
Remote Power Side-Channel Attacks
on BNN Accelerators in FPGAs

Shayan Moini∗, Shanquan Tian†, Daniel Holcomb∗, Jakub Szefer†, and Russell Tessier∗
∗Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA

†Department of Electrical Engineering, Yale University, New Haven, CT, USA

Abstract—Multi-tenant FPGAs have recently been proposed,
where multiple independent users simultaneously share a remote
FPGA. Despite its benefits for cost and utilization, multi-tenancy
opens up the possibility of malicious users extracting sensitive
information from co-located victim users. To demonstrate the
dangers, this paper presents a remote, power-based side-channel
attack on a binarized neural network (BNN) accelerator. This
work shows how to remotely obtain voltage estimates as the BNN
circuit executes, and how the information can be used to recover
the inputs to the BNN. The attack is demonstrated with a BNN
used to recognize handwriting images from the MNIST dataset.
With the use of precise time-to-digital converters (TDCs) for
remote voltage estimation, the MNIST inputs can be successfully
recovered with a maximum normalized cross-correlation of 75%
between the input image and the recovered image.

I. INTRODUCTION

Most major cloud providers now offer some form of remote,
pay-per-use access to FPGAs [1], [2]. Furthermore, recent
proposals for multi-tenancy have the promise of increasing
FPGA utilization, especially in data center settings, by fitting
multiple users’ designs onto a single FPGA at the same
time. The sharing of an FPGA by many users, unfortunately,
opens up multi-tenant FPGA platforms to many new, potential
attacks in which a malicious user can be co-located next to a
victim user on the same FPGA.

Once co-located, a malicious user can try to learn infor-
mation about the victim through a side channel. When the
multi-tenant FPGAs are deployed in a remote data center, the
malicious user is limited to only using attacks that do not
require physical access. For example, voltage and power-based
attacks [3] have been used to remotely extract encryption keys
[4], [5] using circuits implemented on an FPGA by a malicious
user. The danger of such attacks becomes especially worrisome
as there is more and more interest in the FPGA acceleration
of machine learning for image recognition, or other tasks,
where sensitive information is processed. Existing work [6]
shows that FPGA accelerators can speed up machine learning
(ML) inference operations. Further, many cloud providers use
FPGAs for the acceleration of ML workloads [7].

However, we show that ML accelerators are also vulnerable
to remote attacks in a multi-tenant FPGA setting. This paper
demonstrates a remote power-based side-channel attack on a
binarized neural network (BNN) in an FPGA. In our attack,
voltage fluctuations, caused by the changes in the power
consumption of the convolution unit in the BNN are used
to reconstruct the images on which inference is performed.

Being able to recover the images that are processed by the
ML algorithm could reveal sensitive imagery [8].

Unlike previous side channel attacks on machine learning
accelerators on FPGAs [8], [9], [10], [11], our attack can
be performed remotely with no physical hardware access by
the attacker. We illustrate the details of our attack on the
convolution unit of a BNN-based circuit that is used to rec-
ognize the handwriting images from the MNIST dataset [12].
Our attack and corresponding image recovery is successfully
demonstrated on multiple generations of Xilinx FPGAs includ-
ing a ChipWhisperer CW305 board [13] (Artix 7), a ZCU104
board [14] (Zynq UltraScale+), and a VCU118 board [15]
(Virtex UltraScale+). Based on the evaluation we show that
clearly recognizable input images can be retrieved and a
maximum normalized cross-correlation of 75% is observed
between the original and recovered images on the FPGA
boards.

II. BACKGROUND AND RELATED WORK

A. Binarized Neural Networks

Deep neural networks (DNNs) [16] are a class of artificial
neural networks that use multiple layers. In a DNN, each layer
is responsible for extracting relevant features, and the output
of each layer is passed as the input to the next layer. DNNs
combine feature extraction with the capability of classical
neural networks to map input data to a set of predictions.

Convolutional neural networks (CNNs) [16] are a subset of
DNNs that are mostly used for classifying multi-dimensional
data (e.g., images or video). The main distinctive property
of CNNs is the convolution layer, which implements feature
extraction by performing a convolution operation between the
high-dimensional input data (called input feature maps) and
kernels (small matrices of parameters that are computed during
the training phase) to generate the output of the layer (called
output feature maps).

Binarized neural networks [16] are CNNs that use aggres-
sive quantization so that each element of the convolution
kernel can be represented as either −1 or +1. In BNNs, all
convolution input feature maps and kernels are comprised of
binary values except for the first input layer which generally
receives its input feature maps as matrices of integer values.
We assume the input to the BNN is a grayscale image with
each pixel being represented by an integer value. This image
is the input feature map to the first convolution layer which
convolves the input with n×n binary kernels. Each element of

the convolution output (an output feature map) is calculated
by multiplying a kernel with a n × n window of the input
feature map and summing the resulting values. Sweeping an
n×n kernel across the input feature map generates an output
feature map. Additional BNN layers include pooling, batch
normalization, fully-connected, and non-linear function layers.
Our attack targets the first convolution layer in a BNN, which
processes the input images directly.

For this work, the BNN is pre-trained with the MNIST
dataset and the derived parameters, including convolution
kernel values, are used in the BNN accelerator on an FPGA.
We used the Keras framework [17] to train the BNN. The
trained network is used during the inference stage to classify
the input images of digits into one of ten categories (0 to 9).

Several researchers [8], [9], [10], [11] have explored side
channel attacks on DNN accelerators on FPGAs. All of these
approaches used physical access to the FPGA to collect needed
information for the attacks. Meanwhile, we present a remote,
power-based side channel that does not require physical access
to FPGA supply voltage pins, uses on-chip voltage sensors to
detect voltage fluctuations, and is demonstrated to work with
three different FPGA boards.

B. Voltage Sensing Using Time-to-Digital Converters

In FPGAs, small drops in supply voltage occur in the
vicinity of power consumption due to both IR and L di

dt drops
in the power distribution network and the chip packaging.
Given that the propagation delay of combinational logic varies
as a function of supply voltage, circuit delay in a sensor circuit
can be used as a proxy for measuring the changes in the supply
voltage. This approach is commonly used in voltage sensors
based on time-to-digital converter (TDC) circuits [5]. In TDCs,
each measurement reflects the delay of a circuit within a single
clock cycle by observing how far through a tapped delay line
a signal can travel during the cycle. This makes TDC sensors
suitable for sensing short transient voltage fluctuations on the
order of a single clock cycle. As we show in Section III-B,
following others who previously exploited TDC designs [5],
the high-speed carry logic in modern FPGAs makes a suitable
delay line with taps that are on the order of 5-25 ps apart,
depending on the FPGA technology and architecture.

III. DETAILS OF THE ATTACK

A. Threat Model

This work focuses on a multi-tenant FPGA scenario where
the victim user is running a machine learning inference module
that is co-located on the same FPGA with the malicious user’s
modules. We assume that the attacker knows the structure
of the BNN architecture that is used by the victim, but
does not know the input, which is what they are trying to
extract using our new attack. The victim input image is sent
to the BNN accelerator in the FPGA in a secure manner
(e.g., the input may be encrypted). The same input image is
sent by the victim to the FPGA multiple times, a common
case in video processing (e.g., of surveillance video). The
output is likewise assumed to be securely sent back to the

BNN Accelerator

Multi-tenant FPGA

Input Image Sent
 by Victim User

Q

Q’

DQ

Q’

D

‘Number 6’

Q

Q’

D

...T(n-1)

T(n-1)

T(n)

T(n)

256

Clk

Delay Delay Delay

Time-to-Digital Converter

Adversary Circuit

Victim Circuit

Side-Channel

Voltage Estimate
 Sent to

Adversary User

Fig. 1: Overview of attack implementation. The TDC outputs voltage
estimates for each clock cycle of the first convolution layer. These
estimates are used to reconstruct the input image.

user. Thus the attacker’s goal is to extract the input only
by analyzing the behavior (voltage changes) of the BNN.
The attacker can estimate the voltage drop across the FPGA
power distribution network (PDN) during the execution of the
convolution layer, as the BNN accelerator does the image
classification. The acquired voltage estimates by using the
TDC sensor serve as a side channel for extracting the victim’s
input image. The recovered image approximates the input
image by distinguishing between foreground and background
pixels of the image.

B. Attack Implementation

The attack setup is shown in Figure 1. To extract the input
image from the BNN accelerator, the adversary focuses on the
first convolution layer which directly processes the input im-
age. In the first convolution layer, an image is convolved with
multiple distinct kernels to generate multiple output feature
maps. In our attack, we use a voltage estimate trace from the
execution of the first kernel of the first convolution layer for an
input image. Since we assume that the same image is evaluated
by the FPGA accelerator multiple times, multiple (N) similar
traces are collected using the same input image and averaged.
A high-pass filter is then used to remove noise. We leverage
the observation that the background and foreground pixels can
then be distinguished by analyzing the different magnitudes of
the voltage measurements. This information can be represented
by a histogram of instance counts of magnitude values in the
filtered trace. Points in the histogram are used to label pixels
as belonging to the image foreground or background based on
the magnitude of their voltage measurement. The result of the
analysis is a reconstructed image that approximates the image
that was input to the BNN.

For the first convolution layer of a BNN trained on the
MNIST dataset with a 28×28 grayscale image as the input
and 64 kernels of size 3×3, the convolution operation can be
represented as:

Oj
x,y =

2∑
a=0

2∑
b=0

ωj
a,b × Ix+a,y+b, j ∈ [1, 64] (1)

 0

 0

 0

 0

 0

 0

 ...

 ...

 ...

 ...

 ...

 ...

 0

 10

 P1

 P4

 P7

 0

 0

 37

 P2

 P5

 P8

 0

 0

 63

 P3

 P6

 P9

110

 0

 0

 0

 0

 0

 0

Input Image

Kernel
Ki {-1,+1}

K1
K4
K7

K2
K5
K8

K3
K6
K9

Convolution Unit

...

...

...

Line Buffer
P9 P8 P7

P6 P5 P4

P3 P2 P1

K7

+

+ Output
Feature Map

K8

+
× × ×K9

+

K4

+
K5

+
K6

+

K1

+
K2

+
K3

+

× × ×

× × ×

*

Fig. 2: Detailed view of the convolution unit. Output is generated
from the 3×3 image window, shown in the red box, and the kernel.

The Oj
x,y parameter represents the location (x,y) in the jth

output feature map which is calculated by convolving a
window (same size as the kernel) of the input feature map
(I) and the corresponding kernel (ωj).

In our setup, the convolution unit uses a line buffer archi-
tecture to hold and provide data values to the convolution [8].
As shown at the right in Figure 2, the line buffer is arranged in
three rows, each of which processes one line of the convolution
operation. The line buffer is a shift register that receives one
pixel from the input feature map (the image) per clock cycle
and shifts its values to the right. The length of each row in
the line buffer matches the length of the input feature map
of the convolution operation (28 for the first layer in our
implementation). The rightmost word of each row of the line
buffer enters the next row from the left, and the rightmost
word of the last row is discarded. The rightmost three words
of each of the three rows of the line buffer constitute the image
window whose values are multiplied with values from the 3×3
kernel. Since binary kernels are used in a BNN, each image
pixel in the current image window is added to or subtracted
from (based on a kernel value of -1 or +1) the other pixels in
one clock cycle using a combinational adder tree. One output
feature map value is generated every clock cycle.

An adversary can abuse the shared FPGA PDN to sense
local supply voltage changes, which can reveal information
about the per-cycle power consumption in the convolution unit.
The power consumption is due in part to the switching activity
in the BNN accelerator, including the convolution unit, which
causes supply voltage to be correlated to the data processed.
The small PDN fluctuations are reflected in the sampled values
of the TDC, and the TDC samples can then be used to recover
a facsimile of the input image.

To observe the voltage fluctuations, the TDC measures
the delay of signal propagation among the TDC stages. The
256-stage TDC contains a chain of fast fixed-purpose FPGA
elements typically used to perform timing-critical carry op-
erations in arithmetic circuits (Carry4 or Carry8 depending
on FPGA family) [18]. The TDC is activated by sending the
rising edge of a clock through the adjustable delay and the
carry chain to the flip-flops attached to the 256 stages of the
carry logic. The Hamming weight of the sample indicates how
far through the carry chain the rising edge has propagated by
the time the next rising clock edge arrives. When the supply

TABLE I: Details of the evaluation boards used for the experiments.
The system clock generates the clock for the BNN accelerator and
TDC module.

Board Name Device FPGA Family Clk (MHz)

ChipWhisperer XC7A100T Artix 7 50
ZCU104 XCZU7EV Zynq UltraScale+ 120
VCU118 XCVU9P Virtex UltraScale+ 100

FPGA Chip

User
Commands/

Data

JTA
G

-to-A
X

I

32-bit AXI4-Lite
Data

AXI Interconnect

Output
Feature Map

Controller

Address/Control

Convolution
Unit

Pooling,
Batch Norm,
Sign Function

TDC & FIFO

Input Image

Param

BNN Accelerator

JTAG

Fig. 3: Overview of the architecture implemented on the ChipWhis-
per, ZCU104, and VCU118.

voltage drops, the propagation delay of the circuit increases,
and the rising edge will have propagated through fewer carry
stages before the next rising clock edge, and hence the sample
captured in the flip flops will have a lower Hamming weight.

C. Experimental Approach

Three Xilinx FPGA-based boards, listed in Table I, were
used for experimentation. The ChipWhisperer CW305 board
[13] provides a platform for examining power side-channel
attack scenarios. The board supports off-chip voltage mea-
surement using a capture board via a low-noise and high-
bandwidth connection to the main FPGA 1V DC supply pin.
The ChipWhisperer-Lite capture board [19] contains a 10-bit
analog-to-digital converter (ADC) with 105 MS/s sampling
rate. As described in Section IV, both the capture board
and an on-FPGA TDC were used with the ChipWhisperer
to obtain voltage traces. Xilinx ZCU104 [14] and VCU118
[15] evaluation boards were also used for evaluation, with on-
FPGA TDC-based sensors used to collect voltage traces. Off-
chip FPGA supply voltage measurements were not collected
for these two boards.

The implementation of the attack architecture for the three
boards is similar. The BNN accelerator and supporting test
circuitry, as well as the TDC and FIFO used for performing
the attack, are shown in Figure 3. The data movement between
different components of the design takes place through an
AXI4-Lite on-chip communication protocol. Off-chip commu-
nication (data movement and control commands) uses a Xilinx
JTAG-to-AXI converter module to provide user access to the
on-chip AXI bus through a JTAG interface.

The on-chip controller in Figure 3 sets memory addresses
and controls the operation of the convolution unit. This con-
troller has registers that set the parameters of the three on-chip
block memories used to store on-chip data. Input Image stores

(a) (b) (c)

Fig. 4: (a) Input image to the convolution unit from the MNIST
data set, (b) recovered image with supply voltage traces from the
ChipWhisperer board, (c) recovered image with TDC traces.

the input feature map, Output Feature Map stores the result of
the convolution, and Param stores the binary values of the
convolution kernels for the current layer with +1 represented
by the bit value 1 and -1 by the bit value 0. For each layer
of the BNN, the input feature map and corresponding kernel
values are loaded into Input Image and Param memories
by the user, then the convolution operation is performed, and
finally the results are collected from Output Feature Map.

IV. ATTACK ANALYSIS ON CHIPWHISPERER

In this section, we describe characterization experiments
using the ChipWhisperer CW305 board. These experiments
use both on- and off-FPGA voltage measurements to examine
voltage fluctuations during the convolution operation as input
images are processed. The ChipWhisper is an ideal board in
that its bypass capacitors have been removed and dedicated
voltage measurement resources are provided. With informa-
tion gathered from the ChipWhisperer, the attack was then
deployed on other, more realistic boards.

A. Off-Chip Characterization of Convolution Operation

In an initial set of experiments, the ADC on the
ChipWhisperer-Lite capture board was used to sample the
FPGA core supply voltage level at the rising edge of each
convolution unit clock cycle. The supply voltage level drops
of all 28×28 (784) convolution operations for the first kernel
applied to the input image, illustrated in Figure 4a, were
measured. The experiment was run 10 times and the mean
values of the voltage drops observed at the FPGA supply input
at each clock cycle are shown in Figure 5. The 125 orange
circles in Figure 5 show clock cycles during which the 125
pixels from the image foreground are used in convolution for
the first time (the clock cycle when the foreground pixel is in
location P9, multiplied by K9 in Figure 2). Figure 5 shows
that the clock cycles corresponding to foreground pixels have
a higher voltage drop compared to other clock cycles. These
differences can be used to differentiate between foreground
and background pixels.

The voltage drops induced by the foreground pixels can be
explained by examining Equation 1. Each pixel of the output
feature map (Ox,y) is calculated using an image window and
a kernel. The image (a grayscale picture of a digit with each
pixel an integer between 0 and 255) has low-valued pixels

0 100 200 300 400 500 600 700 800
Clock Cycle

0

1

2

3

4

5

6

V
o
lt

a
g
e

D
ro

p
(m

V
)

Fig. 5: Voltage trace from the ChipWhisperer FPGA while running
the convolution unit shown in Figure 2. The y axis illustrates the
absolute value of the measured voltage drop due to convolution unit
activity. The 125 orange circles correspond to the clock cycles that
process foreground pixels of the input image (Figure 4a).

0 1 2 3 4 5 6

Voltage Drop (mV)

0

20

40

60

80

N
u
m

b
er

o
f

O
cc

u
re

n
ce

s

Selected Threshold

Foreground
Background

Fig. 6: Histogram of the voltage drop due to convolution unit
operation for convolution operations with the same input image and
kernel. Each occurrence in the histogram represents the average of ten
trials of processing the same pixel and kernel. The bars corresponding
to foreground pixels are colored in orange and those corresponding
to background pixels are colored dark grey. The selected threshold
(boundary) between foreground and background pixels is marked in
the histogram.

(close to 0) for background and high-valued pixels (close to
255) for the foreground. For the calculation of the output
feature map, the kernel values are constant. However, the
values of the processed input image pixels in specific locations
in the line buffer change between background and foreground
pixels during the convolution operation. The dynamic power
consumption (and resulting voltage drop) of processing fore-
ground pixels is larger than for background pixels. Specifically,
foreground pixels result in the generation of larger magnitude
results for the multiply and accumulate operations when the
convolution operation processes these pixels. As a result of
generating these values, significant switching activity takes
place in the adder tree of the convolution unit and resultant
voltage drops can be observed.

To illustrate the range of voltage changes due to the convo-
lution of the input image, a histogram of the absolute value of
voltage drop measurements in Figure 5 is shown in Figure 6.
The histogram contains 40 bins evenly distributed in value

0 100 200 300 400 500 600 700 800
Clock Cycle

0.00

0.25

0.50

0.75

1.00

1.25

H
ig

h
-p

a
ss

F
il
te

r
O

u
tp

u
t

(A
b
so

lu
te

V
a
lu

e)

(a) Recovered trace after applying a high-pass filter to
the TDC Hamming weight values (absolute value).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

High-pass Filter Output (Absolute Value)

0

50

100

150

N
u
m

b
er

o
f

O
cc

u
re

n
ce

s

Selected Threshold

Foreground
Background

(b) Histogram of the filtered TDC trace with the se-
lected threshold shown.

Fig. 7: TDC data recovered from ChipWhisperer: (a) Trace after
applying high-pass filter and removing low-frequency envelope (abso-
lute value), (b) Histogram of the filtered TDC trace with the selected
threshold.

between 0 to 6 mV. The boundary between foreground and
background pixels can be distinguished with a threshold.

Generally, the processing of background pixels leads to
small voltage drops that are clustered on the left of the
histogram and the processing of foreground pixels leads to a
range of larger voltage drops on the right of the histogram.
The threshold can be identified by locating a downward
gradient in occurrence counts over multiple voltage bins. In
the ChipWhisperer, this transition took place over five bins
located just before 2 mV.

In Figure 6, the dashed red line shows the chosen threshold
value. All voltage drops created by input pixels that fall to
the left of the line are classified as background pixels, while
the ones to the right are classified as foreground pixels. The
recovered image using the threshold is shown in Figure 4b.

B. TDC-Based Characterization of Convolution Operation

The characterization of convolution unit voltage drops de-
scribed in the previous subsection was performed using voltage
traces obtained by the ChipWhisperer-Lite capture board. In
this section, we describe characterization experiments that use
voltage measurements obtained by a TDC sensor implemented
in the ChipWhisperer FPGA. The TDC architecture was
described in Section III-B. The 256-bit TDC carry chain for
the Artix-7 FPGA on the ChipWhisperer board consists of

(a) Input images

(b) Recovered images from ZCU104

(c) Recovered images from VCU118

Fig. 8: Input images and recovered images from ZCU104 and
VCU118 boards using only TDC measurements.

Carry4 carry primitives. The sensitivity for each TDC stage
is close to 25 ps.

For each clock cycle, the flip-flop values from the TDC were
saved in a 256-bit wide FIFO, forming one voltage estimate.
This experiment was performed 100 times using the same
input image and kernel. The voltage estimates at each clock
cycle for the 100 traces were then averaged to minimize noise,
forming a collection of 784 Hamming weights, one for each
pixel. A high-pass Butterworth digital filter was applied to
the values to retain voltage fluctuations due to convolution
unit activity while removing a low-frequency supply voltage
envelope. For each point in the plot, the filter determines
an average Hamming weight value over the previous ten
clock cycles (a running average window). This value is then
subtracted from the Hamming weight value at the current clock
cycle, leading to the plot shown in Figure 7a. Subsequently,
the image was recovered with the histogram threshold shown
in Figure 7b, identified with the gradient method described in
Section IV-A. The recovered image is shown in Figure 4c.

C. TDC-Based Attack Summary

To summarize, the following steps are performed to recover
a reconstructed image using the on-FPGA TDC:

1) Voltage estimates are collected for each input pixel
during operation of the convolution unit for the first
kernel of the first convolution layer.

2) Voltage estimates for each pixel are averaged across
all runs with the image to generate a single trace.
The averaged estimates are represented using Hamming
weights.

3) A Butterworth high-pass filter is used to remove low-
freqency power supply ripple from the averaged Ham-
ming weights.

4) A histogram of the resulting values is created and a
threshold is used to differentiate foreground and back-
ground pixels, forming a recovered image.

V. IMAGE EXTRACTION USING THE ATTACK

After initial experimentation with the ChipWhisperer
CW305, our attack was applied to the two boards described
in Section III-C to see how well the attack can perform on

(a) ZCU104,
cross-die

(b) ZCU104,
adjacent

(c) VCU118,
cross-die

(d) VCU118,
adjacent

Fig. 9: Recovered images with adjacent and cross-die placement for
3,000 runs.

commercial off-the-shelf boards that were not designed to
study side channel attacks. The hardware for these platforms
was not modified for our experimentation. The experimental
setup for these platforms including the BNN accelerator is
shown in Figure 3.

Recovered images for the ZCU104 and VCU118 boards
using TDC measurements are shown in Figure 8. For these
experiments, the TDC was placed adjacent to the BNN accel-
erator in the FPGA fabric (in the next row of logic blocks). For
the ZCU104 and VCU118, the same input image and kernel
were used 3,000 times.

To study the importance of TDC location on the FPGA
die relative to the location of the BNN accelerator, the BNN
was moved to a location on the opposite side of the die
for the ZCU104’s UltraScale+ FPGA. The experiments were
rerun for the digital image shown in Figure 4a. To compare
the quality of the recovered images with cross-die placement
of the TDC versus the results from adjacent placement for
the selected digit, the normalized cross-correlation (CCR N),
derived from cross-correlation (CCR), between the recovered
images and the input image for both adjacent and cross-
die TDC placements were calculated using Equations 2 and
3. Here, Ā and B̄ represent the mean pixel values of the
images. The CCR N value provides a quantitative metric for
comparing the similarity of the input image and a recovered
image.

CCR =
∑

(i,j)∈N28×28

[
(A[i, j]− Ā)× (B[i, j]− B̄)

]
(2)

CCR N =
CCR√∑(

A[i, j]− Ā
)2 ×∑(

B[i, j]− B̄
)2 (3)

The normalized cross-correlations for adjacent and cross-die
placement for the ZCU104 are 0.745 and 0.594, respectively.
The corresponding values for the VCU118 are 0.678 and
0.646. Figure 9 shows the recovered images for different
placement strategies for the two boards.

To obtain recognizable reconstructed images, the same input
image is processed by the same kernel numerous times. To
evaluate the effect of number of runs on image quality, we
again used the image shown in Figure 4a. For both FPGA
boards, the normalized cross-correlation (Equation 3) of the
recovered image and the original image versus the number of
times the input image was processed by the first kernel was
calculated. Figure 10 shows recovered images for an increasing
number of runs.

(a) 100, 0.19 (b) 500, 0.61 (c) 1,000, 0.65 (d) 3,000, 0.75

Fig. 10: Recovered images for the ZCU104 board for (number of
runs, normalized cross-correlation with the original image).

VI. CONCLUSION

This paper presents a remote power side-channel attack on
binarized neural networks targeting multi-tenant FPGAs. We
show that it is possible to accurately extract image inputs to
a BNN by collecting and analyzing on-chip voltage estimates
with TDCs. Our approach has been applied to three FPGA
boards. Our experiments successfully recovered recognizable
images for all ten digits from the MNIST dataset.

ACKNOWLEDGMENT

This research was funded in part by NSF grants CNS-
1901901 and CNS-1902532.

REFERENCES

[1] Amazon Web Services, “Amazon EC2 F1 instances,” https://aws.
amazon.com/ec2/instance-types/f1/, Accessed: 2020-8-23.

[2] Baidu Cloud, “FPGA cloud compute,” https://cloud.baidu.com/product/
fpga.html, Accessed: 2020-03-29.

[3] O. Glamocanin et al., “Are cloud FPGAs really vulnerable to power
analysis attacks?” in DATE, 2020.

[4] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in IEEE S&P, 2018.

[5] F. Schellenberg et al., “An inside job: Remote power analysis attacks
on FPGAs,” in DATE, 2018.

[6] S. Zeng et al., “Enabling efficient and flexible FPGA virtualization for
deep learning in the cloud,” in FCCM, 2020.

[7] Microsoft, “What are Field-Programmable Gate Arrays (FPGA) and how
to deploy,” https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-deploy-fpga-web-service, Accessed: 2020-05-14.

[8] L. Wei et al., “I know what you see: Power side-channel attack on
convolutional neural network accelerators,” in CSAC, 2018.

[9] A. Dubey et al., “Maskednet: A pathway for secure inference against
power side-channel attacks,” in HOST, 2020.

[10] K. Yoshida et al., “Model-extraction attack against FPGA-DNN accel-
erator utilizing correlation electromagnetic analysis,” in FCCM, 2019.

[11] W. Hua et al., “Reverse engineering convolutional neural networks
through side-channel information leaks,” in DAC, 2018.

[12] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database.” http://yann.lecun.com/exdb/mnist/, Accessed: 2020-05-19.

[13] NewAE Technology, Inc., “CW305 ChipWhisperer Artix FPGA target
board,” https://rtfm.newae.com/Targets/CW305ArtixFPGA/, Accessed:
2020-11-22.

[14] Xilinx, Inc., “ZCU104 evaluation board,” https://www.xilinx.com/
products/boards-and-kits/zcu104.html, 2020, Accessed: 2020-05-19.

[15] ——, “VCU118 evaluation board,” https://www.xilinx.com/products/
boards-and-kits/vcu118.html, 2020, Accessed: 2020-05-19.

[16] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295 – 2329, Dec. 2017.

[17] K. Ding, “Binarized dense and Conv2D layers for Keras,” https://github.
com/DingKe/BinaryNet, Accessed: 2020-05-19.

[18] S. Moini et al., “Understanding and comparing the capabilities of
on-chip voltage sensors against remote power attacks on FPGAs,” in
MWSCAS, 2020.

[19] NewAE Technology, Inc., “CW1173 ChipWhisperer-Lite capture board,”
https://wiki.newae.com/CW1173 ChipWhisperer-Lite, Accessed: 2020-
05-22.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://cloud.baidu.com/product/fpga.html
https://cloud.baidu.com/product/fpga.html
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
http://yann.lecun.com/exdb/mnist/
https://rtfm.newae.com/Targets/CW305 Artix FPGA/
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://github.com/DingKe/BinaryNet
https://github.com/DingKe/BinaryNet
https://wiki.newae.com/CW1173_ChipWhisperer-Lite

	introduction
	background and related work
	Binarized Neural Networks
	Voltage Sensing Using Time-to-Digital Converters

	details of the attack
	Threat Model
	Attack Implementation
	Experimental Approach

	Attack Analysis on ChipWhisperer
	Off-Chip Characterization of Convolution Operation
	TDC-Based Characterization of Convolution Operation
	TDC-Based Attack Summary

	Image Extraction using the Attack
	Conclusion
	References

