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Abstract—The availability of FPGAs in cloud data centers of-
fers rapid, on-demand access to hardware compute resources that
users can configure to their own needs. However, the low-level
access to the hardware FPGA and associated resources such as
PCIe, SSD, or DRAM also opens up threats of malicious attackers
uploading designs that are able to infer information about other
users or about the cloud infrastructure itself. In particular, this
work presents a new, fast PCIe-contention-based channel that
is able to transmit data between different FPGA-accelerated
virtual machines with bandwidths reaching 2kbps with 97%
accuracy. This paper further demonstrates that the PCIe receiver
circuits are able to not just receive covert transmissions, but can
also perform fine-grained monitoring of the PCIe bus or detect
different types of activities from other users’ FPGA-accelerated
virtual machines based on their PCIe traffic signatures. Beyond
leaking information across different virtual machines, the ability
to monitor the PCIe bandwidth over hours or days can be used to
estimate the data center utilization and map the behavior of the
other users. The paper also introduces further novel threats in
FPGA-accelerated instances, including contention due to shared
NVMe SSDs as well as thermal monitoring to identify FPGA
co-location using the DRAM modules attached to the FPGA
boards. This is the first work to demonstrate that it is possible
to break the separation of privilege in FPGA-accelerated cloud
environments, and highlights that defenses for public clouds using
FPGAs need to consider PCIe, SSD, and DRAM resources as part
of the attack surface that should be protected.

I. INTRODUCTION

Public cloud infrastructures with FPGA-accelerated virtual
machine (VM) instances allow for easy, on-demand access
to reconfigurable hardware that users can program with their
own designs. The FPGA-accelerated instances can be used to
accelerate machine learning, image and video manipulation, or
genomic applications, for example [5]. The potential benefits
of the instances with FPGAs have resulted in numerous
cloud providers including Amazon Web Services (AWS) [9],
Alibaba [3], Baidu [16], Huawei [27], Nimbix [35], and
Tencent [39], giving public users direct access to FPGAs.
However, allowing users low-level access to upload their own
hardware designs has resulted in serious implications for the
security of the cloud users and the cloud infrastructure itself.

Several recent works have considered the security impli-
cations of shared (“multi-tenant”) FPGAs in the cloud, and
have demonstrated covert-channel [23] and side-channel [25]
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attacks. However, today’s cloud providers, such as AWS with
their F1 instances, only offer “single-tenant” access to FPGAs.
In the single-tenant setting, each FPGA is fully dedicated to
the one user who rents it, while many other users may be
in parallel using their separate, dedicated FPGAs which are
within the same server. Once an FPGA is released by a user, it
can then be assigned to the next user who rents it. This can lead
to temporal thermal covert channels [41], where heat generated
by one circuit can be later observed by other circuits that are
loaded onto the same FPGA. Such channels are slow (less
than 1 bps), and are only suitable for covert communication,
since they require the two parties to coordinate and keep being
scheduled on the same physical hardware one after the other.

Other means of covert communication in the single-tenant
setting do not require being assigned to the same FPGA chip.
For example, multiple FPGA boards in servers share the same
power supply, and prior work has shown the potential for
such shared power supplies to leak information between FPGA
boards [24]. However, the resulting covert channel was slow
(less than 10 bps) and was only demonstrated in a lab setup.

Another single-tenant security topic that has been previously
explored is that of fingerprinting FPGA instances using Phys-
ical Unclonable Functions (PUFs) [40], [42]. Fingerprinting
allows users to partially map the infrastructures and get some
insights about the allocation of FPGAs (e.g., how likely a
user is to be re-assigned to the same physical FPGA they
used before), but fingerprinting by itself does not lead to
information leaks. A more recent fingerprinting-related work
explored mapping FPGA infrastructures using PCIe contention
to find which FPGAs are co-located in the same Non-Uniform
Memory Access (NUMA) node within a server [43]. However,
no prior work has successfully launched a cross-VM covert-
or side-channel attack in a real cloud FPGA setting.

By contrast, this work shows for the first time that shared
resources can be used to leak information across separate vir-
tual machines running on the FPGA-accelerated F1 instances
in AWS data centers. In particular, we use the contention of the
PCIe bus to not only demonstrate a new, fast covert channel
(reaching up to 2 kbps), but also to identify patterns of activity
based on the PCIe signatures of different Amazon FPGA
Images (AFIs) used by other users. Our attacks do not require
special privileges or potentially malicious circuits such as
Ring Oscillators (ROs) or Time-to-Digital Converters (TDCs),
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and can thus not easily be detected through static analysis
or Design Rule Checks (DRCs) that cloud providers may
perform. We further introduce two new methods of finding
co-located instances that are in the same physical server: (a)
through resource contention of the Non-Volatile Memory Ex-
press (NVMe) SSDs that are accessible from each F1 instance,
and (b) through the common thermal signatures obtained
from the decay rates of each FPGA’s DRAM modules. Our
work therefore shows that single-tenant attacks in real FPGA-
accelerated cloud environments are practical, and demonstrates
several ways to infer information about the operations of other
cloud users and their FPGA-accelerated virtual machines.

A. Contributions

In summary, the contributions of this work are:
1) The demonstration of the first covert channel between

separate F1 instance virtual machines, reaching 2 kbps
with 97% accuracy.

2) Cross-VM side-channel leaks that reveal information
about the behavior of different users through the PCIe
signatures of their Amazon FPGA Images (AFIs).

3) A long-term monitoring approach of data center activity
through PCIe contention.

4) The identification of an alternative, SSD-based co-
location mechanism and possible covert channel be-
tween separate F1 users.

5) A new DRAM-based co-location mechanism to identify
F1 instances which are on separate NUMA nodes, but
share the same server.

B. Responsible Disclosure

Our findings and a copy of this paper have been shared with
the AWS security team.

C. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II provides the background on today’s deployments of
FPGAs in public cloud data centers. Section III discusses
typical FPGA-accelerated cloud servers and PCIe contention
that can occur among the FPGAs, while Section IV evaluates
our fast, PCIe-based, cross-VM channel. Using the ideas from
the covert channel, Section V investigates how to infer infor-
mation about other VMs through their PCIe traffic patterns,
with Section VI revolving around long-term PCIe monitoring
of data center activity. Section VII then presents an alternative
contention mechanism due to shared SSDs among FPGA-
accelerated instances, while Section VIII introduces a new,
thermal-based co-location mechanism. The paper ends with a
list of related work in Section IX, and concludes in Section X.

II. BACKGROUND

This section provides a brief background on FPGAs avail-
able in public cloud computing data centers, with a focus on
the F1 instances from Amazon Web Services (AWS) [9] that
are evaluated in this work.

Fig. 1: Prior work suggested that AWS servers contain 8 FPGAs,
equally divided between two NUMA nodes [43].

A. AWS F1 Instance Architecture

AWS has offered FPGA-accelerated virtual machine in-
stances to users since late 2016 [4]. These so-called
F1 instances are available in three sizes: f1.2xlarge,
f1.4xlarge, and f1.16xlarge, where the instance name
represents twice the number of FPGAs it contains (so
f1.2xlarge has 1 FPGA, while f1.4xlarge has 2, and
f1.16xlarge has 8 FPGAs). Each instance is allocated 8
virtual CPUs (vCPUs), 122GiB of DRAM, and 470GB of
NVMe SSD storage per FPGA. For example, f1.4xlarge
instances have 16 vCPUS, 244GiB of DRAM, and 940GB
of SSD space [9], since they contain 2 FPGAs.

Each FPGA board is attached to the server over a x16 PCIe
Gen 3 bus. In addition, each FPGA board contains four DDR4
DRAM chips, totaling 64GiB of memory per FPGA board [9].
These memories are separate from the server’s DRAM and
are directly accessible by each FPGA. The F1 instances use
Virtex UltraScale+ XCVU9P chips [9], which contain over 1.1
million lookup tables (LUTs), 2.3 million flip-flops (FFs), and
6.8 thousand Digital Signal Processing (DSP) blocks [47].

As has recently been shown, each server contains 8 FPGA
boards, which are evenly split between two Non-Uniform
Memory Access (NUMA) nodes [43]. The AWS server ar-
chitecture, as deduced by Tian et al. [43], is shown in
Figure 1. Due to this architecture, an f1.2xlarge instance
may be on the same NUMA node as up to three other
f1.2xlarge instances, or on the same NUMA node as
one other f1.2xlarge instance and one f1.4xlarge
instance (which uses 2 FPGAs). Conversely, an f1.4xlarge
instance may share the same NUMA node with up to two
f1.2xlarge instances, or one f1.4xlarge instance. Fi-
nally, as f1.16xlarge instances use up all 8 FPGAs in the
server, they do not share any resources with other instances,
since both NUMA nodes of the server are fully occupied.

B. Programming AWS F1 Instances

Users utilizing F1 instances do not retain entirely unre-
stricted control to the underlying hardware, but instead need
to adapt their hardware designs to fit within a predefined
architecture. In particular, user designs are defined as “Custom
Logic (CL)” modules that interact with external interfaces
through the cloud-provided “Shell”, which hides physical
aspects such as clocking logic and I/O pinouts (including for



Fig. 2: Our deduced PCIe configuration for F1 servers based on the experiments in this work: each CPU has two PCIe links, each of which
provides connectivity to two FPGAs and an NVMe SSD through a PCIe switch.

PCIe and DRAM) [23], [42]. This restrictive Shell interface
further prevents users from accessing identifier resources, such
as eFUSE and Device DNA primitives, which could be used
to distinguish between different FPGA boards [23], [42].
Finally, users cannot directly upload bitstreams to the FPGAs.
Instead, they generate a Design Checkpoint (DCP) file using
Xilinx’s tools and then provide it to Amazon to create the
final bitstream (Amazon FPGA Image, or AFI), after it has
passed a number of Design Rule Checks (DRCs). The checks,
for example, include prohibiting combinatorial loops such as
Ring Oscillators (ROs) as a way of protecting the underlying
hardware [22], [23], though alternative designs bypassing these
restrictions have been proposed [23], [38].

III. PCIE CONTENTION IN CLOUD FPGAS

The user’s Custom Logic running on the FPGA instances
can use the Shell to communicate with the server through the
PCIe bus. Users cannot directly control the PCIe transactions,
but instead perform simple reads and writes to predefined
address ranges through the Shell. These memory accesses
get translated into PCIe commands and PCIe data transfers
between the server and the FPGA. The users may also set up
Direct Memory Access (DMA) transfers between the FPGA
and the server. By designing hardware modules with low logic
overhead, users can generate transfers fast enough to saturate
the PCIe bandwidth. In fact, because of the shared PCIe bus
within each Non-Uniform Memory Access (NUMA) node,
these transfers can create interference and bus contention that
affects the PCIe bandwidth of other users. The resulting perfor-
mance degradation can be used for detecting co-location [43]
or, as we show in this work, for fast covert- and side-channel
attacks, in effect breaking separation of privilege between
otherwise logically and physically separate VM instances.

Figure 1 shows the assumed AWS server configuration with
8 FPGAs per server, based on prior work by Tian et al. [43]
and publicly available information on AWS F1 instances [9],
[13]. AWS servers containing FPGAs have two Intel Xeon E5-
2686 v4 (Broadwell) processors, connected through an Intel
QuickPath Interconnect (QPI) link. Each processor forms its
own NUMA node with its associated DRAM and four FPGAs
attached as PCIe devices.

In our covert-channel analysis (Section IV), we show that
the communication bandwidth is not identical for all pairs of
FPGAs in a NUMA node. In particular, this suggests that the
4 PCIe devices are not directly connected to each CPU, but

Fig. 3: Example cross-VM covert communication: The transmitter
(Alice) sends the ASCII byte ‘H’, represented as 01001000 in binary,
to the receiver (Bob) in 8 measurement intervals by stressing her
PCIe bandwidth to transmit a 1 and remaining idle to transmit a 0. If
Bob’s FPGA bandwidth B drops below a threshold T , he detects a
1, otherwise a 0 is detected. To ensure no residual effects after each
transmission, the time difference δ between successive measurements
is slightly larger than the transmission duration d.

instead likely go through two separate switches, forming the
hierarchy shown in Figure 2. Although not publicly confirmed
by AWS, this topology is similar to the one described for P4d
instances, which contain 8 GPUs [7]. As a result, although
all 4 FPGAs in a NUMA node contend with each other, the
covert-channel bandwidth is highest amongst those sharing a
PCIe switch, due to the bottleneck imposed by the shared link.

IV. PCIE-BASED CROSS-VM COVERT CHANNEL

In this section we describe our implementation for the first
cross-VM covert-channel on public cloud FPGAs using PCIe
contention (Section IV-A), and discuss our experimental setup
(Section IV-B). We then analyze bandwidth vs. accuracy trade-
offs (Section IV-C), before investigating the impact of receiver
and transmitter transfer sizes on the covert-channel accuracy
for a given covert-channel bandwidth (Section IV-D). Side
channels and information leaks based on PCIe contention from
other VMs are discussed in Section V, while Section VI shows
long-term PCIe-based monitoring of data center activity.

A. Covert-Channel Implementation

Our covert-channel is based on saturating the PCIe link
between the FPGA and the server, so, at their core, both
the transmitter and the receiver consist of a) an FPGA image
that responds to PCIe requests with minimal latency, and b)
software that attaches to the FPGA and repeatedly writes to the
mapped Base Address Register (BAR). The transmitter stresses
its PCIe link to transmit a 1 but remains idle to transmit a



Fig. 4: The process to find a pair of co-located f1.2xlarge
instances using PCIe contention uses the covert-channel mechanism
to check for pre-agreed handshake messages: Alice transmits the
handshake message with her first FPGA, and waits to see if Bob
acknowledges the handshake message. In parallel, Bob measures
the bandwidths of all his FPGAs. In this example, Bob detects the
contention in his seventh FPGA during the fourth handshake attempt.
Note that Alice and Bob can rent any number of FPGAs for finding
co-location, with five and seven shown in this figure as an example.

bit 0, while the receiver keeps measuring its own bandwidth
during the transmission period (the receiver is thus identical to
a transmitter that sends a 1 during every measurement period).
The receiver then classifies the received bit as a 1 if the
bandwidth has dropped below a threshold, and as 0 otherwise.

The two communicating parties need to have agreed upon
some minimal information prior to the transmissions: the
specific data center to use (region and availability zone, e.g.,
us-east-1e), the time t to start communications, and the
initial measurement period, expressed as the time difference
between successive transmissions δ. All other aspects of the
communication can be handled within the channel itself,
including detecting that the two parties are on the same NUMA
node, or increasing the bandwidth by decreasing δ. To ensure
that the PCIe link returns to idle between successive measure-
ments, transmissions stop before the end of the measurement
interval, i.e., the transmission duration d satisfies d < δ.
Note that synchronization is implicit due to the receiver and
transmitter having access to a shared wall clock time, e.g.,
via the Network Time Protocol (NTP). Figure 3 provides a
high-level overview of our covert-channel mechanism.

Before they can communicate, the two parties (Alice and
Bob in the example of Figure 3) first need to ensure that they
are co-located on the same NUMA node within the server.
To do so, they can launch multiple instances and attempt to
detect whether any of their instances are co-located by sending
handshake messages and expecting a handshake response, us-
ing the same setup information as for the covert channel itself
(i.e., the time t to start the communication, the measurement
duration δ, and setup information such as the data center
region and availability zone). They additionally need to have
agreed on the handshake message, which determines the per-
handshake measurement duration ∆. This co-location process
is summarized in Figure 4.

B. Experimental Setup

For our experiments, we use VMs with AWS FPGA De-
veloper Amazon Machine Image (AMI) [14] version 1.8.1,
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Fig. 5: Bandwidth and accuracy for covert-channel transmissions
between any pair of FPGAs, among the four FPGAs in the same
NUMA node. Each FPGA pair is color-coded, with transmitters
indicated through different markers, and receivers through different
line styles. For any given pair, the bandwidth is approximately the
same in each direction, i.e., the bandwidth from FPGA X to FPGA
Y is approximately the same as the bandwidth from Y to X .
Communication is possible between any two FPGAs in the NUMA
node, but the bandwidths for different pairs diverge.

which runs CentOS 7.7.1908, and develop our code with
the Hardware and Software Development Kit (HDK/SDK)
version 1.4.15 [8]. For our FPGA bitstream, we use
the unmodified CL_DRAM_DMA image provided by AWS
(agfi-0d132ece5c8010bf7) [12] for both the transmitter
and the receiver designs. Our custom-written software maps
the FPGA DRAM modules via PCIe Application Physical
Function (AppPF) BAR4, a 64-bit prefetchable Base Ad-
dress Register (BAR) [11]. To support write-combining for
higher performance, we use the BURST_CAPABLE flag, and
implement the data transfer using memcpy, getting similar
performance to the AWS benchmarks [6].

Unless otherwise noted, we perform experiments with
“spot” instances in the us-east-1 (North Virginia) region
in availability zone d, though prior work has shown that PCIe
contention is present in all regions, with both spot and on-
demand instances [43]. Although the results presented are for
instances launched by a single user, it should also be noted
that we have successfully created a cross-VM covert channel
between instances launched by two different users.

C. Bandwidth vs. Accuracy Trade-Offs

Using our co-location mechanism, we found 4 distinct
f1.2xlarge instances that are all in the same NUMA
node,1 and then measured the covert-channel accuracy for
different bandwidths, i.e., different measurement parameters
d and δ. Specifically, we tested (d, δ) from (0.1ms, 0.2ms)
to (9ms, 10ms), corresponding to transmission rates between
5 kbps and 100 bps. For these experiments, the receiver keeps
transferring 2 kB chunks of data from the host, while the

1Similar to [43], we often found full NUMA nodes within a few minutes
when launching ten f1.2xlarge instances.
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Fig. 6: Covert-channel accuracy for different transmitter transfer
sizes. Each chunk transmitted over PCIe needs to be at least 4 kB to
an ensure an accuracy of 100% at 200 bps between any two FPGAs
in the NUMA node.

transmitter repeatedly sends 64 kB of data in each transmission
period (i.e., until the end of the interval d). These parameters
are explored separately in Section IV-D below.

The results of our experiments, shown in Figure 5, indicate
that we can create a fast covert channel between any two
FPGAs in either direction: at 200 bps and below, the accuracy
of the covert channel is 100%, with the accuracy at 250 bps
dropping to 99% for just one pair. At 500 bps, three of the six
possible pairs can communicate at 100% accuracy, while one
pair can communicate with 97% accuracy at 2 kbps. It should
be noted that, as expected, the bandwidth within any given pair
is symmetric, i.e., it remains the same when the roles of the
transmitter and the receiver are reversed. As the VMs occupy
a full NUMA node, there should not be any impact from other
users’ traffic. The variable bandwidth between different pairs
is therefore likely due to the PCIe topology.

D. Transfer Sizes

In this set of experiments, we fix d = 4ms, δ = 5ms
(i.e., a covert-channel bandwidth of 200 bps), and vary the
transmitter and receiver transfer sizes. Figure 6 first shows
the per-pair channel accuracy for different transmitter sizes.
The results show that at 4 kB and above, the covert-channel
accuracy is 100%, while it remains much lower at smaller
transfer sizes. This is because sending smaller chunks of
data over PCIe results in lower bandwidth due to the as-
sociated PCIe overhead of each transaction. For example,
in one 4ms transmission, the transmitter completes 140,301
transfers of 1B each, corresponding to a bandwidth of only
1B × 140,301/4ms = 33.5MBps. However, in the same
time, a transmitter can complete 1,890 transfers of 4 kB, for
a bandwidth of 4 kB× 1,890/4ms = 1.8GBps.2

The results of the corresponding experiments for receiver
transfer sizes are shown in Figure 7. Similar to the transmitter

2The maximum transfer size used of 1MB was chosen to ensure that
multiple transfers were possible within each transfer interval without ever
interfering with the next measurement interval.
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Fig. 7: Covert-channel accuracy for different receiver transfer sizes.
Chunks between 64B and 4 kB are suitable for 100% accuracies, but
sizes outside this range result in a drop in accuracy for at least one
pair of FPGAs in the NUMA node.

experiments, very small transfer sizes are unsuitable for the
covert channel due to the low resulting bandwidth. However,
unlike in the transmitter case, large receiver transfer sizes are
also problematic, as the number of transfers completed within
each measurement interval is too small to distinguish between
external transmissions and the inherent measurement noise.

V. SIDE-CHANNEL LEAKS IN MARKETPLACE AMIS

The F1 instances studied in this paper can be leveraged to
accelerate various types of computations. To help users in that
regard, the AWS Marketplace lists numerous virtual machine
images created and sold by independent software vendors [10].
Users can purchase instances with pre-loaded software and
hardware FPGA designs for data analytics, machine learning,
and other applications, and deploy them directly on the AWS
Elastic Cloud Compute (EC2) platform. AWS Marketplace
products are usually delivered as Amazon Machine Images
(AMIs), each of which provides the virtual machine setup,
system environment settings, and all the required programs for
the application that is being sold. AWS Marketplace instances
which use FPGAs naturally use PCIe to communicate between
the software and the hardware of the purchased instance.

As we demonstrate for the first time, PCIe activity patterns
can be detected across different, logically isolated VMs, lead-
ing to a new side channel in the FPGA-accelerated instances,
and giving us insights into the AMIs running in co-located
VMs. To show the new side channel between different VMs,
we first introduce an AMI we purchased to test as the victim
software and hardware design (Section V-A), and then discuss
the recovery of potentially private information from the victim
AMI’s activity by running a co-located receiver VM that
monitors the victim’s PCIe activity (Section V-B).

A. Experimental Setup

Among the different hardware accelerator solutions for
cloud FPGAs, in this section we target video processing using
the DeepField AMI, which leverages FPGAs to accelerate



(a) 360p, 15 FPS (b) 480p, 15 FPS (c) 720p, 15 FPS

(d) 360p, 30 FPS (e) 480p, 30 FPS (f) 720p, 30 FPS

Fig. 8: PCIe bandwidth traces collected by the attacker while the
victim runs the DeepField AMI to perform VSR conversions with
input videos of different resolutions and frame rates. Within each sub-
figure, the red lines label the start and end of the VSR conversion on
the FPGA. Unlike the other experiments in this paper, the receiver’s
absolute bandwidth varies between 310–330MBps, as it uses a
different setup (Amazon Linux release 2 rather than CentOS).

the Video Super-Resolution (VSR) algorithm to convert low-
resolution videos to high-resolution ones [18]. The DeepField
AMI is based on Amazon Linux release 2 (Karoo), and sets
up the system environment to make use of the proprietary,
pre-trained neural network models [18]. To use the AMI,
the virtual machine software first loads the Amazon FPGA
Image (AFI) onto the associated FPGA using the load_afi
command to set up the FPGA board on the F1 instance.
The ffmpeg program, which is customized for the FPGA
platform, is called to convert an input video of no more than
1280 × 720 in resolution to a high-resolution video with a
maximum output resolution of 3840 × 2160. As discussed
above, the DeepField AMI handles all of the software and
provides the FPGA image for the acceleration of the VSR
algorithm. Users do not know how the FPGA logic operates,
as it is provided as a pre-compiled AFI. However, PCIe
contention allows us to reveal potentially private information
from such example AMIs by running our attacker VM to
measure the PCIe activity of the victim. In particular, this
type of high-performance computing for image and video
processing inevitably requires massive data transfers between
the FPGA and the host processor through PCIe. These AMI
behaviors are reflected in the PCIe bandwidth trace.

For our experiments, we first launch a group of
f1.2xlarge instances running the DeepField AMI to find
a co-located F1 instance pair using our PCIe contention
approach of Section IV. After verifying that the attacker
and the victim are co-located, we set up the attacker VM
in monitoring mode, which continuously measures the PCIe
bandwidth, similar to the receiver in the covert-channel setup.
The monitoring program has been configured to measure
bandwidth with a measurement duration of δ = 20ms and
a data transfer duration of d = 18ms.

The victim VM then runs the unmodified DeepField AMI to

convert different lower-resolution videos to higher-resolution
ones using the ffmpeg program. In our experiments, each
run of the DeepField AMI takes approximately 5min, and
each bandwidth trace in the attacker VM lasts for 10min,
thus covering both the conversion process, as well as periods
of inactivity. As discussed in Section V-B, by comparing the
bandwidth traces among the different experiments, we observe
that we can infer information about a) whether the victim is
actively in the process of converting a video, and b) deduce
certain parameters of the videos.

B. Private Information Leakage from AMIs

We now show that private information regarding the ac-
tivities of co-located instances can be revealed through the
PCIe bandwidth traces. Figure 8 shows the PCIe bandwidth
measured by the attacker while the victim is running the Deep-
Field AMI on an f1.2xlarge instance. We test different
input video files, with three different resolutions (360p, 480p,
and 720p) and two frame rates of 15 and 30 frames-per-
second (FPS). All videos have a 16:9 aspect ratio, and, except
for the resolutions and frame rates, the contents of the input
video files are otherwise identical. The output video produced
for each conversion always has a resolution of 3840 × 2160,
but maintains the same frame rate as the original input. The
beginning and ending of the VSR conversion on the FPGA can
be clearly seen in Figure 8, where vertical red lines delineating
the start and end of the process have been added for clarity. We
observe that the PCIe bandwidth drops during the conversion,
and that runtime is reduced as the input resolution or the input
frame rate decrease. For example, the runtime for a 720p, 30
FPS video (Figure 8f) is approximately twice as long as for a
15 FPS one (Figure 8c).

VI. LONG-TERM PCIE MONITORING

In this section, we present the results of measuring the PCIe
bandwidth for two on-demand f1.2xlarge instances in the
us-east-1 region (availability zone e). These experiments
took place between 5pm on April 25, 2021 and 2am on
April 26 (Eastern Time, as us-east-1 is located in North
Virginia). For both sets of four-hour measurements, the first
f1.2xlarge instance (Figure 9) is measuring with a trans-
mission duration of d = 4ms and a measurement duration of
δ = 5ms, while the second instance (Figure 10) has d = 18ms
and δ = 20ms. For the first instance, the PCIe link remains
mostly idle during the evening (Figure 9a), but experiences
contention in the first night hour (Figure 9b). The second
instance instead appears to be co-located with other FPGAs
that make heavier use of their PCIe bandwidth. During the
evening measurements (Figure 10a), the PCIe bandwidth drops
momentarily below 1,200MBps during the third hour and
below 800MBps during the fourth hour. It also experiences
sustained contention in the third hour of the night measurement
(Figure 10b). Although the bandwidth in the two instances
is comparable, the 5ms measurements are noisier compared
to the 20ms ones. Finally note that, generally, our covert-
channel code results in bandwidth drops of over 800MBps,
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Fig. 9: Long-term PCIe-based data center monitoring between the
evening of April 25 and the early morning of April 26, with d = 4ms
and δ = 5ms on an f1.2xlarge on-demand instance.
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Fig. 10: Long-term PCIe-based data center monitoring on a different
f1.2xlarge on-demand instance with d = 18ms and δ = 20ms.

while the activity of other users tends to cause drops of less
than 50MBps, suggesting that noise from external traffic has
minimal impact on our channel.

VII. SSD-BASED CO-LOCATION

Another shared resource that can lead to contention is
the SSD storage that F1 instances can access. The pub-
lic specification of F1 instances notes that f1.2xlarge
instances have access to 470GB of Non-Volatile Memory
Express (NVMe) SSD storage, f1.4xlarge have 940GB,
and f1.16xlarge have 4× 940GB [9]. This suggests that
F1 servers have four separate 940GB SSD drives, each of
which can be shared between two f1.2xlarge instances.
In this section, we confirm our hypothesis that one SSD drive
can be shared between multiple instances, and explain how this
fact can be exploited to reverse-engineer the PCIe topology
and co-locate VM instances. The SSD contention we uncover
can also be used for a slow, but reliable, covert channel, or
to degrade the performance of other users, akin to a Denial-
of-Service (DoS) attack. We also demonstrate the existence
of FPGA-to-SSD contention, which is likely the result of
the SSD going through the same PCIe switch, as shown
in Figure 2. This topology remains consistent with the one
publicly described for GPU-based P4d instances [7], which
appear to be architecturally similar to F1 instances.

A. SSD-to-SSD Contention

SSD contention is tested by measuring the bandwidth of
the SSD by using the hdparm command with its -t option,
which performs disk reads without any data caching [33]. Mea-
surements are averaged over repeated reads of 2MB chunks

from the disk in a period of 3 seconds. When the server is
otherwise idle, hdparm reports the SSD read bandwidth to be
over 800MBps. However, when the other f1.2xlarge in-
stance that shares the same SSD stresses it using the stress
command [46] with the --io 4 --hdd 4 parameters, the
bandwidth drops below 50MBps. The stress command
with the parameters above results in 4 threads calling sync (to
stress the read buffers) and another 4 threads calling write
and unlink (to stress write performance). The total number
of threads is kept to 8, to match the number of vCPUs allocated
to an f1.2xlarge instance, while all FPGAs remain idle
during these experiments.

This non-uniform SSD behavior can be used for a robust
covert channel with a bandwidth of 0.125 bps with 100%
accuracy. Specifically, for a transmission of bit 1, stress
is called for 7 seconds, while for a transmission of bit 0,
the transmitter remains idle. The receiver uses hdparm to
measure its SSD’s bandwidth, and can distinguish between
contention and no-contention of the SSD resources (i.e., bits
1 and 0 respectively) using a simple threshold. The period of 8
seconds per bit also accounts for 1 second of inactivity in every
transmission, allowing the disk usage to return to normal.

The same mechanism can be exploited to deteriorate the
performance of other tenants for DoS attacks. It can further
co-locate instances on an even more fine-grained level than
was previously possible. To accomplish this, we rent several
f1.2xlarge instances until we find four which form a full
NUMA node through the PCIe-based co-location approach
of Section IV. We then stress the SSD in one of the four
instances, and measure the SSD performance in the remaining
three. We discover two pairs of instances with mutual SSD
contention, which supports our hypothesis, and is also consis-
tent with the PCIe topology for other instance types [7].

The fact that SSD contention only exists between two
f1.2xlarge instances can be beneficial for adversaries:
when the covert-channel receiver and the transmitter are
scheduled on two instances that share an SSD, they can
communicate without interference from other tenants in the
same NUMA node.3

B. FPGA-to-SSD Contention

To formalize the above observations, we use the method-
ology described in Section IV to find four co-located
f1.2xlarge instances in the same NUMA node. Then, for
each pair of instances, we repeatedly run hdparm in the
“receiver” instance for a period of 3 minutes, and then in the
transmitter instance, a) at the one minute mark run stress
for 30 s, and b) at the two minute mark use our FPGA-based
covert-channel code as a stressor which constantly transmits
the bit 1 during each measurement period for another 30 s.

The results of these experiments are summarized in Fig-
ure 11. During idle periods, the SSD bandwidth is approxi-

3Assuming that slots within a server are assigned randomly, the probability
of getting instances with shared SSDs given that they are already co-located
in the same NUMA node is 33%: out of the three remaining slots in the same
NUMA node, exactly one slot can be in an instance that shares the SSD.
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Fig. 11: NVMe SSD bandwidth for all transmitter and receiver
pairs in a NUMA node, as measured by hdparm. Running stress
between seconds 60 to 90 causes a bandwidth drop in exactly one
other instance in the NUMA node, while running the FPGA-based
PCIe stressor (between seconds 120 and 150) reduces the SSD
bandwidth in all cases.

mately 800–900MBps. However, for the two instances with
SSD contention, i.e., pairs (A,D) and (B,C), the bandwidth
drops to as low as 7MBps while the stress command is
running (the bandwidth for the other instance pairs remains
unmodified). When the FPGA-based PCIe stressor is enabled,
the SSD bandwidth reported by hdparm is reduced in a
measurable way to approximately 700MBps.

We further test for the opposite effect, i.e., whether stressing
the SSD can cause a measurable difference to the FPGA-based
PCIe performance. We again stress the SSD between 60–
90 s, and stress the FPGA between 120–150 s. As the results
of Figure 12 show, the PCIe bandwidth drops from almost
1.8GBps to approximately 500–1,000MBps when the FPGA-
stressor is enabled, but there is no significant difference in
performance when the SSD-based stressor is turned on. This
is likely because the FPGA-based stressor can more effectively
saturate the PCIe link, while the SSD-based stressor seems to
be limited by the performance of the hard drive itself, whose
bandwidth when idle (800MBps) is much lower than that of
the FPGA (1.8GBps). In summary, using the FPGA as a PCIe
stressor can cause the SSD bandwidth to drop, but the converse
is not true, since there is no observable influence on the FPGA
PCIe bandwidth as a result of SSD activity.

VIII. DRAM-BASED CROSS-NUMA CO-LOCATION

DRAM decay is known to depend on the temperature of the
DRAM chip and its environment [48], [49]. Since the FPGAs
in cloud servers have direct access to the on-board DRAM,
they can be used as sensors for detecting and estimating the
temperature around the FPGA boards, supplementing PCIe-
traffic-based measurements.

Figure 13 summarizes how the DRAM decay of on-board
chips can be used to monitor thermal changes in the data
center. When a DRAM module is being initialized with some
data, the DRAM cells will become charged to store the values,
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Running stress between seconds 60 to 90 does not cause a
bandwidth drop, but running the FPGA-based PCIe stressor (between
seconds 120 and 150) reduces the bandwidth in all cases.

Fig. 13: By alternating between AFIs that instantiate DRAM con-
trollers or leave them unconnected, the decay rate of DRAM cells can
be measured as a proxy for environmental temperature monitors [40].

with true cells storing logical 1s as charged capacitors, and
anti-cells storing them as depleted capacitors. Typically, true
and anti-cells are paired, so initializing the DRAM to all ones
will ensure only half of the DRAM cells will be charged, even
if the actual location of true and anti-cells is not known.

After the data has been written to the DRAM and the
cells have been charged, the DRAM refresh is disabled.
Disabling DRAM refresh in the server itself is not possible
as the physical hardware on the server is controlled by the
hypervisor, not the users. However, the FPGA boards have
their own DRAMs. By programming the FPGAs with AFIs
that do and do not have DRAM controllers, disabling of the
DRAM refresh can be emulated, allowing the DRAM cells
to decay [42]. Eventually, some of the cells will lose enough
charge to “flip” their value (for example, data written as 1
becomes 0 for true cells, since the charge has dissipated).

DRAM data can then be read after a fixed time Tdecay ,
which is called the decay time. The number of flipped cells
during this time depends on the temperature of the DRAM and
its environment [49], and can therefore produce coarse-grained
DRAM-based temperature sensors of F1 instances.
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Fig. 14: DRAM decay traces from three f1.16xlarge instances (24 FPGAs in total) for a period of 24 hours, using the differences
between successive measurements cidiff as the comparison metric, which results in the highest co-location accuracy of 96%. Within each
server, measurements from slots in the same NUMA node have been drawn in the same style.

Prior work [43] and this paper have so far focused on
information leaks due to shared resources within a NUMA
node, but did not attempt to co-locate instances that are in
the same physical server, but belong to different NUMA
nodes. In this section, we propose such a methodology that
uses the boards’ thermal signatures, which are obtained from
the decay rates of each FPGA’s DRAM modules. To collect
these signatures, we use the method and code provided by
Tian et al. [42] to alternate between bitstreams that instantiate
DRAM controllers and ones that leave them unconnected to
initialize the memory and then disable its refresh rate. When
two instances are in the same server, the temperatures of all 8
FPGAs in an f1.16xlarge instance (and by extension the
DRAM thermal signatures) are highly correlated. However,
when the instances come from different servers, the decay
rates are different, and thus contain distinguishable patterns
that can be used to classify the two instances separately. This
insight can be used to find FPGA instances that are co-located
in the same server, even if they span different NUMA nodes.

A. Setup & Evaluation

Our method for co-locating instances within a server has
two aspects to it: first, we show that we can successfully
identify two FPGA boards as being in the same server with
high probability using their DRAM decay rates, and then we
show that by using PCIe-based co-location we can build the
full profile of a server, and identify all eight of its FPGA
boards, even if they are in different NUMA nodes. More
specifically, we use the open-source software by Tian et
al. [42] to collect DRAM decay measurements for several
FPGAs over a long period of time and then find which FPGAs’
DRAM decay patterns are the “closest”.

To validate our approach, we rent three f1.16xlarge
instances (a total of 24 FPGAs) for a period of 24 hours,
and measure how “close” each pair of FPGA traces is by
calculating the total distance between their data points over
the entire measurement period for three different metrics.
The first metric compares the raw number of bit flips from
the DRAM decay measurement ciraw directly. The second
approach normalizes the data to fit in the [−1, 1] range, i.e.,

cinorm = (2ciraw −m−M)/(M −m), where m = mini c
i
raw

and M = maxi c
i
raw. We finally also propose an alternative

metric, shown in Figure 14 for all three servers, which takes
the difference between successive raw measurements, i.e.,
cidiff = ciraw − ci−1

raw .
The raw data metric has an accuracy of 75%, the normalized

metric is 71% accurate, while the difference metric succeeds
in correctly pairing all FPGAs except for one, for an accuracy
of 96%.4 Note that when using our metric, if FPGA A is the
closest to FPGA B, then B is not necessarily the closest to A.
However, if FPGA A is closest to B and B is closest to C, then
A, B, and C are all in the same server.

In the experiments of Figure 14, this approach places slots
0–4 of server A together (along with, mistakenly, slot 0 of
server B), slots 5–7 of server A as a second group, slots 1–7
of server B as one server, and slots 0–3 and 4–7 of server C as
the two final groups. Consequently, our method successfully
identifies the six NUMA nodes without making use of PCIe
contention at all.

However, by using insights about the NUMA nodes that can
be extracted through our PCIe-based experiments, the accuracy
and reliability of this method can be further increased. For
example, slot 0 of server B could already be placed in the
same NUMA node as slots 1–3 using PCIe-based co-location.
Leveraging the PCIe-based co-location method, if the “closest”
FPGA is known to be in the same NUMA node due to PCIe
contention, and the second-closest FPGA (not in the same
NUMA node according to PCIe contention) is only farther
by at most 1% compared to the closest FPGA, then this
second-closest FPGA can be identified as belonging to the
second NUMA node of the same server. In the experiment of
Figure 14, this approach successfully groups all FPGAs in the
three tested servers without errors.

IX. RELATED WORK

Since the introduction of FPGA-accelerated cloud comput-
ing about five years ago, a number of researchers have been

4Shorter measurement periods still result in high accuracies. For example,
using the DRAM data from the first 12 hours results in only one additional
FPGA mis-identification, for an accuracy of 92%.



exploring the security aspects of FPGAs in the cloud. A key
feature differentiating such research from prior work on FPGA
security outside of cloud environments is the threat model,
which assumes remote attackers without physical access to or
modifications of the FPGA boards. This section summarizes
selected work that is applicable to the cloud setting, leaving
traditional FPGA security topics to existing books [28] or
surveys [29], [34].

A. PCIe-Based Threats

The Peripheral Component Interconnect Express (PCIe)
standard provides a high-bandwidth, point-to-point, full-
duplex interface for connecting peripherals within servers.
Existing work has shown that PCIe switches can cause bottle-
necks in multi-GPU systems [17], [20], [21], [36], [37], lead-
ing to severe stalls due to their scheduling policy [30]. In terms
of PCIe contention in FPGA-accelerated cloud environments,
prior work has shown that different driver implementations
result in different overheads [45], and that changes in PCIe
bandwidth can be used to co-locate different instances on the
same server [43]. However, no work had used PCIe contention
for covert-channel attacks locally, or on FPGA-accelerated
clouds. Moreover, by going beyond just PCIe, our work is able
to deduce cross-NUMA-node co-location using the DRAM
thermal fingerprinting approach.

B. Power-Based Threats

Computations that cause data-dependent power consump-
tion can result in information leaks that can be detected even
by adversaries without physical access to the device under
attack. For example, it is known that a shared power supply
in a server can be used to leak information between different
FPGAs, where one FPGA modulates power consumption and
the other measures the resulting voltage fluctuations [24].
However, such work results in low transmission rates (below
10 bps), and has only been demonstrated in a lab environment.

Other work has shown that it is possible to develop stressor
circuits which modulate the overall power consumption of an
FPGA and generate a lot of heat, for instance by using ring
oscillators or transient short circuits [1], [2], [26]. Such ideas
could be used to prematurely age FPGAs, which has been
shown to be a risk for FPGAs exposed to excessive heat for
an extended period of time [15]. Our work has instead focused
on information leaks and non-destructive reverse-engineering
of the infrastructure.

C. Thermal-Based Threats

It is now well-known that it is possible to implement
temperature sensors suitable for thermal monitoring on FPGAs
using ring oscillators [19], whose frequency drifts in response
to temperature variations [31], [32], [44], [50]. A receiver
FPGA could thus use a ring oscillator to observe the ambient
temperature of a data center. For example, existing work [41]
has explored a new type of temporal thermal attack: heat
generated by one circuit can be later observed by other circuits
that are loaded onto the same FPGA. This type of attack is

able to leak information between different users of an FPGA
who are assigned to the same FPGA over time. However, the
bandwidth of temporal attacks is low (less than 1 bps), while
our covert channels can reach a bandwidth of up to 2 kbps.

D. DRAM-Based Threats

Recent work has shown that direct control of the DRAM
connected to the FPGA boards can be used to fingerprint
them [42]. This can be combined with existing work [43]
to build a map of the cloud data centers where FPGAs are
used. Such fingerprinting does not by itself, however, help
with cross-VM covert channels, as it does not provide co-
location information. By contrast, our PCIe, SSD, and DRAM
approaches are able to co-locate instances in the same server
and enable cross-VM covert channels and information leaks.

E. Multi-Tenant Security

This work has focused on the single-tenant setting, where
each user gets full access to the FPGA, and thus reflects
the current environment offered by cloud providers. However,
there is also a large body of security research in the multi-
tenant context, where a single FPGA is shared by multi-
ple, logically (and potentially physically) isolated users. For
example, recent work in this area has shown that crosstalk
between wires inside the FPGA chips can be used to leak
information [22], while power-based attacks can lead to covert-
channel [23] and side-channel [25] attacks. Our work on PCIe,
SSD, and DRAM threats is orthogonal to such work, but is
directly applicable to current cloud FPGA deployments.

X. CONCLUSION

This paper demonstrated the first covert- and side-channel
attacks between separate users in a public, FPGA-accelerated
cloud computing setting. In addition to making use of con-
tention of the PCIe bus, this work identified new, alternative
SSD- and DRAM-based co-location mechanisms, which can
be used to detect FPGAs which are in the same server,
even if they are on separate NUMA nodes. More generally,
this work demonstrated that malicious adversaries can use
PCIe monitoring to observe the data center server activity,
breaking the separation of privilege that isolated VM instances
are supposed to provide. With more types of accelerators
becoming available on the cloud, including FPGAs, GPUs, and
TPUs, PCIe-based threats are bound to become a key aspect of
cross-user attacks. Overall, our insights showed that low-level,
direct hardware access to PCIe, SSD, and DRAM hardware
creates new attack vectors that need to be considered by both
users and cloud providers alike when deciding how to trade
off performance, cost, and security for their designs: even if
the endpoints of computations are assumed to be secure, the
shared nature of cloud infrastructures poses new challenges
that need to be addressed.
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