
Extending FPGA Information Leaks
with Trojan Phantom Circuits

Anthony Etim
Yale University

New Haven, CT, USA
anthony.etim@yale.edu

Shanquan Tian
Yale University

New Haven, CT, USA
shanquan.tian@yale.edu

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—Field-Programmable Gate Arrays (FPGAs) are in-
creasingly used in data centers and in cloud computing for
acceleration of various applications. However, cloud-based FP-
GAs could be programmed with malicious circuits to leak
information. For example, existing work has shown that long-
wire crosstalk can be abused to leak information in cloud-based
FPGAs. However, long-wire crosstalk is limited to very small
spatial distances where the receiver needs to be located next
to the transmitter or victim on the same FPGA. This work
shows how long-wire crosstalk can be extended to cross-FPGA
information leakage with a novel Trojan phantom circuit. The
phantom circuit is a self-contained circuit, isolated from rest
of the FPGA logic. It uses crosstalk to spy on information
within an FPGA and then exfiltrates the information across
FPGAs by triggering RO stressors for cross-FPGA information
transmission. The tested accuracy of the phantom circuits cross-
FPGA information leakage channel can reach 90%. In addition
to demonstrating a new security threat, this work also presents
the first set of active monitoring and defense mechanisms for
protection from cross-FPGA information leakage.

Index Terms—FPGA Security, Hardware Attacks, Reconfig-
urable logic and FPGAs

I. INTRODUCTION

In recent years, the use of FPGAs in public cloud computing
data centers has exploded in size, from private deployments
of FPGAs in projects such as Microsoft Catapult, to public
deployments from companies such as Amazon Web Services
(AWS). In settings such as AWS, users can upload their
own hardware designs, and accelerate computations on the
remote FPGAs. Many of the users’ designs could be pro-
cessing sensitive data and use encryption, or could be used
for machine learning where users run their custom machine
learning algorithms. In both of the example scenarios there is
sensitive data, such as encryption keys or machine learning
model parameters, respectively, which an adversary may want
to steal.

Existing work has shown that information such as encryp-
tion keys can be leaked using long-wire crosstalk [1]. When
victim and attacker are located next to each other on the FPGA,
their logic may be mapped to wires which are physically
adjacent, and cause crosstalk between each other. Attacker
using Ring Oscillators (ROs) can measure delays induced in
the wires due to crosstalk and learn information about the
state of the victim’s wire. Further, continuing FPGA research
has shown that ROs can be used for other various purposes,

from RO stressors [2] used to generate voltage and thermal
changes, to RO sensors [3] used as receivers in information
leaks through thermal channels. Moreover, ROs can be used to
create Physically Unclonable Functions (PUFs) [4]. In all of
these settings, use of ROs for information leaks is limited to
within single FPGA and we classify these leaks as intra-FPGA
information leaks.

Meanwhile, in this work, we explore novel inter-FPGA in-
formation leaks. We introduce new phantom circuits, which are
malicious circuits which could be used for stealing information
and sending it across FPGAs within same server. Phantom
circuits for the first time combine multiple existing hardware
FPGA threats to extend local, intra-FPGA information leakage
to cross-FPGA or inter-FPGA information leakage. Phantom
circuits are hardware modules unconnected to the rest of the
FPGA circuit. Especially, they have no explicit inputs and
outputs. Unlike most existing FPGA based malicious circuits,
e.g., [2]–[4], our phantom circuits leverage an RO as a clock
source and require no external clock. Clock gating or other
means to disable the clock source thus cannot be used to
disable phantom circuits. Further, when inserted into a victim
design, the phantom circuit Trojan cannot be detected by
checking wire connections, as they have no logical interaction
with the victim circuit.

The phantom circuits combine existing approaches and give
an example of an end-to-end means by which an attacker
could leak information locally, within an FPGA, and send it
across to a different FPGA in the same server. Our phantom
circuits leverage the long-wire crosstalk effects, which have
been recently explored in FPGAs [5] to steal information from
the victim. Then, they utilize novel RO stressors to encode the
leaked information into voltage changes of the FPGA chip.
The voltage changes can then be observed by other receiver
circuits on a different FPGA within the same server. Unlike
most of the previous work, we develop an end-to-end means
that can leak information from victim on one FPGA and send
it to a different FPGA. This work solves number of technical
challenges, such as developing a self-clocked RO long-wire
crosstalk sensor, which enables the phantom circuit Trojan to
be stealthy and harder to detect. Also, unlike prior work on
cross-FPGA information leaks, we demonstrate how to collect,
i.e. leak, the sensitive information from the victim locally and
then send it across the FPGAs. Prior work mainly has focused

Ring Oscillator

Attacker Long Wire

Victim Long Wire

Cross
tal

k

Fig. 1: Schematic diagram showing long-wire crosstalk between
victim’s long wire (top) and attacker’s long wire (bottom). Attacker’s
long wire is part of an RO; the crosstalk is detected as changes in
the frequency of the RO under control of the attacker.

on analyzing cross-FPGA communication independent of how
the data to be leaked is actually collected on the source FPGA.

Our work develops the first end-to-end demonstration that
can leak information from victim on one FPGA and send it to
a different FPGA. This highlights new set of threats in cloud-
based FPGAs, and the need for new security mechanisms to be
developed to protect cloud computing and other environments
where FPGAs are used. Consequently, having demonstrated
that local information leakage can be extended to cross-
FPGA information leakage, this work also looks at counter-
measures. It is currently difficult to analyze FPGA bitstreams
and code to find malicious circuits. An antivirus program for
FPGAs has been proposed [6], but the work may not catch all
types of malicious circuits. Consequently, rather than try to
find the phantom circuits, we propose defenders that focus
on identifying and stopping the information leakage in an
active manner.

The main characteristic which the defender can look at are
systematic voltage changes in the operation of the FPGA,
which could be signs of the transmitter modulating the voltage
in order to achieve the cross-FPGA transmission. As one
means for the defender to monitor voltage changes, we explore
the use of CPU and motherboard voltage sensors available on
today’s servers. The sensors can easily be accessible via com-
mon Linux lm-sensors [7] software tool. The voltage data
from various voltage domains monitored by lm-sensors
could be used for discovery of the voltage changes that are
signs of cross-FPGA communication. As an active defense
triggered after the cross-FPGA transmission is suspected, the
voltage changes in the system could be induced on purpose
by the defender or the victim. We explore generation of
disturbance by using CPU or GPU stressors to manipulate the
system’s voltage. Further, the victim circuit itself can generate
large voltage disturbances as well, e.g., by using RO stressors,
to create noise in the cross-FPGA channel.

A. Contributions

The contributions of this work are listed below:

1) We introduce novel phantom circuit Trojan circuits for
information stealing using long-wire crosstalk; phantom
circuits are first long-wire crosstalk circuits which are
also self clocked using RO as a clock source.

Source FPGA

Sink FPGA

PSU

Fig. 2: Schematic diagram showing cross-FPGA information leakage
through the shared power supply unit (PSU). The source FPGA
generates voltage variations used to transmit the information, and
the sink FPGA monitors voltage variations to receive information. In
the case of our phantom circuits, it is the attacker’s Trojan phantom
circuit that modulates the power consumption of the source FPGA to
transmit to the sink FPGA.

2) We are first to combine long-wire crosstalk within FPGA
with cross-FPGA information leakage to extend the
distance of side-channel information leaks from intra-
FPGA to inter-FPGA; the phantom circuits decode long-
wire crosstalk and encode it into voltage changes that
can be sensed across different FPGAs within a server.

3) We then demonstrate active detection mechanisms which
could detect the cross-FPGA communication, and pro-
totype defenses based on generating disturbance in the
voltages using various types of stressors, which can
prevent the cross-FPGA transmission from succeeding.

II. BACKGROUND

This section discusses prior work in long-wire crosstalk in
FPGAs and information leakage across FPGAs. Our phantom
circuits are the first circuits to combine both of these effects
in a novel way to create a security threat.

A. Long-wire Crosstalk

One of the major challenges in the design of FPGAs is
the issue of crosstalk, particularly that caused by long wires.
Crosstalk refers to the unwanted interference between two or
more signals on a circuit, which can cause errors and impair
the overall performance of the system. Moreover, crosstalk
can also lead to information leakage, where sensitive data is
inadvertently leaked to unintended parties [5].

Long wire crosstalk can be captured using ROs, which is
a common method for exploiting the vulnerability of FPGAs
to information leakage. As seen in Figure 1, the long wire
leaks information to the adjacent RO wire through crosstalk,
which affects the frequency of the RO, and changes in the RO
frequency can be measured to learn the static signal on the
victim’s long wire. Existing work has shown attacks on cryp-
tographic circuits using long-wires, and it is a difficult problem
to prevent use of long-wires for sensitive information [8].

To mitigate the effects of crosstalk on FPGA designs,
various techniques have been proposed, such as careful routing
of wires to minimize crosstalk leveraging a combination of
placement, routing, and obfuscation techniques to prevent

secret leakage on FPGA components [9]. At the same time,
existing work has also shown that AWS defenses for ROs can
be bypassed by use of novel ROs with latches or flip-flops [8],
[10]. This makes defending or preventing long-wire crosstalk
an open research problem.

B. Cross-FPGA Information Leakage

Information leakage is a critical concern in the design of
FPGAs, particularly due to their reconfigurability and vulnera-
bility to attacks. Figure 2 shows a schematic of the information
leakage across two FPGAs sharing the same power supply
unit. The sender can stress the power supply by running RO
stressor circuits, and the receiver can measure the shared power
supply voltage changes using RO sensors [11]. Cross-FPGA
information leakage is a type of information leak attack that
exploits the changes in the shared power supply unit (PSU)
of FPGAs connected to the same server or workstation. For
example, Giechaskiel et al. have proposed cross-FPGA covert
channels to leak information from one FPGA to another [11].
However, the existing work has only shown covert channels,
where transmissions is done on purpose. Our work focuses
on side-channels, where the phantom circuit is used to collect
side-channel information from the victim, and then encode it
into cross-FPGA communication to extend the side-channel
from local to cross-FPGA setting.

III. THREAT MODEL

This work assumes a scenario where the adversary is able to
insert the phantom circuit as a Trojan into the victim circuit.
Since the phantom circuit is not connected to the victim circuit,
it could even be inserted into the bitstream, as it does not
depend on any logical connections to the victim’s logic, not
even the clock. This work further assumes the adversary is able
to locate the phantom circuit’s long wire next to victim’s long
wire from which information will be stolen. In addition, the
phantom circuit uses large RO array, and we assume that there
are sufficient FPGA resources available for the attacker’s ROs.
We assume that in single-tenant FPGA setting, this Trojan
could be inserted during deployment or otherwise hidden in
the code unbeknown to the victim.

In multi-tenant setting it would be actually much easier to
insert the phantom circuit next to the victim as the attacker
could be co-tenant on the same FPGA and not reacquire
actual Trojan. In either case, we assume that the victim’s
sensitive information is carried by long wires, next to which
the phantom circuits has its own long wires. We assume the
sensitive information carried on the victim’s long wire is not
encrypted or otherwise protected, e.g., after sensitive data is
decrypted, it has to be carried on the long wires for doing
actual computation. Or, it could be the actual decryption keys
that are carried on the long wires. Thus the information leaked
by our phantom circuits could be both sensitive intellectual
property, e.g. weights of machine learning models being
written to block memories, or decryption keys.

To execute the cross-FPGA side channel, we assume the
attacker controls a different FPGA in the same server. The

Phantom Circuit

Vi
ct

im
 L

on
g

W
ire

A
tta

ck
er

 L
on

g
W

ire

RO Clock

RO
Stressor

Controller

Source FPGA Sink FPGA

RO
Stressor

RO
Stressor

RO
 Sensor

RO
 Sensor

Transmission
via shared

PSU

Phantom Circuit
Cross-FPGA

Receiver

Fig. 3: Schematic of phantom circuit Trojan inserted within a source
FPGA, and receiver circuit in the sink FPGA. The sizes of the
modules and the FPGA are not to scale.

second FPGA serves as the receiver of the information. We
assume that attacker is able to synchronize such that the victim
(with the phantom circuit Trojan) on the first FPGA executes
at the same time as the attacker runs sensors on the second
FPGA. The assumed setting of the two FPGAs, with victim
and phantom circuit in first FPGA, and the attacker’s sensors
in second FPGA, is shown in Figure 3. Prior work has shown
that, in cloud settings such as Amazon F1, it is quite easy to
analyze and guess whether two FPGAs allocated to users are
very likely to be on the same server [12].

IV. PHANTOM CIRCUITS

The goal of this work is to demonstrate how to extend intra-
FPGA information leaks to inter-FPGA information leaks. Our
work combines both ideas of side channels (to spy on victim
within source FPGA) and covert channels (to actively send
the information to the sink FPGA). In particular, this is first
work to combine long-wire crosstalk with cross-FPGA data
transmission via shared power supply.

The main components of the phantom circuit are the RO
sensor used as the long-wire crosstalk receiver, and the RO
stressor used as the cross-FPGA power covert-channel trans-
mitter. The phantom circuit itself is instantiated inside a source
FPGA on which the victim circuit is running, and there is
separate sink FPGA, which could be used to recover the
transmitted information. The placement of the phantom circuit
is important as it uses crosstalk effect from long-wires being
placed side by side to steal information. This is standard
assumption in all existing work on long-wire crosstalk, which
by design works if the victim and attacker are placed next to
each other. The assumed setup is shown in Figure 3.

A. Stealing Information Through Crosstalk

Phantom circuits use crosstalk effect from long-wires being
placed side by side to steal information [5]. The design
involves 2 transmitter wires and 1 receiver wire. The trans-
mitting wires are part of the victim. The information on
the transmitting wires is the sensitive information that the

FP
G
A RO

MMCM
(a) (b)

Oscillator Oscillator

Circuit CircuitFP
G
A

Fig. 4: (a) Typical FPGA circuit clocked using crystal oscillator
available on the FPGA and (b) self-clocked circuit using RO and
MMCM to generate stable clock signal.

phantom circuits aim to capture. The receiving wire is part
of the RO sensor, which is inside the phantom circuit. The
phantom circuit is unique due to the fact that it is completely
isolated from the entire FPGA logic as it does not rely on the
FPGA system clock as conventional methods currently use,
e.g., [13]. Instead, we use a RO as a clock. The output from
a ring oscillator is passed into a mixed-mode clock manager
(MMCM) module primitive [14] which therefore makes the
clock frequency further stable by our controller logic. By using
RO clock, the phantom circuit has no connections to the other
modules on the FPGA, not even clock connection. This makes
it easier to insert as a Trojan, and also can make it harder to
detect since no explicit inputs and outputs are used. To best
of our knowledge, prior work on long-wire crosstalk never
used self-clocked circuits for on the side of the RO sensor
and receiver. Use of RO as a clock, vs. using external crystal
oscillator, is shown in Figure 4.

B. Inter-FPGA Transmission of Information

Modern cloud FPGA deployments contain multiple FPGAs
per server. Even if each whole FPGA is assigned to a different
user (which is the single-tenant scenario), there are multiple
users running on different FPGAs concurrently. We are first
to show that the local side-channel information captured from
long-wire crosstalk can be transmitted to a different FPGA
by use of the PSU voltage-based communication channel.
Prior inter-FPGA information leakage and communication has
mainly been shown in covert channel setting [11], while we
focus on side channels.

An example phantom circuit could consist of 5 power
wasters, or RO stressors, each containing 2, 000 ROs allowing
for covert transmission. More stressors with fewer ROs, or
fewer stressors with more ROs should give similar results.
These stressors can be turned on and off. When the stressors
are turned on, the shared power supply is stressed, and other
FPGAs connected to the power supply are provided with a
lower voltage. On the other hand, when RO stressors are off,
the voltage across shared power supply unit (PSU) returns
to normal value. In our setting, the phantom circuit is the
transmitter in the source FPGA. It stresses the shared PSU to
achieve the cross-FPGA information transmission.

A sink FPGA can observe the voltage variations on the
shared power supply by running RO sensors itself. The sink
FPGA can consist, e.g., of 5 stressors and 4 receivers. Each
stressor consists of 500 ROs while each receiver is made up
of 5 ROs. The stressor ROs are present in the sink FPGA to
stress the FPGA board’s voltage regulator. As a result of the
local stressing, the on-board voltage regulator is not able to
mask the changes in the input 12V voltage coming from the
shared PSU [11].

C. Design of Stealthy Phantom Circuits with Self-Clocked
Circuits using ROs

Typical FPGA circuits are clocked from a clock signal
coming from external crystal oscillators that may use phase-
locked loops (PLLs) internally to produce stable output clock
signals that are fed into the FPGA. Use of the clock requires
at least one connection of a circuit to the FPGA’s clock signal
and clock tree.

In the phantom circuits, instead of using external clock,
a RO inside the phantom circuit is used to provide a local
oscillating signal that acts as a clock. This eliminates the need
for an external clock source. Designing self-clocked circuits
with ROs can be challenging, as the frequency and phase
of the ROs can vary due to process variations, temperature
changes, and aging effects. The use of ROs in self-clocked
circuits can also introduce issues, such as increased jitter and
clock skew, which can affect circuit performance. However,
phantom circuits are simple and small circuits, and thus not
affected by these typical issues. To help stabilize the clock
signal, as seen in Figure 4, we feed the output of the RO
into a MMCM module [14] to produce a stable clock for the
phantom circuit.

Synchronization between the phantom circuit and the victim
could be achieved by using the RO long-wire receiver for
observing specific patterns in changes of victim’s long wire
that are used as trigger for data collection. Synchronization
between the source and sink FPGAs can be achieved by the
phantom circuit first transmitting a known pattern of bits,
followed by the actual data that is being exfiltrated.

We believe ours is the first application for RO-based clock
for use as reference clock for long-wire crosstalk measure-
ments and resulting data transmission. Because phantom cir-
cuits are self-clocked and have no explicit logical inputs
or outputs, they are difficult to find by examining logical
connections within the victim. The phantom circuits do require
an array of ROs, however, for complex victim designs this may
be a small fraction of the area. Detection of phantom circuits
by examining the victim’s final circuit or the bitstream is left
as future work. In case the phantom circuit is used in a multi-
tenant setting, then it is separate from the victim and cannot
be detected by analyzing any aspect of the victim.

V. EXPERIMENTAL PROCEDURE

In the experiments, first, we tested the phantom circuits
on the source FPGA separately from the sink FPGA, to

Sink FPGA

Source FPGA

PSU

Fig. 5: Experimental setup: a shared power supply unit (PSU) is
shared by FPGAs, as well as the server CPU and GPU.

determine the accuracy of the side-channel that uses the long-
wire crosstalk within the FPGA. Then, second, we tested the
combined end-to-end prototype to analyze the overall system
and to determine the accuracy of the side channel information
sent between two FPGAs. Figure 5 shows the experimental
setup. In our setup, both sink and source FPGAs as well as
the CPU and GPU all share the same power supply unit (PSU),
which is typical in the cloud setting [11].

A. Side Channel Types Evaluated

In addition to the FPGA-based side channel leveraging
shared PSU, we have also explored CPU and GPU based
side channels. The evaluation of CPU and GPU was done to
understand how the CPU and GPU also impact the shared
PSU; and later the CPU and GPU is used as part of a
defense procedure.

1) Main Phantom Circuits Side Channel: FPGA to FPGA:
In our evaluated threat model, first, the phantom circuit in the
source FPGA acts as receiver of the long-wire crosstalk to
spy on sensitive information. The information could be for
example encryption keys, which has been shown by prior
work. The information is then stored inside the phantom
circuit in registers or block RAM. To extend the side-channel
and send the information to the second FPGA, the phantom
circuit uses Manchester encoding, where a 1 becomes 10
and 0 becomes 01. The information encoded in this way is
transmitted to the second FPGA. This is done through the
use of the power-based channel. The source FPGA, here the
phantom circuit, uses RO-based stressors to generate large
voltage drop when transmitting a 1, and it stays idle (no
voltage drops) when transmitting a 0. On the receiving end,
the measurements on the sink FPGA are taken where counters
record the oscillation count values of the sensor ROs [11]. For
example, we take 500 RO measurements for each transmission
of a single bit. The RO sensor uses the relative RO counts to
differentiate between a 1 and 0 bit transmission. The relative
RO counts of a 1 are usually lower than that of a 0 [5].
By using the relative RO counts, we can recover the original
transmitted information.

2) CPU to FPGA Side Channel: We also explore use of
CPU for side channel. We evaluate a side channel using CPU
transmissions as a source, where heavy CPU loads replace

the power draw of the FPGA source. Specifically, we use the
open-source stress [15] program, which can be obtained
through Debian-based Linux distribution package managers.
By altering the number of threads that the stress program uses,
we can examine the impact on the transmission from the CPU.

3) GPU to FPGA Side Channel: As another comparison,
we also explore use of GPU for side channel. To evaluate the
side channel using GPU transmissions as a source, we follow a
process similar to that used for CPU transmissions. We utilize
the open-source gpu_burn [16] program to stress the GPUs,
fully utilizing their cores through Nvidia’s CUDA platform.
We compile and execute the gpu_burn program with the
Nvidia drivers and CUDA versions mentioned in Section V-B.

B. Hardware Used

Our experiments were conducted using Xilinx Artix 7
AC701 boards and Kintex 7 KC705 boards which contain
28nm chips that are comparable, but have different optimiza-
tions [17]. While the Kintex 7 offers higher performance, the
Artix 7 is designed for low power consumption [18]. Both
FPGAs are equipped with a 200MHz oscillator and operate at
a core VCCINT voltage of 1.0V. However, they use different
regulators to convert the 12V PSU output to 1.0V [19] [20].

The computer used in our experiments comprises of 2 Xeon
E5645 CPUs each with 6 cores and 12 threads running at
2.4GHz thus providing a total of 24 threads. There is also
an Nvidia GeForce ZOTAC GT 430 GPU present in the
system with a 1GB GDDR3 GPU memory comprising of 96
CUDA cores running at 0.7GHz. The GPU utilizes a Fermi
Kepler architecture build on a 40nm process technology. The
driver version used was Driver Version 390.157 while the
CUDA Version was 8.0.61. Finally, the compile flag used was
compute_20. For the shared power supply unit, we used
a Corsair PSU with a load rating of 850W that has a Gold
Certification that assures 90% efficiency at 50% load.

C. Self-Clocking with RO Setup

Since the phantom circuits use the output of a RO as a clock,
the output of the RO is passed into the Xilinx Clocking Wizard
v6.0 LogiCORE IP [14]. This logic core has the selection
of MMCM primitive which was selected in our design to
give a stable output clock frequency. Options to minimize the
output jitter on the MMCM as well as using a clock safe
start up control were selected when designing the primitive.
Minimizing the output jitter minimizes the jitter on the output
clocks, but at the expense of power and possibly output clock
phase error. The Safe Clock Startup feature enables a stable
and valid clock at the output [14]. From our experiments, the
frequency of the RO was about 434MHz which served as the
input frequency to the MMCM. The output frequency was set
to 200MHz, similar to that of the native FPGA board clock.

VI. EXPERIMENTAL RESULTS

In this section, we present the evaluation results.

2¹ 2² 2²¹ 2²² 2²³ 2²
Delay Cycles

83

84

85

86

87

88

89

90

Ac
cu

ra
cy

 (%
)

Long Wire Length:

6
5

Fig. 6: Long wire accuracy varying the delay cycles transmission of
long wire lengths of 5 and 6.

A. Long-wire Leakage Analysis

First, the phantom circuits uses long-wire crosstalk to obtain
side-channel information from the victim. We assume that
the victim and attacker long-wires can be placed next to
each other.

For the long-wire crosstalk, two different lengths of long
wires of length 5 and 6 were evaluated. We varied the delay
cycles of each of these long wires. The delay cycles is the
number of the RO oscillations on the receiving or sensing
wire. From Figure 6, it can be seen as we increase the delay
cycles the accuracy increases steadily and falls after 221 cycles
for a long wire of length 6 while for the long wire of length
5 the accuracy increases steadily until 222 delay cycles are
reached. For 221 cycles and a long wire length of 6, the best
accuracy of about 91% is obtained. The accuracy is computed
based on the transmission of random 32 bit numbers across
the long-wire crosstalk.

B. Cross-FPGA Channel Analysis

Based on the long-wire crosstalk results, we assume that the
attacker is able to find long wires of sufficient length to leak
the information from the victim. Once information is leaked,
the attacker, i.e. phantom circuit, can use RO stressors on
source FPGA and RO sensors on sink FPGA for the cross-
FPGA portion of the leakage.

To test the cross-FPGA transmission, we altered the number
of enabled transmitters on different types of source FPGAs.
The AC701-011 has a maximum of 10 enabled transmitters
while the KC705-02 has a maximum of 14. We observe
in Figure 7 that when the KC705-02 serves as a sink, we
achieve the highest accuracy with just 3 enabled transmitters
on the source and for any additional transmitter, the accuracy
remains the same. However, when the AC701-01 acts as a
sink, the highest accuracy is achieved with about 10 enabled
transmitters. The accuracy is computed based on transmission
of random 32 bit numbers from the source to the sink FPGA.

1The suffix -01, -02, etc. is used to distinguish different FPGA boards of
the same kind, for example AC701-01 and AC701-02 are two different AC701
boards available in our server.

0 2 4 6 8 10 12 14
Number of Enabled Transmitters

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Source FPGA: KC705-02
Sink FPGA:

AC701-01

Source FPGA: AC701-01
Sink FPGA:

KC705-02

Fig. 7: Increasing the number of simultaneously enabled transmitters
on the source FPGA board increases the accuracy of the cross-FPGA
channel using ROs.

2¹ 2¹² 2¹ 2¹ 2²¹ 2²³
Number of Cycles

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Source FPGA: KC705-02
Sink FPGA:

AC701-01

Source FPGA: AC701-01
Sink FPGA:

KC705-02

Fig. 8: Varying the number of cycles on the sink FPGA with 10
(when KC705 is the sink) and 14 (when AC701 is the sink) enabled
transmitters respectively on the source FPGA.

Figure 8 also demonstrates that when the AC701-01 acts
as a sink we achieve the highest accuracy with just 215

cycles while when the KC705-02 acts as a sink the highest
accuracy is achieved with 221 cycles. The delay cycle for each
FPGA is the number of cycles for how long we enable and
disable the stressor ROs in the sink FPGA. The ranges were
chosen experimentally which gives the best accuracy for the
covert channel.

C. CPU and GPU Shared PSU Side Channels

As discussed before, we have also explored use of CPU
and GPU with the shared PSU. The goal is to analyze if these
could be used for side channels as well; and later we use CPU
and GPU as sources of noise used in possible defenses.

1) CPU to FPGA Side Channel: To analyze use of CPU
as information sender, we altered the number of CPU threads
utilized by a stress program from 0, which equates to random
measurements and no transmissions, to the maximum number
of threads which were available on the computer. Specifically,
we conducted the experiment on the CPU connected to PSU,
which has a maximum capacity of 24 threads. We can observe
in Figure 9 for both sink FPGAs as we increase the number

0 5 10 15 20 25
Number of CPU Threads

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Sink FPGA:
AC701-01

Sink FPGA:
KC705-02

Fig. 9: Increasing the number of CPU threads increases the
accuracy of the covert channel using ROs on the FPGA boards.

of threads, the accuracy increases. The maximum accuracy is
reached and then drops after 16 threads on average.

2) GPU to FPGA Side Channel: To analyze use of GPU
as information sender, the GPU was used as the transmitter
while the KC705-02 and AC701-01 FPGA boards were used as
receivers. We take 1500 measurements while using each FPGA
as a receiver. While using the AC701-01 as a receiver, we
observed the highest accuracy of 75% while with the KC705-
02 we observed an accuracy of 100%. This highlights that the
Kintex boards serve as better sink FPGAs while using GPUs.

VII. END-TO-END DEMONSTRATION OF PHANTOM
CIRCUIT OPERATION

To demonstrate complete phantom circuit operation, first,
the phantom circuit is placed next to a simulated victim circuit.
The long-wire crosstalk is used to receive a 256 bit Advanced
Encryption Standard (AES) key. Previous work has shown
crosstalk being used to leak AES keys [1]. Next, the received
AES key is stored inside an internal register in the phantom
circuit. Then, the RO stressors are activated. Each received
bit is Manchester encoded into two bits. The RO stressors are
turned on if the bit of Manchester encoding is 1, and remain
idle if bit of Manchester encoding is 0. Following Figure 7
we use 10 and 14 transmitters when AC701 and KC705 are
the transmitters, respectively. While the RO stressors on the
source FPGA are activated, RO sensors on the sink FPGA are
activated as well. Following Figure 8 we set the number of
cycles per bit transmitted on the the KC705-02 board (sink
FPGA) to be 221 cycles. Note that all source and sink FPGAs
as well as RO clock used for phantom circuits are set to
be 200MHz.

A. Information Leakage Accuracy

In this section we report the combined accuracy of the
phantom circuit. The phantom circuit on the AC701-01 acts
as the source FPGA which leaks the transmitted information
while the KC701-02 acts as the sink FPGA. The phantom
circuits first leak a random 256 bit AES key locally through
long-wire crosstalk, which in turn is sent to the sink FPGA
through the cross-FPGA power covert channel. As seen in

No
 Interf

GPU
 Interf

2 CPU
 Interf

4 CPU
 Interf

6 CPU
 Interf

12 CPU
 Interf

18 CPU
 Interf

24 CPU
 Interf

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Crosstalk
 Accuracy
Power Side-channel
 Accuracy
Power Side-channel
 Overall Accuracy

Fig. 10: Combined phantom circuit information leakage accuracy
for random 256-bit AES key. Left side shows “No Interf” which
means no interference or no defense. Other bars show accuracy when
our different proposed defenses are used, defenses are discussed in
Section VIII. In the lables, “Interf” means interference.

Long-wire
Crosstalk
(bit/s)

Power
Channel:
Source AC701,
Sink KC705
(bit/s)

Power
Channel:
Source
KC705, Sink
AC701 (bit/s)

≤ 47.68 ≤ 0.1 ≤ 6.1
(channel error
∼ 10%)

(channel error
∼ 0%)

(channel error
∼ 0%)

TABLE I: Bandwidth for the long-wire crosstalk and different types
of covert channel.

Figure 10, we achieve a cross-talk accuracy of about 90%,
100% for the power-side channel and finally about 90%
for the overall accuracy with no interference. The effect of
interference will be explained in Section VIII.

B. Bandwidth Analysis

As discussed before, we employ the use of the Manchester
encoding for cross-FPGA transmission. With Manchester en-
coding, a 1-bit is encoded as a one followed by a zero indicat-
ing that the transmitters are enabled during one measurement
period and then disabled during the consecutive period. This
method however reduces the bandwidth by half but it allows
us to distinguish between two consecutive measurements.

1) Long-wire Crosstalk Bandwidth Analysis: The band-
width bt of the long wire crosstalk is calculated as follows:

bc =
fc

2 · 2t

fc represents the clock frequency and 2t is the measurement
period. Recall from Section V-C that the frequency of the
FPGA board is 200MHz. We can see that 221 cycles give
the highest accuracy from Figure 6. The factor of 2 is used
because we send two bits as a result of Manchester encoding.
From Table I we observe 47.68 bit/s as the maximum value
for bandwidth with nearly 10% channel error.

0 10 20 30 40 50 60
Bit Number

1.08

1.10

1.12

1.14

1.16

1.18
Vo

lta
ge

 (V
)

Voltage:
in4 Voltage

Fig. 11: CPU in4 voltage from server when no shared power supply
unit covert transmission is occurring.

2) Shared PSU Channel Bandwidth Analysis: The band-
width bt of the Power Covert Channel is calculated as follows:

bp =
fc

2 · 2t ·M
M represents the number of RO measurements taken in a
single cycle. Recall from Section V that we take 500 RO
measurements. In addition, we can see that 215 and 221 cycles
result in the highest accuracy from Figure 8 when the AC701
and KC701 act as sinks respectively. Table I shows that with
the AC701 acting as a sink, we observe 6.1 bit/s as the
maximum value for bandwidth with nearly 0% channel error.
With the KC705 acting as a sink, we observe 0.1 bit/s as
maximum value for bandwidth with nearly 0% channel error.

3) Overall Bandwidth Analysis: The overall bandwidth is
the minimum of the long-wire crosstalk bandwidth and the
power covert channel bandwidth. This is given by:

min(
fc

2 · 2t
,

fc

2 · 2t ·M
)

In Table I we observe 47.68 bit/s as the maximum value for
bandwidth with nearly 10% channel error, however, the overall
bandwidth is limited by the shared power channel.

VIII. DEFENDING AGAINST PHANTOM CIRCUITS AND
INFORMATION LEAKS

Having demonstrated the novel phantom circuits and ability
to extend long-wire crosstalk information to cross-FPGA infor-
mation leakage, we now propose defenses. Our defenses also
apply to prior shared power supply unit covert channels [11].
Long-wire crosstalk can be simply defended by preventing
placement of the Trojan next to victim circuit. While not as
trivial to realize in practice, the long-wire crosstalk defense is
not discussed further in this work, and we focus on the more
novel defense for the share power supply unit covert channels.

A. Active Monitoring of Voltages

This paper provides the first active monitoring method for
defending attacks that leverage shared power supply units. The
voltage data from the CPU or the motherboard is one method

0 10 20 30 40 50 60
Bit Number

1.136

1.137

1.138

1.139

1.140

1.141

1.142

1.143

1.144

Vo
lta

ge
 (V

)

Voltage:
in4 Voltage

Fig. 12: CPU in4 voltage from server when shared power supply
unit covert AC701 to KC705 leakage transmission is occurring.

that could be used to detect when an attack is happening.
We utilize the open-source lm-sensors [7] program to
collect the voltages from the system. The voltage information
is collected at a rate of 10Hz. Figure 11 shows the voltage
data in its idle state when there is no transmission between
the source and sink FPGA. Since the system is idle, we expect
the voltage to be stable. However, when a transmission occurs
we see a change in the voltage levels as seen in Figure 12.
One challenge for both the attacker and the defender is the
interference from other activity on the CPU or GPU. The
voltage drop may occur from an attack or the normal execution
of programs on the CPU or GPU. On defense side, this means
that CPU or GPU should be idle during the active monitoring.
On the attacker side, this means that transmission will not
work well when activity is happening on CPU or GPU. We
utilize exactly this approach in our next step of the defense.

B. Information Leakage Disruption

To prevent the leakage of information during the power
covert channel transmission, one defense mechanism would
be to stress the CPU when an attack has been detected.
Figure 10 shows that both the power-side channel and overall
accuracy drop significantly when we stress the CPUs with 4
or more threads.

Another defense mechanism would be to stress the GPU
when an attack has been detected. Figure 10 shows that both
the power-side channel and overall accuracy drop significantly
when we stress the GPU once the attack is detected. The
stressing of the CPU and GPUs are used as a defense once an
attack is detected and not to detect an attack themselves.

IX. RELATED WORK

This section provides an overview of existing work on the
different types of malicious circuits that can be instantiated in
FPGAs, as well as the covert and side-channel attacks without
physical accesses.

A. Malicious FPGA Circuits

The research of malicious circuits, or hardware Trojans,
has seen significant growth in the past few decades, with the
increasing complexity of modern Integrated Circuits (ICs) and
the global collaboration in the semiconductor industry. Modern
ICs usually contain billions of transistors and are fabricated by
semiconductor foundries that collaborate internationally, thus,
the research of malicious circuits is vital to secure the chips
that power the basis of critical infrastructures.

Malicious circuits are the stealthy circuits implemented by
attackers in the chip to accomplish designed attacks or for
information leakage purposes. Traditionally, the field of hard-
ware Trojan research mainly refers to the creation and defense
of additional circuits at the transistor level that enable infor-
mation leakage or damage. In [21], Jain et al. summarized the
different types of hardware Trojans in ICs. Attackers are able
to instantiate combinational, sequential, or analog malicious
circuits in the IC fabrication process and can steal information
or perform function manipulations. A more detailed survey
on the hardware Trojans is provided by Xiao et al. [22], the
authors summarized the hardware Trojan design, countermea-
sures, and threat models. The countermeasures include the
Trojan detection, which aims to verify the fabricated ICs, and
the design-for-trust, which adopts the prevention measures in
the design phase. To compare various Trojan detection works,
Shakya et al. [23] put forward a vulnerability analysis flow
and benchmarks for the hardware Trojan research.

The re-configurable hardware, such as FPGAs, opens up
new opportunities in the malicious circuit research. Besides
the insertion of transistor-level Trojans in the chip fabrication
process, FPGAs allow for the creation of logic components
that cause logical malfunction. For the transistor-level Trojans,
Mal-Sarkar et al. [24] investigated the hardware Trojans that
can be inserted in the FPGA device production process, based
on the diverse activation and payload characteristics. For the
logic-level malicious circuits, Chakraborty et al. [25] proposed
the direct modification on the FPGA configuration bitstream
to insert hardware Trojans. It bypassed the pre-deployment
verification step and could be used to steal information and
cause severe malfunction. For specific hardware accelerators,
Ye et al. [26] demonstrated the feasibility of adding malicious
circuits into FPGA CNN accelerator, where attackers acquired
the privilege to control the CNN classification results.

Our work, meanwhile, presents a new type of self-clocked
malicious circuit that is the phantom circuit. We are also first
to show how intra-FPGA side channels can be extended to
inter-FPGA information leaks.

B. Remote FPGA Attacks

Previous research has explored the remote attacks targeting
FPGAs in numerous aspects, including the covert and side
channels through power, thermal and crosstalk, and degrada-
tion attacks that can damage FPGA itself [27]. This work is
built upon the related research on the crosstalk effects and
resource sharing problem.

In [28]–[30], the authors demonstrated that power and
thermal sensors, like ROs and Time-to-Digital Converters
(TDCs), can be leveraged to construct covert channels and
steal information within cloud-based FPGAs or across cloud-
based FPGAs, but never combining both ideas. Among others,
Ramesh et al. were able to extract bytes of the final round key
of 128-bit AES using a ring oscillator and then recover the
original AES key by inverting the key schedule [1]. Trochatos
et al. showcased thermal covert channels in a SmartSSD
between SSD and FPGA [31]. In [32], Matas et al. presented
the Degradation-of-Service attack on data center FPGAs, that
is, the large energy wasting logic based on ROs could drain
excessive power and cause the FPGA boards to shut down.
Tian et al. showed how cloud FPGA infrastructures can be
mapped by using PCIe contention [33]. Recently, in [34] the
authors demonstrated how co-located FPGA accelerators can
be fingerprinted by using the PCIe information. Giechaskiel et
al. [5] put forward the crosstalk effects between adjacent long
wires and shown the potential usages. Recently, Giechaskiel
et al. [11] demonstrated the covert-channels between different
FPGA devices through a shared power supply unit (PSU). The
crosstalk and power supply sharing problem serve as the basis
of our phantom circuit project.

X. CONCLUSION AND FUTURE WORK

In this paper, we introduced the first self-clocked FPGA cir-
cuit that leaks information through long-wire crosstalk within
an FPGA and then amplifies it for cross-FPGA transmission.
First, the sensitive information is leaked via a long-wire side-
channel to the attacker’s phantom circuit. This circuit can
be inserted as a Trojan in case of single-tenant cloud-based
FPGAs, or it could be a separate, malicious tenant in case
of multi-tenant cloud-based FPGAs. Second, the information
leaked within the source FPGA is transmitted to the sink
FPGA where receiver circuit can decode it. On the sender’s
side, the proposed phantom circuits are completely isolated
from the rest of the FPGA. They require no explicit inputs
and outputs, not even a clock. We further demonstrated that
phantom circuit can leak sensitive information with an ac-
curacy of about 90%. As a defense, we analyzed how CPU
and motherboard voltage sensor data can be used to detect the
shared power supply transmission in our setup. After detection,
the transmission can be disturbed by running CPU or GPU
stressors. Future work can explore in-depth defense mecha-
nism, motivated by our threat model and demonstration. E.g.,
future work can explore the use of other FPGAs within cloud
server for generation of noise on the shared power supply
unit for attack prevention. Alternatively, servers with separate
power supplies for the different FPGAs can be analyzed.

ACKNOWLEDGEMENTS

We would like to thank Ilias Giechaskiel for his discussions
and contributions to early versions of the code and paper. This
work was supported in part by National Science Foundation
grants 2245344 and 1901901.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2245344
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901901

REFERENCES

[1] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, “Fpga side channel attacks without physical
access,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 45–52, 2018.

[2] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on fpgas,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1111–
1116, 2018.

[3] J. J. L. Franco, E. Boemo, E. Castillo, and L. Parrilla, “Ring oscillators
as thermal sensors in fpgas: Experiments in low voltage,” in 2010 VI
Southern Programmable Logic Conference (SPL), pp. 133–137, 2010.

[4] S. R. Sahoo, S. Kumar, and K. Mahapatra, “A novel ropuf for hardware
security,” in 2015 19th International Symposium on VLSI Design and
Test, pp. 1–2, 2015.

[5] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Infor-
mation leakage and covert communication between fpga long wires,”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 15–27, 2018.

[6] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale
+ fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 13, sep 2020.

[7] “Lm-sensors package.” https://github.com/lm-sensors/lm-sensors.
[8] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire

leakage with ring oscillators in cloud fpgas,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
pp. 45–50, 2019.

[9] Y. Luo, S. Duan, and X. Xu, “Fpgapro: A defense framework against
crosstalk-induced secret leakage in fpga,” ACM Trans. Des. Autom.
Electron. Syst., vol. 27, nov 2021.

[10] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Reading between the dies:
Cross-slr covert channels on multi-tenant cloud fpgas,” in 2019 IEEE
37th International Conference on Computer Design (ICCD), pp. 1–10,
2019.

[11] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3apsule: Cross-fpga
covert-channel attacks through power supply unit leakage,” in 2020 IEEE
Symposium on Security and Privacy (SP), pp. 1728–1741, IEEE, 2020.

[12] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud fpga cartography
using pcie contention,” in Proceedings of the International Symposium
on Field-Programmable Custom Computing Machines, FCCM, May
2021.

[13] J. Lamoureux and S. J. E. Wilton, “Fpga clock network architecture:
Flexibility vs. area and power,” in Proceedings of the 2006 ACM/SIGDA
14th International Symposium on Field Programmable Gate Arrays,
FPGA ’06, (New York, NY, USA), p. 101–108, Association for Com-
puting Machinery, 2006.

[14] “Clocking wizard v6.0 logicore ip.” https://docs.xilinx.com/r/en-US/
pg065-clk-wiz/Clocking-Wizard-v6.0-LogiCORE-IP-Product-Guide.

[15] “Linux stress test.” https://linux.die.net/man/1/stress/.
[16] V. Timonen, “Multi-gpu cuda stress test.” https://github.com/wilicc/

gpu-burn.
[17] “Xilinx, inc., “7 series fpgas data sheet: Overview (ds180)”.”

https://www.xilinx.com/support/documentation/data sheets/ds180
7Series Overview.pdf.

[18] “Xilinx, inc., “7 series product brief.” https://www.xilinx.com/
publications/prod mktg/7-Series-Product-Brief.pdf.

[19] “Ac701 evaluation board for the artix-7 fpga (ug952).”
https://www.xilinx.com/support/documentation/boards and kits/ac701/
ug952-ac701-a7-eval-bd.pdf.

[20] “Kc705 evaluation board for the kintex-7 fpga (ug810).”
https://www.xilinx.com/support/documentation/boards and kits/kc705/
ug810 KC705 Eval Bd.pdf.

[21] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for
hardware trojan detection,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2021.

[22] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, pp. 1–23, 2016.

[23] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, pp. 85–102, 2017.

[24] S. Mal-Sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware trojan
attacks in fpga devices: threat analysis and effective counter measures,”
in Proceedings of the 24th Edition of the Great Lakes Symposium on
VLSI, pp. 287–292, 2014.

[25] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware
trojan insertion by direct modification of fpga configuration bitstream,”
IEEE Design & Test, vol. 30, no. 2, pp. 45–54, 2013.

[26] J. Ye, Y. Hu, and X. Li, “Hardware trojan in fpga cnn accelerator,” in
2018 IEEE 27th Asian Test Symposium (ATS), pp. 68–73, IEEE, 2018.

[27] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud fpgas:
A survey,” arXiv preprint arXiv:2005.04867, 2020.

[28] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote
power side-channel attacks on bnn accelerators in fpgas,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1639–1644, IEEE, 2021.

[29] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud fpgas,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 298–303, 2019.

[30] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and J. Sze-
fer, “Remote power attacks on the versatile tensor accelerator in multi-
tenant fpgas,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 242–
246, IEEE, 2021.

[31] T. Trochatos, A. Etim, and J. Szefer, “Covert-channels in fpga-enabled
smartssds,” ACM Trans. Reconfigurable Technol. Syst., dec 2023. Just
Accepted.

[32] K. Matas, T. La, N. Grunchevski, K. Pham, and D. Koch, “Invited
tutorial: Fpga hardware security for datacenters and beyond,” in Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 11–20, 2020.

[33] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud fpga cartography
using pcie contention,” in 2021 IEEE 29th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
pp. 224–232, 2021.

[34] C. Fang, N. Miao, H. Wang, J. Zhou, T. Sheaves, J. M. Emmert,
A. Sasan, and H. Homayoun, “Gotcha! i know what you are doing
on the fpga cloud: Fingerprinting co-located cloud fpga accelerators via
measuring communication links,” 2023.

https://github.com/lm-sensors/lm-sensors
https://docs.xilinx.com/r/en-US/pg065-clk-wiz/Clocking-Wizard-v6.0-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg065-clk-wiz/Clocking-Wizard-v6.0-LogiCORE-IP-Product-Guide
https://linux.die.net/man/1/stress/
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
https://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ac701/ug952-ac701-a7-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ac701/ug952-ac701-a7-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf

	Introduction
	Contributions

	Background
	Long-wire Crosstalk
	Cross-FPGA Information Leakage

	Threat Model
	Phantom Circuits
	Stealing Information Through Crosstalk
	Inter-FPGA Transmission of Information
	Design of Stealthy Phantom Circuits with Self-Clocked Circuits using ROs

	Experimental Procedure
	Side Channel Types Evaluated
	Main Phantom Circuits Side Channel: FPGA to FPGA
	CPU to FPGA Side Channel
	GPU to FPGA Side Channel

	Hardware Used
	Self-Clocking with RO Setup

	Experimental Results
	Long-wire Leakage Analysis
	Cross-FPGA Channel Analysis
	CPU and GPU Shared PSU Side Channels
	CPU to FPGA Side Channel
	GPU to FPGA Side Channel

	End-to-End Demonstration of Phantom Circuit Operation
	Information Leakage Accuracy
	Bandwidth Analysis
	Long-wire Crosstalk Bandwidth Analysis
	Shared PSU Channel Bandwidth Analysis
	Overall Bandwidth Analysis

	Defending Against Phantom Circuits and Information Leaks
	Active Monitoring of Voltages
	Information Leakage Disruption

	Related Work
	Malicious FPGA Circuits
	Remote FPGA Attacks

	Conclusion and Future Work
	References

