis. Performance counters however are transparent and
non-invasive while being accurate enough to discern phases.
It has been shown by [15] that performance counters only
have a variance up to 1% in the worst scenario which is very
low for the purpose of discovering a program’s phases. The
precision of the performance counters allows them to be
used for a wide variety of purposes such as to predict fu-
ture behavior of applications [18]. Other papers either have
prediction algorithms very similar to the last-only predictor
we mentioned above [19] [8] [20], or use overly complex
algorithms such as [9] that require offline analysis using
complex models and even some by-hand optimization and
could not be scaled to an online approach. Additionally
no algorithm incorporated itself directly into the current
Linux CFS scheduler, as we aim in our ongoing prototype
work; most closely, [20] did modify an older and much
simpler single queue scheduler. Performance counters have
been also used for security purposes to detect malicious
disturbances in program behavior [4], but have not been
incorporated with a scheduler in this context. One example
of scheduler modification for security includes work that
shows that changing the minimum runtime guarantees in
the scheduler thwarts a range of side channel attacks [13].
Others have also suggested that resource aware scheduling,
similar to our proposed algorithm, could be useful at levels
other than that of a program, e.g., at the cluster level or
machine level [16]. Overall these other scheduling algo-
rithms based on performance counters were effective, but
our approach is generally more accurate compared to other
online algorithms, is predictive rather than reactive, and by
leveraging offline training, can be used for prediction online
while maintaining its high accuracy.

6. Conclusion

Processors now commonly come with hardware perfor-
mance counters which can count a variety of events. In
this paper we showed that the hardware performance coun-
ters can be leveraged by the operating system’s scheduler
to predict the upcoming program phases of the applications
running on the system and use the information to schedule
applications such as to mitigate side-channel attacks. Our
insight was to leverage the hardware performance counters
to detect and predict different program phases inside the
applications executing on a computer. By profiling the appli-
cations in real-time with the help of performance counters,

the operating system’s scheduler can learn what type of op-
erations each application performs, and also learn to predict
the phases of that application. We proposed to apply this pre-
diction to schedule applications in a way such that may help
defend against side-channel attacks by minimizing temporal
sharing of functional units by different applications.

7. Acknowledgements
This work was supported in part through National Science
Foundation’s grant number 1419869.

References
[1] “Intel architecture software developer’s manual volume 3: System

programming,” https://communities.intel.com/servlet/JiveServlet/
previewBody/5061-102-1-8118/Pentium_SW_Developers_
Manual_Vol3_SystemProgramming.pdf.

[2] O. Acimez, C. K. Koc, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Topics in Cryptology, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, vol. 4377,
pp. 225–242.

[3] “Basic Performance Measurements for AMD Athlon
64, AMD Opteron and AMD Phenom Processors,”
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/Basic_Performance_Measurements.pdf.

[4] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detec-
tion with performance counters,” in Proceedings of the International
Symposium on Computer Architecture. ACM, 2013, pp. 559–570.

[5] “Fast artificial neural network library,” http://leenissen.dk/fann/wp/.
[6] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and

R. Tibshirani, The elements of statistical learning. Springer, 2009,
vol. 2, no. 1.

[7] “Kernel scheduler and related syscalls,” http://lxr.free-electrons.
com/source/kernel/sched/core.c.

[8] A. Merkel and F. Bellosa, “Task activity vectors: a new metric for
temperature-aware scheduling,” in ACM SIGOPS Operating Systems
Review, vol. 42, no. 4. ACM, 2008, pp. 1–12.

[9] M. Seltzer, C. Small, and D. Nussbaum, “Performance of multi-
threaded chip multiprocessors and implications for operating system
design, alexandra fedorova,” 2005.

[10] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” Micro, IEEE, vol. 23,
no. 6, pp. 84–93, Nov 2003.

[11] “SPEC CPU 2006,” https://www.spec.org/cpu2006/.
[12] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-

layer feed-forward neural networks,” Chemometrics and intelligent
laboratory systems, vol. 39, no. 1, pp. 43–62, 1997.

[13] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based de-
fenses against cross-vm side-channels,” in Usenix Security, 2014.

[14] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the Interna-
tional Symposium on Computer Architecture, ser. ISCA ’07, 2007,
pp. 494–505.

[15] V. M. Weaver and S. A. McKee, “Can hardware performance coun-
ters be trusted?” in Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on. IEEE, 2008, pp. 141–150.

[16] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “Cpi 2: Cpu performance isolation for shared compute
clusters,” in Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 2013, pp. 379–391.

[17] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12, 2012, pp. 305–316.

[18] Z. Zhang and J. Chang, “A cool scheduler for multi-core systems
exploiting program phases,” Computers, IEEE Transactions on,
vol. 63, no. 5, pp. 1061–1073, May 2014.

[19] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in ACM
SIGARCH Computer Architecture News, vol. 38, no. 1. ACM, 2010,
pp. 129–142.

[20] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of scheduling techniques for addressing shared resources in
multicore processors,” ACM Computing Surveys (CSUR), vol. 45,
no. 1, p. 4, 2012.


