
CHEQ: Towards Enabling Circuit Integrity Checking
in�antum Controllers

Barbora Hrdá
Yale University,

Technical University of Munich,

and Fraunhofer AISEC

Munich, Germany

barbora.hrda@tum.de

Sanjay Deshpande
Yale University

New Haven, CT, USA

sanjay.deshpande@yale.edu

Theodoros Trochatos
Yale University

New Haven, CT, USA

theodoros.trochatos@yale.edu

Jakub Szefer
Northwestern University

Evanston, IL, USA

jakub.szefer@northwestern.edu

Abstract

Rapid advances in quantum computing hardware and software are

bringing closer the promise of new discoveries and breakthroughs

that these machines will enable. To fully utilize and trust the quan-

tum computers, however, users need to have assurances about the

con�dentiality and integrity of quantum circuits that they execute

on the quantum computers. While existing research has begun to

address the issues of quantum circuit con�dentiality, for example,

through various obfuscation methods, there is lack of quantum com-

puter architecture or hardware designs for ensuring and checking

the integrity of quantum circuits. This gap in existing research and

design of quantum computers is addressed in this paper. This work

outlines the design of CHEQ, a Circuit Hashing Engine for Quan-

tum controllers. This work �rst presents integrity requirements

for quantum circuits, then details the design of CHEQ, along with

�rst set of evaluation results. By providing circuit integrity mea-

surements to users through CHEQ, quantum computing systems

can become more resilient to security threats that aim to attack

circuit integrity. Combined with other prior work on con�dential-

ity, the new CHEQ integrity assurance in quantum computers can

enable complete circuit protection, and thus protection of the future

discoveries and breakthroughs generated by quantum computers.

ACM Reference Format:

Barbora Hrdá, Sanjay Deshpande, Theodoros Trochatos, and Jakub Szefer.

2025. CHEQ: Towards Enabling Circuit Integrity Checking in Quantum

Controllers. In Great Lakes Symposium on VLSI 2025 (GLSVLSI ’25), June

30-July 2, 2025, New Orleans, LA, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3716368.3735296

1 Introduction

Quantum computing is expected to solve problems in speci�c appli-

cations like machine learning, cryptography, or chemistry that are

currently intractable for classical systems. It leverages the principles

of quantum mechanics to process information in fundamentally

This work is licensed under a Creative Commons Attribution 4.0 International License.

GLSVLSI ’25, New Orleans, LA, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1496-2/2025/06
https://doi.org/10.1145/3716368.3735296

di�erent ways than classical computing. Quantum algorithms such

as Shor’s [39] and Grover’s [20] demonstrate quantum comput-

ing’s ability to solve certain problems exponentially faster than

classical computers. Quantum algorithms are represented by quan-

tum circuits. These are composed of quantum operations executed

through quantum gates, which manipulate qubit states in accor-

dance with the principles of quantum mechanics. These circuits are

implemented in a programming environment and transpiled into

device-speci�c instructions for the target Quantum Processing Unit

(QPU). Quantum gates are abstract representations of transforma-

tions applied to qubits, typically implemented using techniques like

microwave pulses or other control methods. The characteristics

of these pulses – speci�cally their shape, intensity, and duration

– ultimately determine the resulting state of qubits. These pulses

can be modi�ed to indicate errors, falsify results or add noise to

the entire system, representing a breach of the circuit’s integrity.

In order to utilize quantum computers, users need to send their

quantum circuits and inputs to remote third party providers. To

ensure the accuracy of a calculation, it is crucial to verify that these

pulses have not been altered prior to their execution. As of today,

there is only limited research on security mechanisms for quan-

tum computers to ensure the con�dentiality of user’s inputs or

circuits, and hardly any work looking at integrity and quantum

computer controllers, posing signi�cant security and privacy con-

cerns. Today’s quantum computing users must rely on the operator

to process their data correctly and exclusively for its intended pur-

pose. To fully utilize quantum computers, users need assurances

about the con�dentiality and integrity of quantum circuits they

execute on third party quantum computers.

Recent studies have focused primarily on developing protocols

that partition calculations to obfuscate or encrypt the original cir-

cuit’s information. This includes, the areas of research on Blind

Quantum Computation [1, 10, 12, 18, 27, 42], Quantum Homomor-

phic Encryption [3, 19, 26, 44], Circuit Cutting for security [47] or

trusted execution environments for quantum computers [45, 46]. In

contrast, our approach attempts to integrate integrity protections

for quantum circuits to help assure users that their circuits were

executed correctly and without modi�cation.

This work introduces and outlines the design of the Circuit

Hashing Engine for Quantum Controllers (CHEQ). Immediately

before execution, a controller unit converts digital instructions

into analog signals or pulses. Controllers translate the classical bit-

instruction into quantum operations. This requires timing, accuracy,

but also integrity in order to perform correct and secure quantum

operations. Thus, this work introduces integrity requirements for

quantum circuits and details how key components of a quantum

controller can be leveraged to utilize a set of hash engines for

ensuring the integrity of circuits and pulses. This work utilizes the

open source FPGA-based Quantum Instrumentation Control Kit

(QICK) [40] controller. QICK is an open source Xilinx RFSoC-based

qubit controller [40], running on a RFSoC4x2 board by Xilinx [16].

It provides a digital radio-frequency (RF) board hosting a RFSoC-

FPGA, custom �rmware and custom software (both open source).

It provides a platform for control and readout of di�erent quantum

systems, with the �exibility to extend its �rmware by adding custom

functionality.

QICK’s accessibility and modi�ability enable the integration of

CHEQ’s security features on a RF-SoC FPGA board. To identify the

optimal placement and targets for CHEQ, this work analyzes various

attack paths a malicious actor might exploit during gate processing

leading up to pulse execution. Finally, this work analyses CHEQ’s

overhead and discusses limitations of the design that motivate

future work in this direction.

Contribution

This work examines potential security measures for integrity pro-

tection within a quantum controller, focusing on

• de�nition of integrity requirements for quantum circuits

across their lifecycle,

• conceptual design of integrity protection through hashing

on pulse control level,

• design of a Circuit Hashing Engine for Quantum controllers

(CHEQ), and

• presenting �rst results of the architecture’s ability to protect

quantum circuits.

2 Background

2.1 Quantum Access via Cloud-based Platforms

Currently, access to quantum computers is provided via cloud-based

platforms. These platforms typically integrate quantum hardware,

control mechanisms, and software into a uni�ed system. They can

be provided either by the manufacturer of the quantum computer

itself (e.g., IBM [23], Quantinuum [36] or Rigetti [37]) or by other

companies (e.g., AWS provides access to QPUs by di�erent ven-

dors [38]). These usually include a few free-of-charge QPUs that

are shared with other users, as well as fee-based access to more

advanced QPUs. Control and measurement systems manage qubit

operations and transpilation to the targeted QPU. Quantum soft-

ware often incorporates an SDK tailored to the speci�c QPU in

order to create and run quantum algorithms. The processing across

cloud providers can be abstracted to the following steps: Circuits

are received, stored, optimized, queued, converted into pulses and

sent to a QPU accordingly [21, 33]. Calculation results are stored

again and returned to the user. In order to determine what parts of

the calculation require protection, it is essential to closely examine

the computations performed on a quantum computer.

A calculation that is sent to the cloud provider consists basi-

cally of three key components: input, circuit, and output. Based

on [21], we are considering all three to be assets. These may include

the following:

• data inputs (as there is no memory in current quantum com-

puters, the input values are hard-coded into the circuit, e.g.,

sensitive medical records),

• quantum circuits (proprietary quantum algorithms, e.g., a

company’s intellectual property), and

• outputs (results produced by quantum computations, e.g.,

decrypted RSA keys).

These assets (data inputs and quantum circuits) are sent from a

user’s local device through a third party cloud provider to a QPU.

Cloud providers inherently access the users’ assets when receiving

circuits for execution. Given the sensitivity, value, and potential im-

pact in case of a security breach, quantum computing assets require

robust protection measures, integrated idealy into the quantum

computing ecosystem. Due to the current limited availability of

QPUs, protection measures should prioritize con�dentiality and

integrity protection over availability.

2.2 Quantum Controller Architecture

Quantum controllers are the interface between the classical con-

trol system and the QPU. They translate classical bit-instruction

into quantum operations, are used for calibration, pulse shaping,

and qubit control. This requires timing, accuracy, but also integrity

in order to perform correct and secure quantum operations. De-

pending on the targeted QPU, there are di�erent types of quantum

controllers, e.g., microwave [5, 43], laser [14, 41], or FPGA-based

controllers [40]. Regardless of the targeted physical qubit technol-

ogy, the controllers’ architecture is similar, and typically includes a

control unit, a pulse or laser generator, and several digital-to-analog

converters (DAC) encoding and �ring the actual pulses. Addition-

ally, for the readout of quantum results, controllers also contain

several analog-to-digital converters (ADC). In order to create a

pulse, controllers generally need the following information:

• targeted DAC channel,

• starting time of the pulse,

• I/Q values for the waveform envelope,

• pulse frequency, phase, duration and gain.

Further, each quantum circuit is composed of multiple pulses on

multiple DAC channels. All the pulses and the order of the pulses

on a DAC channel, and among DAC channels, is important. Thus,

integrity protectionmeasures need to take care of hashing the above

pulse information for each pulse, as well as timing information for

when di�erent pulses are executed on di�erent DAC channels to

capture the whole history of the pulses executed.

The amount of information needed per pulse by di�erent con-

trollers may vary. In this work we use QICK and information is

used as a demonstrative example. Controllers are the �nal point

where pulses can be modi�ed before their transmission to the QPU,

thus, this is where the integrity protection is added.

3 Threat Model

This work assumes a remote user who sends quantum circuits to

an untrusted third party cloud-based QPU provider and wants to

2

Considered

Attacker Paths

QC Platform

Controller

User

Quantum

Circuit

Submit Circuits

Collect Results

Digital Control

Signals

Analog RF

Pulses

QPU

Digital

Control
Unit

Pulse

Generation

DACs

ADCs

1

3

42

Figure 1: This illustration depicts the abstracted process �ow of a circuit from creation at the user’s development environment

to execution at a third party QPU. As outlined in Section 4.1, the circuit undergoes modi�cations at various stages. The red

lightning symbols highlight potential attack paths (1 - 4) identi�ed in Section 3. As described in Section 4.1, as a �rst step

this work considers the user and the controller to be trusted, symbolized using the green locks. This work focuses on the

process leading up to the execution of circuits on a QPU. The handling of results sent back to the user, passing the controller’s

analog-to-digital converters (ADCs), falls outside the scope of this study and could be addressed in future research.

obtain a correct result from a quantum computation while ensuring

their circuit was unmodi�ed before execution. Given existing work

that focuses on con�dentiality protection, this work focuses only

on integrity protection, i.e., detecting modi�cation to the users’

circuits. Thus, con�dentiality-related attacks, such as side channel

or timing attacks, are not considered.

In this threat model, we assume a malicious attacker who wants

to alter the users’ quantum circuits, in order to disrupt or falsify the

calculations, and consequently, the results. In Fig. 1 the red lightning

symbols highlight potential attack paths within a typical cloud-

based quantum computing system.We assume the attacker cloud try

to compromise the network (attack path 1), over which the circuit is

send, or parts or the whole controller (attack paths 2, 3 and 4), e.g.,

by being an insider at the quantum provider side. The attacker’s

capabilities could include manipulating user’s quantum circuits or

pulse instructions to interfere with the controller’s operations or

induce errors (e.g., tampering with control signals or qubit settings).

The initial transfer of user’s quantum circuits through the cloud

platform to the controller is a �rst point of attack (attack path 1). An

attacker could, for instance, execute a man-in-the-middle attack to

intercept, analyze, and manipulate circuit transmissions. This attack

path is neither unique to quantum computing nor quantum-speci�c.

Instead, it belongs to the broader category of secure information

transmission to remote cloud infrastructures. This attack path is typ-

ically addressed using state-of-the-art protection, e.g., network en-

cryption and hashing. Thus, this work focuses on quantum-speci�c

parts of the attacker model (attack paths 2, 3, and 4).

The controller forms a part of the quantum-speci�c architec-

ture, consisting of the digital control unit, pulse generation, DACs

and ADCs. The digital control unit and pulse generation modules

store, organize, and ultimately process information required for

pulse generation. These modules typically run on classic control

computers. In this case, the attacker could take control over the

digital control unit and manipulate the circuits or pulses building

blocks (attack path 2). The control unit creates information used to

generate the pulses in the pulse generation unit, and the attacker

could target that unit (attack path 2). Lastly, the DAC takes binary

instructions and turns them into analogue pulses. DACs are part of,

e.g., classical RF-boards. In this instance, the attacker could try to

take over control of the RF-board and manipulate the bit-to-pulse

conversion, resulting, e.g., in falsi�ed results (attack path 3).

In this threat model, the controller is trusted. However, in real-

world applications, the controller might be attacked or compro-

mised. To detect or prevent a compromised controller, future work

could implement protective measures such as embedding a trusted

execution environment or incorporating attestation mechanisms

into the controller. This work focuses on integrity protection of

the user’s inputs and quantum circuits. The controller also con-

tains analog-to-digital converters (ADCs) for reading out responses

from the qubits. Future e�orts may also focus on implementing

readout protection.

4 Circuit Hashing Engine for Quantum
Controllers (CHEQ)

This section discusses where and how integrity protection for quan-

tum circuits should be added, and then details the design of CHEQ.

4.1 Integrity Protection for Quantum Circuits

Circuit integrity protection must be tailored to and implemented

across various stages of the circuit life-cycle, see Fig. 1. In general,

every parameter that contributes to the structure of the circuit, or

individual pulses, should be hashed. On user’s side, the circuit’s

initial state contains transpiled instructions for a targeted QPU,

usually in a quantum assembly language like OpenQASM [13]. The

cloud-based platform performs circuit optimization (e.g., reducing

3

Signal Generator 0
Tile 0

DAC Tile 0

Block 0

Block 1

Zynq

PS

PL

Main

Control

Data

Memory

toff

DMA

FIFO 0 FIFO

&

Data

Writer

Register

Table

Memory

FIFO n

DDS

Switch Gain

Signal

Generator
tProc DAC

&

Master

Clock

Time

ctrl. 0

Time

ctrl. n

&

Pulse

Information

vout0

Tile 0

DAC Tile 1

Block 0

Block 1

&

FIFO 1
Time

ctrl. 1

&

&

vout1

Hashing

Engine (#)

Signal Generator 1

Zynq Data

Component Data

Hash Data

Master Clock Data

&

Ctrl.

Figure 2: This block diagram of the QICK quantum computer controller is based on [16, 32, 40]. The main QICK components

on the programmable logic (PL) side are the timed-processor (tProc), signal generator (SG) and RF blocks (Digital-to-Analog

converter (DAC)). Green dotted squares illustrate the locations where pulse information is generated, modi�ed and stored, and

thus highlight potential locations for applying integrity protection. Red arrows indicate data that is send directly from Zynq to

the three main components. Blue arrows indicate communication within and between components. Dashed arrows symbolize

data that is send for hashing to CHEQ engines. Green dashed arrows indicate master clock information send to CHEQ engines.

For the sake of clarity, only abbreviated forms of the master clock inputs are shown in this �gure. All CHEQ engines bu�er the

input they receive, push it to their internal SHAKE modules and send a hash back to Zynq. For the sake of clarity, returning

the hash values to Zynq is not shown in this �gure. At the main control, instructions are dispatched into a time queue and

executed by a speci�ed signal generator (SG) channel in the speci�ed order. For the sake of clarity, only one signal generator,

including its internal components, is represented; a second SG is shown as a solid block. All SG are constructed similarly. Pulse

parameters are passed from the tProc to the SG and queued into the FIFO of each SG channel. The table memory’s parameters

are not mandatorily passing the tProc and need to be hashed either within the table memory itself or before they are passed to

the SG. Integrity protection for the individual pulses should be performed within the speci�c DAC tiles.

the circuit depth by removing or restructuring gates) and conver-

sion before the circuit instructions are sent to the controller. The

controller itself assigns the corresponding pulse parameters to the

individual DACs, loads information on envelope forms into its mem-

ory and performs the circuit-to-pulse conversion. The generated

pulse is then sent to the QPU.

As described in Section 3, this work focuses on the quantum-

speci�c architecture of the attacker model. We identi�ed 3 attack

paths within the controller: the Digital Control Unit, the Pulse Gen-

eration, and the DACs. In order to protect the circuits’ integrity,

users’ quantum circuit related instructions or data processed by

each of the parts needs to be hashed. Because we assume the con-

troller hardware (i.e. CHEQ) can be trusted, we incorporate hashing

engines in various parts of the controller.

In future, the trust boundary could be further reduced. For ex-

ample, the DACs are the �nal point where the digital information

is turned into analog pulses. Security-aware DACs could be created

where only data passing through the DACs is hashed. Conversely,

assuming the attacks could only happen before the user’s quantum

circuits reach the controller, all the integrity protection could be in

the Digial Control Unit.

4.2 CHEQ Design

For the design of CHEQ, we utilize the SHAKE256 hash module

as a new addition to QICK. SHAKE256 is an extendable-output

function (XOF) based on the Keccak sponge construction and is

standardized by NIST as part of the SHA-3 family [7]. SHAKE256

provides �exibility by allowing output generation of any desired

4

Table 1: This table presents locations for hashing engines for di�erent hashing levels: from whole circuits to pulse generation.

Hashing Level Hash Location Size of Hashed In-

formation

Explanation

Whole circuit User’s Environment,

Platform, Controller

3 hash locations ×

256 bits

At the user’s side the hashing module should be added after the

circuit has been transpiled, at the platform’s side after the optimiza-

tion. In the controller hashing should happen in zynq, before the

circuit is divided and dispatched to the individual channels.

Pulse Generation

Information

Zynq, data memory,

main control, time

control, SG control and

table memory for each

SG channel

number of instruc-

tions × 6 hash loca-

tions × 256 bit

Each pulse consists of di�erent parameters, e.g., 80-bit instructions,

16-bit envelope information, execution time or channel information

distributed in QICK across 6 submodules.

Individual Pulses DAC Tiles and Zynq number of instruc-

tions × 256 bit

Individual pulse instruction should be hashed within their corre-

sponding DAC.

length. It utilizes the Keccak-f permutation function, which op-

erates on a 1600-bit state using a sponge construction. The core

operation, Keccak-f[b], consists of multiple transformation rounds.

In the SHAKE256 setting, the number of rounds is 24. Each round

consists of �ve layers: Ă - di�usion layer, Ā - bit rotation layer, ÿ -

lane permutation layer, Ć - non-linearity layer and ă - XORing with

a round constant. The 1600-bit Keccak-f input state is split into two

parts: a rate of 1088 bits and a capacity of 512 bits. The input block

size for SHAKE256 is determined by the rate, which is 1088 bits.

NIST has standardized SHAKE256 as a recommended XOF for appli-

cations requiring hashing-based cryptographic constructions [31].

NIST’s PQC standardization e�ort has recognized SHAKE256 as a

core component in some post-quantum cryptographic algorithms

due to its security, e�ciency, and hardware-friendly design [28].

In our hardware design of SHAKE256, the implementation of

Keccak-f round function layers { Ă , Ā , ÿ , Ć , and ă } is fully combi-

natorial, and we operate on the full-width of 1600-bits in parallel.

We register the output after each round, and then the output is fed

back into the round function for the next iteration.

Fig. 2 highlights QICK’s modules targeted for hashing.

In QICK, high-level circuits are created in Jupyter Notebooks

or Python. These instructions are passed from the RFSoC Zynq

processor (processing system (PS)) to the �rmware blocks (pro-

grammable logic (PL)). The parameters responsible for pulse gen-

eration and readout are distributed across several sub-modules:

timed-processor (tProc), signal generator (SG) and RF blocks (DACs

and ADCs). Hashing the individual information needed to generate

the pulses, enables �ne-grained identi�cation of changes within

the pulses. In context of this work, the pulse information is found

in the submodules shown in Fig. 2.

The block diagram of tProc’s current version (64-Bit) is detailed

in [32]. Its main control uses standard instructions to operate on reg-

isters, push/pop instructions to stack and compute times to execute

timed-instructions at speci�c absolute times. Timed instructions

make use of the master clock and o�set register Đĥ Ĝ Ĝ . When the

processor decodes a timed instruction, it computes the absolute

time with Đĥ Ĝ Ĝ before dispatching it into the timed instruction

control queue of that particular SG channel. This also allows the

execution of instructions at the same absolute time in di�erent SG

channels. Instructions with a time tag are stored in the program

memory, before they are dispatched to their respective execution

channels. The master clock is a 48-bit counter, which, clocked at

the maximum FPGA speed of 500 MHz, a 2 Ĥĩ period, gives roughly

156 hours of counting. It starts counting when the software starts

at address 0 and never stops. Each of the tProc’s memory location

has a 64-bit number which encodes instruction together with the

necessary parameters for execution. The key information for pulse

creation in the main control and time control queue includes the

absolute execution time and the corresponding SG channel, which

corresponds to a targeted qubit within the QPU. This information

needs to be hashed.

All information required to create pulses is sent to the SG chan-

nels via various input channels. The tProc is connected to the SG

using a 160-bit interface. The SG creates pulse envelopes accord-

ing to the user’s instructions. A single instruction in QICK creates

a waveform that includes the waveform envelope’s start address,

DDS frequency and phase, pulse duration, output selection, and

gain [40]. Each SG channel has its own FIFO and associated time-

control. There are three steps in order to create and �re a pulse.

Firstly, I and Q values for the waveform envelope (e.g Gaussian)

are preloaded as 16-bit words from the Zynq processor directly

into the SG table memory section and DDS respectively. This infor-

mation needs to be hashed. Secondly, initial values are set for all

parameters. The SG receives waveform con�guration instructions

in 80-bit blocks from the tProc. Also, these 80-bit instructions need

to be hashed. As instructions are passed to the corresponding SG

channels, adding hash engine to all SG channels is necessary. If

values change, the channel’s registers that need to be updated are

overwritten using their page and address information. Assembly

instructions are then used to change the value of these registers.

Thirdly, a pulse is �red on the speci�ed channel at the speci�ed

time, using whatever values are loaded in the registers. Timed in-

structions are executed when the control core of the tProc pushes

the instruction into the timed queue (FIFO) or when the instruction

pops o� the timed queue. Then, the DDS block synthesizes the

tone for the digital upconversion and the switch determines the

corresponding mode. The signal then passes through the gain block

before entering the speci�ed DAC tile and block, where the pulse is

�nally �red. Hashing the resulting pulse itself would require adding

5

Table 2: This table provides area estimates for our SHAKE256-based CHEQ design and time estimates for generating the hashes.

For the evaluation, we used a 100-gate quantum arithmetic circuit. QICK’s original size includes 82.029 LUT and 124.948 FF. For

hashing levels ‘Individual Pulses’ and ‘Pulse Generation Information’ the size of hashed information depends on the number

of quantum gates, i.e. instructions, in the quantum circuit. Our Xilinx RFSoC4x2 board currently provides 4 DACs, representing

4 qubits. The hashing levels are explained in Table 1.

Hashing Level
Hash Output Size Area †% Increase Freq. Timing

(bits) LUTs FFs LUTs FFs (MHz) Cycles Time (Ĥĩ) Time/Pulse (Ĥĩ)

Whole Circuit 256 4,086 1,621 5% 1% 500 200 400.00 4.00

Full circuit integrity check using one SHAKE256 module

Individual Pulses 256
4,086 1,621 5% 1% 500

200 400 4.00

Pulse Generation Information 1,536 1,125 2,250.00 22.50

Qubit-wise integrity check (4-qubits) using four SHAKE256 modules

Individual Pulses 1,024
16,344 6,484 20% 5% 500

50 100 0.25

Pulse Generation Information 6,144 281 562.50 1.41

Instruction-wise integrity check (4-qubits) using four SHAKE256 modules

Individual Pulses 25,600
16,344 6,484 20% 5% 500

625 1,250.00 3.13

Pulse Generation Information 153,600 3,750 7,500.00 18.75

† % increase in the overall area of the controller when the Hash Engine is interfaced with the QICK quantum controller as shown in Fig. 2.

hashing to Zynq and all DAC blocks. All hash information is re-

turned via Zynq to the user. To sum it up, the following submodules

process essential information to safeguard pulse generation: Zynq,

Data Memory, Main Control, Time Control, Table Memory, Control

(Ctrl.) and the corresponding DAC tiles, see Fig. 2.

4.3 Preliminary Evaluation Results

The required resources for CHEQ are detailed in the following,

categorized by the hardware (FPGA) code size increase caused

by adding CHEQ engines to QICK and additional data generated

through hashing, see also Table 2.

The quantum circuit size, de�ned by the number of gate oper-

ations, is in�uenced by factors such as the input size or the algo-

rithm’s complexity. For example, a quantum adder circuit that adds

numbers 50 and 90 has a total of around 100 quantum gates (i.e.

instructions), depending on the actual implementation. To ensure

integrity protection for the pulse generation information, hashing

is applied to each of the 100 instructions, resulting in 100 gates × 6

hashing locations × 256 bit hashes. In addition, a dedicated hashing

engine is added to each of the six submodules, as shown in Fig. 2.

The number of added CHEQ hash engines is independent from the

size of the quantum circuit size, but depends on the QICK design.

One approach to reduce the size of the hashing information,

while still providing su�cient security, is grouping individual pulses

in the SGs and generate a hash for each group. Data packets con-

taining pulse information could be combined into up to 1600-bit

blocks. Using our SHAKE256 module, CHEQ could operate on the

full-width of 1600-bits in parallel. This would still enable the detec-

tion of changes in the generation of pulses, even if the exact data

point is not identi�able. This approach also addresses the scalability

of circuits.

Further, the overall output could be compressed by hashing all

the hash outputs together to generate one 256-bit hash value. The

key bene�t is that the user receives only 256 bits in return; how-

ever, while integrity violations can be detected, their exact location

cannot be identi�ed. If, as in Table 2, individual hash outputs are

returned, the user can possibly identify which instruction was mod-

i�ed or at what point in the controller process an integrity violation

occurred. Alternatively, the user could select the desired level of

detail for the collected information, thereby adjusting the amount

of hash data generated by CHEQ. Although integrity violations can

be detected in all settings, the user’s in�uence lies in determining

the granularity with which the source of an error or attack is iden-

ti�ed. This means that the user can choose whether to pinpoint

an integrity violation to a speci�c qubit or to a broader group of

instructions.

This work uses a small circuit to demonstrate how circuit design

and qubit count a�ect the overall hash sizes. Advances in quantum

computing scalability enable the processing of increasingly complex

and extensive algorithms. However, a comprehensive assessment

of CHEQ’s e�ciency in larger, or even error corrected, quantum

computers, requires further investigation, which lies beyond the

scope of this work.

4.4 Choice of Hash Engines

For the hash engine used in our CHEQ design, we consider sev-

eral widely recognized hash functions in the cryptographic com-

munity, including SHA2-256/512 [29], SHA3-256/512, SHAKE128/

SHAKE256 [30], and Haraka-256/512 [24].

SHA2-256, which is part of the SHA2 family standardized by

NIST, remains a cornerstone of classical security protocols such as

TLS. Haraka-256/512, although not standardized, is a lightweight,

AES-based hash function speci�cally designed for high-speed hard-

ware implementations and was featured in SPHINCS+ [22], a NIST-

selected post-quantum signature scheme. SHA3-256/512 and SHAKE-

128/SHAKE256, based on the Keccak sponge construction and also

6

standardized by NIST, o�er strong security guarantees. Notably,

SHAKE128/SHAKE256 allows for variable-length output and is

integral to several post-quantum cryptographic schemes.

Overall, all the aforementioned hash functions are relatively

FPGA-friendly. However, SHA3/SHAKE256 require more resources

to achieve high speeds compared to SHA2 or Haraka hash func-

tions [2, 15]. In our evaluation (provided in Table 2), we assume

SHAKE256 to demonstrate the maximum overhead that a hash en-

gine might introduce to the quantum computer controller. Nonethe-

less, the proposed interface allows for the easy swapping of any

hash function based on the available resource constraints.

4.5 Limitations

Currently, this work focuses on integrity protection of the gener-

ated input signals, but not on the readout values that are received

via ADCs. In the future is seems conceivable to expand CHEQ to

cover also output integrity protection. Also, including con�den-

tiality protection to the engine is a shortcoming of this paper and

should be addressed in the future. Furthermore, this work focuses

on NISQ devices. In the future, error-correcting codes will be used

to send instructions back and forth in a loop between the controllers,

the error-correcting devices and the QPU. As these are currently

neither scalable nor widespread, we do not consider them in this

paper. Given these limitations, this paper does not include error

corrected quantum computers in its analysis or discussions. Our

focus remains on currently implementable and widely accessible

quantum computing technologies.

5 Related Work

A number of research projects have considered con�dentiality pro-

tection for quantum circuits. This section lists some of the main

approaches.

Other Controller Architectures. Open-source quantum control

systems vary signi�cantly in both architecture and implementation.

QubiC [49] uses a distributed setup, where each qubit is managed by

its own processor, reducing hardware complexity and simplifying

control logic. QICK [40] employs a centralized design, controlling

multiple qubits with a single processor, which streamlines software

coordination across channels. The two systems also di�er in how

they handle instructions: QubiC con�gures all parameters of an

RF signal generator at once using a single 128-bit instruction to

minimize latency, while QICK adjusts each parameter separately

using 80-bit instructions, allowing for greater programming �exi-

bility. This variation illustrates the broad range of design options

in quantum control systems, emphasizing the importance of e�ec-

tively exploring this space to meet strict timing requirements while

managing hardware resources e�ciently.

Blind Quantum Computing (BQC). BQC protocols allow a client

to delegate and perform quantum computations on an untrusted

remote server by ensuring the con�dentiality of input, gates, and

output, while limiting information leakage to e.g. resource require-

ments or circuit depth [1, 4, 6, 10, 12, 17, 18, 27, 42].

Some BQC protocols incorporate mechanisms to detect unau-

thorized manipulations and verify results [6, 17]. BQC protocols

typically require clients capable of basic quantum operations, such

as qubit measurement or qubit state preparation and assume a

quantum network for multi-round client-server communication.

In comparison, this work does not require any quantum capabili-

ties and, integrates protective mechanism at hardware level within

the controller.

Quantum Circuit Cutting. Quantum circuit cutting decomposes

quantum circuits into smaller subcircuits by strategically partition-

ing gates (e.g., splitting multi-qubit gates) or qubit wires [8, 9, 11, 25,

34, 35, 48, 50] and enables the execution on hardware with limited

qubits. Quantum circuit cutting also holds promise in the context

of quantum computer security, particularly for protecting circuit

structure and sensitive computation patterns [47]. By decomposing

a quantum circuit into smaller fragments and distributing them

across di�erent devices, it becomes harder for an adversary to gain

full knowledge about the entire computation, thereby enabling a

form of obfuscation. In comparison, this work employs a security-

driven methodology, embedding integrity protective mechanisms

at the controller hardware level.

Hardware Mitigation Schemes. There has been a recently emerg-

ing trend in the community to propose realistic hardware mitiga-

tion schemes to protect quantum circuits from untrusted cloud

providers in the near-term quantum computers [45, 46]. These

schemes assume the dilution refrigerator is the trusted boundary

and the sensitive part of information is being processed inside it.

While this is a promising yet still developing approach, this kind

of defenses comes with its own set of limitations. First, both of

these approaches, increase dramatically the circuit depth, leading

to �delity decrease. Second, these methods are valid only under

certain assumptions, which might not always work. For instance,

the authors only assume an honest-but-curious cloud provider that

only eavesdrops the quantum circuit and infers information. Finally,

these approaches are tailored speci�cally for superconducting de-

vices only and further research is required to adjust these methods

to other device architectures.

6 Conclusion

This work introduced the Circuit Hashing Engine for Quantum

controllers (CHEQ). By providing circuit integrity measurements

to users through CHEQ, quantum computing systems can become

more resilient to security threats that aim to attack circuit integrity.

Combined with other prior work on con�dentiality, the new CHEQ

integrity assurance in quantum computers can enable complete

circuit protection, and thus protection of the future discoveries and

breakthroughs generated by quantum computers.

Acknowledgments

The project and research is partially supported by the Bavarian

Ministry of Economic A�airs, Regional Development and Energy

with funds from the Hightech Agenda Bayern. The research is also

part of the Munich Quantum Valley, which is supported by the

Bavarian state government with funds from the Hightech Agenda

Bayern Plus. This project and research is also partially supported

by the United States National Science foundation research grants

2332406 and 2245344, and through grant from TII.

7

References
[1] Dorit Aharonov, Michael Ben-Or, and Elad Eban. 2008. Interactive Proofs For

Quantum Computations. arXiv:0810.5375 [quant-ph] https://arxiv.org/pdf/0810.
5375.pdf.

[2] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. 2020.
FPGA-based SPHINCS+ Implementations: Mind the Glitch. In 2020 23rd Euromicro
Conference on Digital System Design (DSD). 229–237. https://doi.org/10.1109/
DSD51259.2020.00046

[3] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela
Jäschke, Christian A Reuter, and Martin Strand. 2015. A guide to fully homomor-
phic encryption. Cryptology ePrint Archive (2015).

[4] Pablo Arrighi and Louis Salvail. 2006. Blind Quantum Computation. International
Journal of Quantum Information 4, 05 (2006), 883–898.

[5] Zenghui Bao, Yan Li, Zhiling Wang, Jiahui Wang, Jize Yang, Haonan Xiong, Yipu
Song, Yukai Wu, Hongyi Zhang, and Luming Duan. 2024. A cryogenic on-chip
microwave pulse generator for large-scale superconducting quantum computing.
Nature Communications 15, 1 (2024), 5958.

[6] Stefanie Barz, Joseph F Fitzsimons, Elham Kashe�, and Philip Walther. 2013.
Experimental veri�cation of quantum computation. Nature physics 9, 11 (2013),
727–731.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2013.
Keccak. In Annual international conference on the theory and applications of
cryptographic techniques. Springer, 313–314.

[8] Sebastian Brandhofer, Ilia Polian, and Kevin Krsulich. 2023. Optimal partitioning
of quantum circuits using gate cuts and wire cuts. IEEE Transactions on Quantum
Engineering 5 (2023), 1–10.

[9] Lukas Brenner, Christophe Piveteau, and David Sutter. 2023. Optimal wire cutting
with classical communication. arXiv preprint arXiv:2302.03366 (2023).

[10] Anne Broadbent, Joseph Fitzsimons, and Elham Kashe�. 2009. Universal Blind
Quantum Computation. In 2009 50th Annual IEEE Symposium on Foundations
of Computer Science. 517–526. https://doi.org/10.1109/FOCS.2009.36 https://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5438603.

[11] Daniel T Chen, Ethan H Hansen, Xinpeng Li, Aaron Orenstein, Vinooth Kulkarni,
Vipin Chaudhary, Qiang Guan, Ji Liu, Yang Zhang, and Shuai Xu. 2023. Online
detection of golden circuit cutting points. In 2023 IEEE International Conference
on Quantum Computing and Engineering (QCE), Vol. 1. IEEE, 26–31.

[12] Andrew M Childs. 2001. Secure assisted quantum computation. arXiv preprint
quant-ph/0111046 (2001).

[13] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S
Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah, John Smolin, Jay M
Gambetta, et al. 2022. OpenQASM 3: A broader and deeper quantum assembly
language. ACM Transactions on Quantum Computing 3, 3 (2022), 1–50.

[14] Shantanu Debnath, Norbert M Linke, Caroline Figgatt, Kevin A Landsman, Kevin
Wright, and Christopher Monroe. 2016. Demonstration of a small programmable
quantum computer with atomic qubits. Nature 536, 7614 (2016), 63–66.

[15] Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer, and Yunheung
Paek. 2025. SPHINCSLET: An Area-E�cient Accelerator for the Full SPHINCS+
Digital Signature Algorithm. (2025). https://doi.org/10.1145/3728469

[16] Real Digital. [n. d.]. RFSoC 4x2 - Real Digital. https://www.realdigital.org/
hardware/rfsoc-4x2 Accessed: 2025-03-18.

[17] Joseph F Fitzsimons. 2017. Private quantum computation: an introduction to
blind quantum computing and related protocols. npj Quantum Information 3, 1
(2017), 23.

[18] Joseph F. Fitzsimons and Elham Kashe�. 2017. Unconditionally veri�able blind
quantum computation. Physical Review A 96, 1 (jul 2017). https://doi.org/10.
1103/physreva.96.012303 https://arxiv.org/pdf/1203.5217.pdf.

[19] Caroline Fontaine and Fabien Galand. 2007. A survey of homomorphic encryption
for nonspecialists. EURASIP Journal on Information Security 2007 (2007), 1–10.

[20] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
212–219.

[21] Barbora Hrdá and Sascha Wessel. 2023. Con�dential Quantum Computing. In
Proceedings of the 18th International Conference on Availability, Reliability and
Security. 1–10.

[22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Chris-
tian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumas-
son, Bas Westerbaan, and Ward Beullens. 2020. SPHINCS+ . Techni-
cal Report. National Institute of Standards and Technology. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-3-submissions.

[23] IBM. [n.d.]. IBM Quantum Platform. https://quantum.ibm.com/ Accessed:
2025-03-18.

[24] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
2016. Haraka v2 - E�cient Short-Input Hashing for Post-Quantum Applications.
Cryptology ePrint Archive, Paper 2016/098. https://eprint.iacr.org/2016/098

[25] Angus Lowe, Matija Medvidović, Anthony Hayes, Lee J O’Riordan, Thomas R
Bromley, Juan Miguel Arrazola, and Nathan Killoran. 2023. Fast quantum circuit
cutting with randomized measurements. Quantum 7 (2023), 934.

[26] Urmila Mahadev. 2020. Classical homomorphic encryption for quantum circuits.
SIAM J. Comput. 0 (2020), FOCS18–189.

[27] Tomoyuki Morimae. 2012. Continuous-Variable Blind Quantum Computation.
Physical Review Letters 109, 23 (dec 2012). https://doi.org/10.1103/physrevlett.
109.230502 https://arxiv.org/pdf/1208.0442.pdf.

[28] National Institute of Standards and Technology. 2024. Transition to Post-Quantum
Cryptography Standards. NIST Internal Report 8547. National Institute of Stan-
dards and Technology. https://doi.org/10.6028/NIST.IR.8547.ipd

[29] National Institute of Standards and Technology (NIST). 2015. Secure Hash Stan-
dard (SHS). https://doi.org/10.6028/NIST.FIPS.180-4. FIPS PUB 180-4.

[30] National Institute of Standards and Technology (NIST). 2015. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. https://doi.org/10.
6028/NIST.FIPS.202. FIPS PUB 202.

[31] National Institute of Standards and Technology. 2015. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. https://doi.org/10.
6028/NIST.FIPS.202 Accessed: 2025-03-24.

[32] Openquantumhardware. [n. d.]. tProcessor-64 and Signal Generator
V4. https://github.com/openquantumhardware/qick/blob/main/�rmware/
tProcessor_64_and_Signal_Generator_V4.pdf Accessed: 2025-03-18.

[33] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing plat-
forms: an empirical study. Proceedings of the ACM on Programming Languages 6,
OOPSLA1 (2022), 1–27.

[34] Tianyi Peng, Aram W. Harrow, Maris Ozols, and Xiaodi Wu. 2020. Simulating
Large Quantum Circuits on a Small Quantum Computer. Physical Review Letters
125, 15 (oct 2020). https://doi.org/10.1103/physrevlett.125.150504 https://arxiv.
org/pdf/1904.00102.pdf.

[35] Michael A Perlin, Zain H Saleem, Martin Suchara, and James C Osborn. 2021.
Quantum circuit cutting with maximum-likelihood tomography. npj Quantum
Information 7, 1 (2021), 64.

[36] Quantinuum. [n.d.]. Quantinuum. https://www.quantinuum.com/ Accessed:
2025-03-18.

[37] Rigetti. [n.d.]. Rigetti Computing. https://www.rigetti.com/ Accessed: 2025-03-
18.

[38] Amazton Web Services. [n.d.]. Amazon Braket. https://aws.amazon.com/de/
braket/ Accessed: 2025-03-18.

[39] Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of computer
science. Ieee, 124–134.

[40] Leandro Stefanazzi, Kenneth Treptow, Neal Wilcer, Chris Stoughton, Collin
Bradford, Sho Uemura, Silvia Zorzetti, Salvatore Montella, Gustavo Cancelo, Sara
Sussman, et al. 2022. The QICK (Quantum Instrumentation Control Kit): Readout
and control for qubits and detectors. Review of Scienti�c Instruments 93, 4 (2022).

[41] Thomas Strohm, Karen Wintersperger, Florian Dommert, Daniel Basilewitsch,
Georg Reuber, Andrey Hoursanov, Thomas Ehmer, Davide Vodola, and Sebastian
Luber. 2024. Ion-Based Quantum Computing Hardware: Performance and End-
User Perspective. arXiv preprint arXiv:2405.11450 (2024).

[42] Takahiro Sueki, Takeshi Koshiba, and Tomoyuki Morimae. 2013. Ancilla-driven
universal blind quantum computation. Physical Review A—Atomic, Molecular, and
Optical Physics 87, 6 (2013), 060301. https://doi.org/10.1103/PhysRevA.87.060301

[43] Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto, and
Nobuyuki Yoshikawa. 2024. Microwave-multiplexed qubit controller using adia-
batic superconductor logic. npj Quantum Information 10, 1 (2024), 53.

[44] Si-Hui Tan, Joshua A Kettlewell, Yingkai Ouyang, Lin Chen, and Joseph F Fitzsi-
mons. 2016. A quantum approach to homomorphic encryption. Scienti�c reports
6, 1 (2016), 33467.

[45] Theodoros Trochatos, Sanjay Deshpande, Chuanqi Xu, Yao Lu, Yongshan Ding,
and Jakub Szefer. 2024. Dynamic Pulse Switching for Protection of Quantum
Computation on Untrusted Clouds. In International Symposium on Hardware
Oriented Security and Trust (HOST).

[46] Theodoros Trochatos, Chuanqi Xu, Sanjay Deshpande, Yao Lu, Yongshan Ding,
and Jakub Szefer. 2023. A quantum computer trusted execution environment.
IEEE Computer Architecture Letters 22, 2 (2023), 177–180.

[47] George Typaldos, Wei Tang, and Jakub Szefer. 2024. Leveraging Quantum Circuit
Cutting for Obfuscation and Intellectual Property Protection. In International
Conference on Quantum Computing and Engineering (QCE).

[48] Christian Ufrecht, Laura S Herzog, Daniel D Scherer, Maniraman Periyasamy,
Sebastian Rietsch, Axel Plinge, and Christopher Mutschler. 2024. Optimal joint
cutting of two-qubit rotation gates. Physical Review A 109, 5 (2024), 052440.

[49] Yilun Xu, Gang Huang, Neelay Fruitwala, Abhi Rajagopala, Ravi K. Naik, Kasra
Nowrouzi, David I. Santiago, and Irfan Siddiqi. 2023. QubiC 2.0: An Extensible
Open-Source Qubit Control System Capable of Mid-Circuit Measurement and
Feed-Forward. arXiv:2309.10333 [quant-ph] https://arxiv.org/abs/2309.10333

[50] Songqinghao Yang and Prakash Murali. 2024. Understanding the Scalability of
Circuit Cutting Techniques for Practical Quantum Applications. arXiv preprint
arXiv:2411.17756 (2024).

8

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Access via Cloud-based Platforms
	2.2 Quantum Controller Architecture

	3 Threat Model
	4 Circuit Hashing Engine for Quantum Controllers (CHEQ)
	4.1 Integrity Protection for Quantum Circuits
	4.2 CHEQ Design
	4.3 Preliminary Evaluation Results
	4.4 Choice of Hash Engines
	4.5 Limitations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

