Design and Implementation of Open-Source
SATA III Core for Stratix V FPGAs

Sumedh Guha!, Wen Wang', Shafeeq Ibraheem', Mahesh Balakrishnan?, and Jakub Szefer!
'Dept. of Electrical Engineering and ?Dept. of Computer Science
Yale University
{sumedh.guha, wen.wang.ww349, shafeeq.ibraheem, mahesh.balakrishnan, jakub.szefer} @yale.edu

Abstract—SATA is the de-facto standard computer interface
that connects a host, typically a computing device, to a persistent
storage device, such as a hard drive or solid-state drive. In order
for FPGA-based designs to be able to leverage the variety of
persistent storage devices, a SATA core is needed. Over time, the
SATA standard has been revised to provide greater bandwidth,
with SATA III being the newest version of the standard. In this
paper, we are the first to present a SATA III core designed for
Altera Stratix V FPGAs. Our implementation is written using
Verilog, and tested using an industry-standard SATA protocol
analyzer. We evaluate the performance of our SATA core by
measuring the throughput of random and sequential read and
write operations using various hard drives and solid-state drives.
In addition, we compare the complexity of our SATA III core
implementation with those of the older SATA I and II open-
source implementations, and show that SATA III is still feasible,
using only about 11% of Stratix V FPGA resources.

I. INTRODUCTION

Solid-state drives (SSDs) and hard drives (HDs) offer in-
creasing amounts of cheap, fast, persistent storage with the
capacity now routinely on the order of 1TB or even more. To
efficiently access such amounts of storage, greater bandwidths
are needed to connect a computing device to the storage
device. The de-facto standard for connecting computers with
storage devices is the SATA protocol. Widely deployed and
supported, SATA is an ideal solution if a FPGA-based design
needs to interconnect with a storage device. Over the years,
SATA standards have been updated, and prior FPGA SATA
core designs are not usable with the latest SATA III standard.

In this work, we build on an existing SATA I and II open-
source design [1] developed for Xilinx devices, and present a
new SATA III core design targeting Altera Stratix V FPGAs.
The main advantage of the SATA III interface over prior
versions is the theoretical maximum bandwidth of 600MB/s,
which is greater than the theoretical maximum bandwidths of
the SATA T (150 MB/s) and SATA II (300 MB/s) interfaces.
The increased bandwidth is achieved with faster clock rates for
the serial SATA link (3000MHz) to the disk and the internal
SATA III core parallel data (150MHz). To support SATA III,
Altera Native PHY is used along with our Physical, Link, and
Command Layers, as described in detail in the later sections.

The SATA III core presented makes a number of contribu-
tions and improvements:

o The first open-source FPGA SATA core design targeting

Altera devices.

o A new SATA physical layer designed to work with Altera
Stratix V FPGAs at SATA III speeds using the Stratix
Native PHY IP as the basic building block.

e The link and command layers of the SATA core written
in Verilog.

978-1-5090-5602-6/16/$31.00 (© 2016 IEEE

o Better performance with HDs and SSDs, compared to
existing SATA I and II designs.

II. SATA III BACKGROUND

Serial ATA (SATA) is a storage interface for connecting
computing devices to peripheral devices (e.g. hard drives,
solid-state drives, optical drives). SATA is an improvement
upon Parallel ATA (PATA), an interface standard of the 1980s.
SATA features several advantages over PATA, including im-
proved bandwidth, hot-swapping, greater ease of integration,
and lower cost. As a result, SATA has become the standard
for storage interfacing since its introduction in 2003.

SATA 1II is one of the most recent revisions of the SATA
standard, and runs at raw 6Gb/s line rate, or up to 600MB/s
data rate when accounting for 8b/10b encoding. By use of
SATA III core, today’s HDs and SSDs are able to achieve
rates well beyond 300 MB/s. All SATA interface standards,
including SATA III, follow the same five-layer architecture
described below.

A. Application Layer

At the Application Layer, the user specifies the operation
(e.g. sequential or random access, read or write), the sector
address, and the number of sectors involved with the operation.
All operations are in terms of one or multiple 512-byte sectors.
Based on the operation, read or write enable signals are sent to
trigger the Command Layer. Upon completion of an operation,
a status message is read along with data from the device.

B. Command Layer

The Command Layer receives the operation parameters and
determines the appropriate sequence of Frame Information
Structures (FIS) to be sent. A finite-state machine (FSM)
accounts for the transitions between the different FIS transmis-
sions. The FIS types include Register Transfer Host to Device,
Register Transfer Device to Host, DMA Activate, and Data.
Once it has decided on the FIS type to send, the Command
Layer passes the FIS information to the Transport Layer.

C. Transport Layer

The Transport Layer constructs, and deconstructs, FISes
sent from, and to, the Command Layer. The Transport Layer
follows the ATA protocol for preparing the FIS payload
for transmission and for extracting status information from
received packets. If there are any errors, the Transport Layer
requests a retransmission.

TABLE I
COMPARISON OF RESOURCE CONSUMPTION OF EXISTING FPGA IMPLEMENTATIONS OF SATA, ALONG WITH OUR NEW DESIGN.

[Design | Open-Source [SATA II | SATA III || Brand [Model | Slices [BRAM [LUT [F/Fs |
UMASS [1] v v Xilinx | Virtex-4 5128 7 - -
UNC [2] Ve v Xilinx | Virtex-5 576 3 1282 986
Groundhog [3] v v Xilinx | Virtex-5 652 0 1537 763
UNC [2] v v Xilinx | Virtex-6 570 3 1334 894
Design Gateway [4] v Xilinx | Virtex-7 476 2 1024 863
IntelliProp [5] v Altera | Stratix V | — ¢ - 2224 -

[Our [v [| v [Altera [Stratix V [933" [8° | 3266° | 2073" |

This resource usage was not specified in the cited reference.

® For our design, resources used were calculated using conversion from Altera to Xilinx resources: 1 Slice = 2 ALM, 1

BRAM =1 M20K, 1 LUT =1 ALUT, and 1 F/F = 1 Reg.

D. Link Layer

The Link Layer takes care of framing and delivering each
FIS. It uses primitives to mark the boundaries of the FIS.
Primitives are also used for managing handshaking between
the FPGA and the device. The Link Layer also computes a
Cyclic Redundancy Check (CRC) using the data and appends
the CRC to the end of the payload when sending FISes.
Finally, the Link Layer scrambles the frame information by
XORing the frame information with the output of a linear feed-
back shift register (LFSR). Scrambling is performed to prevent
Electromagnetic Interference from corrupting the frames. The
Link Layer uses the same CRC and scrambling mechanisms
to check for errors and to descramble the incoming packets. If
there are any errors, the Link Layer signals the Transport Layer
to request for retransmission. The Link Layer also regulates
frame transmission by checking buffer underflow and overflow
for FISes.

E. Physical Layer

The Physical Layer serializes/deserializes frames received
from the Link Layer and encodes/decodes them using the
8b/10b encoding/decoding scheme before transmission. The
Physical Layer is also involved with Out-of-Band (OOB)
signaling used to establish the physical link and to negotiate
the data transmission speeds.

III. RELATED WORK

Researchers in the high-performance computing field have
taken interest in combining FPGAs with nonvolatile storage
devices. As an industry standard, SATA provides the perfect
interface to use for accessing storage devices. Currently, there
exist several implementations of SATA for FPGA devices.

One of the first open-source SATA implementations was
Groundhog [3], a SATA host bus adapter (HBA) for Xilinx
Virtex-5 FPGAs. Groundhog also supports native command
queueing, an optimization for read and write command order-
ing introduced with SATA II.

Later, an open-source SATA II core was developed at the
University of North Carolina at Charlotte (UNC) [2]. This
SATA-core was designed for Virtex-6 devices and the ML605
board. The UNC group also added a DMA engine, bus
interface, and a Linux block device driver to make the core
available to the operating system.

A follow-on work by University of Massachusetts Amherst
(UMASS) built off of the UNC design to create a SATA core
for Virtex-4 devices, running at both SATA I and SATA II
speeds. The UMASS core also features a replay buffer for

retransmitting data FISes, a SATA Event Logger for transfering
debugging information, and a new physical layer for handling
the RocketlO MGT on the Virtex-4. [1].

Among commercial vendors, IntelliProp [5] and Design
Gateway [4] are some vendors offering SATA designs. The
commercial designs have resource usage slightly better than
the open-source designs and are typically available for Xilinx
and Altera Devices. Major downside of using the closed-
source designs for research projects are the high license costs
for the IP cores and no flexibility to adapt the code.

In our work, we design and implement the first open-source
SATA III core compatible with Altera’s Stratix V FPGAs,
targeting the DES-Net board. Table I presents details of the
prior SATA cores and is used to compare them with our work.
Details of our design and implementation are presented next.

IV. DESIGN AND IMPLEMENTATION

The design of the SATA III core follows the layered design
of SATA and the previous open-source project that it builds
upon [1]. Figure 1 shows a high-level block diagram of the
design. The right-hand side of the figure shows the SATA
layers and how they correspond to our design. In particular, our
Test Layer and Core Layer together correspond to the SATA
Application Layer. Meanwhile, our Link Layer corresponds to
the SATA Transport and Link Layers.

The top design unit is the Test Layer. It is used to trigger
read and write tests, as well as to set options for the operations
(sequential or random access). The Test Layer uses a random
number generator based on a LFSR as a source of randomness
for generating addresses for random accesses. The Test Layer
communicates with the Core Layer, which is used to buffer
data going to the disk. The core layer has user_fifo, a
fifo wherein each sector of data to be written is stored. The
data from user_fifo is passed to the Command Layer. The
Command Layer waits for one sector of data (512 bytes) to
be ready into user_fifo before issuing commands to the
Link Layer. The Command Layer is responsible for generating
FIS frame headers and data to be sent over to the Link Layer
by buffering them in the write_fifo. The Link Layer in
turn reads FIS headers and data from write_fifo, appends
CRC data, and performs scrambling to create the FIS packet.
The FIS is buffered in the transmitter fifo, tx_fifo, and
read by the Physical Layer. Inside the Physical Layer, the FIS
passes through an OOB submodule. OOB signaling is used
during the beginning phase of transmission when the FPGA
sends Out-of-Band signals to establish a link with the disk.
After initialization, the OOB submodule passes the FIS to the

x Test Layer -
¥ Core Layer SATA Application Layer
Command Layer | 'SATA Command Layer
—]t

SATA Transport
and Link Layers

Link Layer

Erite_ﬁfol
| e

scra-

mbler

¥

crelq

_| descra- ||_L]|
mbler

Physical

Layer

4+
I ol (o]

SATA Physical Layer

Disk or SSD

Fig. 1. Block diagram showing major components, buffers and FIFOs, and
data flow between components. Control signals and state machines are not
shown. The right-hand side shows the SATA layers corresponding to the
modules in our design.

FPGA

SATA Analyzer Disk or SSD

Fig. 2. Experimental setup with Sierra M6-1 [6] analyzer used to interpose
on FPGA to disk SATA traffic for debugging and gathering measurements.

Native PHY. The Native PHY is responsible for serializing,
encoding, and sending the data over the physical SATA wires
to the HD or SSD.

In the reverse direction, the Native PHY deserializes the
incoming FIS packet, decodes the FIS packet, and passes it
to a receiver buffer, rx_buf. The receiver buffer is used
to compensate for differences in the receive clock and the
clock used for operation of the rest of the SATA III core. The
rx_buf passes the FIS to a receiver FIFO, rx_fifo. The
FIS from rx_fifo is descrambled and passed to a read fifo,
read_fifo. Simultaneously, the FIS’s CRC is processed to
check for any receive errors. The read_fifo is directly
accessible from the Test Layer for reading out the contents
of the data received from the disk.

The IP (intellectual property) modules from Altera used in
this design are the Native PHY as well as the buffers and
FIFOs. They are configured and generated using Altera tools.

V. EVALUATION

The design was tested using Altera DE5-Net FPGA with
the help of a Sierra M6-1 [6] SATA analyzer. Figure 2 shows
a diagram of the setup. The Sierra analyzer is on one side
connected to the FPGA via the SATA cable, and on the other
side it is connected to the HD or SSD via another SATA cable.
The analyzer was used to confirm that the FPGA generated
FISes follow the SATA III standard, to detect and to debug
protocol errors, and to gather the measurements presented
in this paper. All numbers presented are median values of
multiple measurements. Due to space limitation, graphs are
presented for only one solid-state drive and one hard drive
from among multiple ones tested for this project.

A. Throughput, Excluding Drive Latency

Figures 3 and 4 show the throughput for sequential and
random reads and writes for the HD and SSD. The is raw
throughput excluding drive latency, i.e. only consider the time
for actual transfer of the data on the wire. As a reference,
the red horizontal line at the top of each graph shows
the theoretical maximum throughput for SATA III, which is
600MB/s. For sequential reads and writes, the throughput
increases as the number of sectors per transaction increases
to 16. This conforms to the fact that a Data FIS can contain
at most 16 sectors of data, thus incurring minimal overhead
and maximizing performance at that point.

For random reads and writes, the throughput stays about
constant, at the same level as the sequential read or write for
1 sector. This is consistent with the fact that every Data FIS
can specify one starting address and the size of the request.
Thus, for a request that reads or writes /N random sectors, the
request has to be broken down into N separate 1 sector Data
FISes, each with its separate (random) address.

7001

D
o
(=}

o

o

o
T

o
o

o

=

W

o

o
T

o0k = SATA Maximum
Sequential Read HD
........ Sequential Write HD
~&--Random Read HD
«- Random Write HD

Median Throughput (MB/s)

1 2 4 8 16 32 64 128 256 512 1024
Number of Sectors

Fig. 3. SATA III core sequential and random throughput, excluding drive
latency, for HD with 512-byte sectors.

~

o

o
T

[}
o
(=}

[
o
(=}
%

et e e - & Bieey - SIS Masostesesr s

== SATA Maximum
Sequential Read SSD
-------- Sequential Write SSD
-~ Random Read SSD
- Random Write SSD

Median Throughput (MB/s)

1001

1 2 4 8 16 32 64 128 256 512 1024
Number of Sectors

Fig. 4. SATA III core sequential and random throughput, excluding drive
latency, for SSD with 512-byte sectors.

B. Throughput, Including Drive Latency

Throughput, excluding drive latency, was used to show
that the FPGA operates correctly and can almost reach the
theoretical maximum throughput. This, however, will not
be realistic performance in real applications. Consequently,
Figures 5 and 6 show the throughput including drive latency.

1201
r
1001 /
«
£
[as]
=
< 8ot
3
Q.
S
5 L
o 60 7
=
=
=
g 40 .
5 Sequential Read HD /"
O -~ Sequential Write HD
= 20 L ~-@--Random Read HD
«-- Random Write HD x
P U —— el

1 2 4 8 16 32 64 128 256 512 1024
Number of Sectors

Fig. 5. SATA III core sequential and random throughput, including drive
latency, for HD with 512-byte sectors.

N N
[~
T T

-
()
T

Sequential Read SSD y.
-------- Sequential Write SSD A
~~e--Random Read SSD

~ Random Write SSD

Median Throughpu

-
o
T

(5]
T
X
]
)

8 16 32 64 128 256 512 1024
Number of Sectors

_Q
N b
NS

Fig. 6. SATA III core sequential and random throughput, including drive
latency, for SSD with 512-byte sectors.

Here, the throughput is calculated by dividing the data size
by total time of request, from when initial command is sent
to drive, to when all of data is returned. This can be more
easily compared to end-to-end throughput numbers reported
for storage systems. As the number of sectors per request
increases, the throughput increases. Notably, the HD write
throughput is quite high, as data gets placed in the drive’s
buffer (and only later it is pushed to the slow physically
rotating disk platers). For SSD, the sequential performance is
better than random accessed, again, conforming to expectation.

C. Resource Usage

Table I showed existing FPGA-based SATA implementa-
tions and the resource consumption for each, along with our
design. Direct comparison is not possible here as most designs
use different FPGA chips from different vendors. However,
with our calculated conversion from Altera to Xilinx resources,
some comparison is possible and the complexity of the designs
can be approximately compared. Our design consumes only
about 11% of the Stratix V resources, even though it supports
the latest SATA III protocol. The design leaves most of the
FPGA chip free for other logic or for instantiating multiple
SATA III cores.

D. Code Complexity

Table II shows the size of the codebase developed for this
design. Altera IP code is omitted. Overall, over 2500 lines of
Verilog were written for this project.

TABLE II
LINES OF CODE REQUIRED FOR EACH MODULE, COMPUTED USING THE
cloc [7] PROGRAM.

[Module [Implementation | Lines of Code |
Test Layer Verilog 498
Core Layer Verilog 264
Command Layer Verilog 470
Link Layer Verilog 990
Physical Layer BDF -
OOB Verilog 336
CRC Verilog 103
(de)scrambler Verilog 103

BDF (Block Design File) in Altera Quartus is a graph-
ical format for schematic specification of a design, thus
lines of code is not specified.

VI. CONCLUSIONS

This paper presented the design and implementation of the
first open-source SATA III core on Stratix V FPGAs. Building
on existing open-source code for SATA I and II, the new
core is able to support the newest hard drives and solid-state
drives with the SATA III protocol. Our implementation was
written using Verilog and tested using an industry-standard
Sierra M6-1 SATA protocol analyzer. The analyzer showed
correct operation of the SATA III protocol using our design,
and was used to gather performance results showing read and
write data rates up to 600MB/s. The final design used only
about 11% of Stratix V FPGA resources, leaving most of the
chip for other logic so that the SATA III core can serve as a
building block for other, bigger designs that integrate FPGA
and persistent storage.

A. Code Availability

The source code for the presented design will be made
available at http://caslab.eng.yale.edu/code/sata.

ACKNOWLEDGMENT

We would like to thank Altera for the donation of the
DE5-Net FPGA boards used in the experiments and the
Quartus software licenses. We are also thankful to Altera
support for their assistance in understanding the Native PHY,
as well as Prof. Fengnian Xia and his group for use of their
high-speed oscilloscope in debugging our design.

REFERENCES

[1] C. Gorman, P. Siqueira, and R. Tessier, “An Open-Source SATA Core for
Virtex-4 FPGAs,” in International Conference on Field-Programmable
Technology (FPT), 2013, pp. 454-457.

[2] A. A. Mendon, B. Huang, and R. Sass, “A High Performance,
Open Source SATA2 Core,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), 2012, pp. 421-428.

[3] L. Woods and K. Eguro, “Groundhog - A Serial ATA Host Bus Adapter
(HBA) for FPGAS,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2012, pp. 220-223.

[4] “Design Gateway, SATA IP Transport & Link Layer Core,” http://www.
dgway.com/products/IP/SATA-IP/dg_sata_ip_data_sheet_7series_en.pdf,
accessed July 5, 2016.

[5] “IntelliProp, PC-SA101A-HI SATA Host App Core,” http://intelliprop.
com/cores-bridge-board-datasheets.htm, accessed July 5, 2016.

[6] “Teledyne LeCroy, Sierra M6-1 SATA Protocol Test System,”
http://teledynelecroy.com/protocolanalyzer/protocoloverview.aspx?
seriesid=279, accessed July 5, 2016.

[7]1 A. Danial, “Count Lines of Code,” https://github.com/AlDanial/cloc,
accessed July 5, 2016.

