
Unified MEDS Accelerator

Sanjay Deshpande1, Yongseok Lee2, Mamuri Nawan3, Kashif Nawaz3,
Ruben Niederhagen4,5, Yunheung Paek2, and Jakub Szefer6

1 CASLAB, DEE, Yale University, New Haven, US, sanjay.deshpande@yale.edu
2 ECE and ISRC, Seoul National University, Seoul, South Korea,

yslee@sor.snu.ac.kr,ypaek@snu.ac.kr
3 CRC, Technology Innovation Institute, Abu Dhabi, UAE,

mamuri@tii.ae, kashif.nawaz@tii.ae
4 IIS, Academia Sinica, Taipei, Taiwan, ruben@polycephaly.org
5 IMADA, University of Southern Denmark, Odense, Denmark

6 Northwestern University, Evanston, US, jakub.szefer@northwestern.edu

Abstract. The Matrix Equivalence Digital Signature (MEDS) scheme,
a code-based candidate in the first round of NIST’s Post-Quantum Cryp-
tography (PQC) standardization process, offers competitively small sig-
nature sizes but incurs high computational costs for signing and verifica-
tion. This work explores how a high-performance FPGA-based hardware
implementation can enhance MEDS performance by leveraging the in-
herent parallelism of its computations, while examining the trade-offs
between performance gains and resource costs. This work in particular
proposes a unified hardware architecture capable of efficiently perform-
ing both signing and verification operations within a single combined
design. The architecture jointly supports all security parameters, includ-
ing the dynamic, run-time handling of different prime fields without the
need to re-configure the FPGA. This work also evaluates the resource
overhead of supporting different prime fields in a single design, which is
relevant not only for MEDS but also for other cryptographic schemes re-
quiring similar flexibility. This work demonstrates that custom hardware
for PQC signature schemes can flexibly support different prime fields
with limited resource overhead. For example, for NIST security Level I,
our implementation achieves signing times of 4.5ms to 65.2ms and ver-
ification times of 4.2ms to 64.5ms utilizing 22k to 72k LUTs and 66 to
273 DSPs depending on design variant and optimization goal.

Keywords: Post-Quantum Cryptography · Digital Signature Algorithm
· Matrix Equivalence Digital Signature (MEDS)

1 Introduction

Matrix Equivalence Digital Signature (MEDS) is a code-based digital signa-
ture scheme based on the hardness assumption of the Matrix Code Equivalence
(MCE) problem. It was submitted to the National Institute of Standards and
Technology (NIST) Post-Quantum Cryptography (PQC) Signature standardiza-
tion process launched in 2023, but it did not advance to the second round due

2 Deshpande et al.

to its comparatively low performance (e.g., according to data from the PQM4
project7, when evaluated in software on an embedded evaluation board, MEDS
is 25×, 244×, 856× slower in key generation, signing, and verification times re-
spectively when compared to NIST standard ML-DSA Dilithium [KKPY24] on
security level I) and the novelty of its security assumptions. Given the importance
of ensuring the practicality of the cryptographic schemes, this paper focuses on
developing a unified high-performance hardware implementation of the MEDS
signing and verification operation. We present a joint design that supports all
security parameter sets, selectable at runtime, and evaluate the overhead of ac-
commodating arithmetic for different finite fields in a single design. Our results
on the overhead generalize well and can be transferred to other schemes with
similar parameter set specifications such as the NIST PQC Signature Round
2 submission CROSS [BBB+24a], which has parameter sets for F127 and F509.
Other related schemes such as LESS [BBB+24b] and PERK [ABB+24] that
currently are using a single small binary field might benefit from investigating
trade-offs of offering parameter sets with different fields.

By addressing the computational challenges associated with MEDS, we aim
to contribute to the broader goal of making post-quantum cryptography viable
for widespread adoption in the face of advancing quantum computing technolo-
gies. To the best of our knowledge, this work presents the first hardware imple-
mentation of MEDS. Our implementation operates in constant time (i.e., there
are no timing variations depending on secret data), though it does not include
additional side-channel protections.

Related Work. Gaussian elimination is an important step in MEDS as well as
many other PQC schemes. Early work [HQR89] used processor arrays as large
as the matrix being processed. The work in [SWM+10] presented one of the first
hardware accelerators for the code-based Niederreiter cryptosystem. The work
used a systolic processor array for performing Gaussian systemization. Later
work on Classic McEliece also used a systemizer similar to [SWM+10] with
smaller processor array. For example, in [WSN16,WSN17] the authors present a
hardware design of a key-generation module for the Niederreiter cryptosystem.
In [CCD+22], the authors implemented a complete design of Classic McEliece
compliant with the specification submitted to NIST standardization process in-
cluding binary field systemizers. We are using a similar systemizer in our work.

Although there are similar computations in regard to matrix systemization
between MEDS and Classic McEliece, compared to Classic McEliece, instead
of working with binary fields, MEDS requires Fq with prime q. As a result, the
latencies (in overall wall-clock time) of finite field operations are larger compared
to when using F2 or a small binary extension filed Fm

q . This difference necessitates
significant design effort for the systemizer design, e.g., a different control logic
and a more complex pipelining process.

Within current NIST standardization process for digital signatures schemes,
in [SMA+24,HSK+23] the authors develop hardware implementations of the

7 https://github.com/mupq/pqm4

https://github.com/mupq/pqm4

Unified MEDS Accelerator 3

MAYO digital signature scheme. In [DHSY24], authors present the first hard-
ware implementation of the SDitH digital signature scheme. [dPRS23] describes
hardware FPGA implementations of the Raccoon digital signature scheme.

In [WJW+19], the authors present several hardware accelerators that work
with a RISC-V core to accelerate the XMSS signature scheme. In [BCH+23], the
authors present hardware implementation of the Oil and Vinegar (OV) signa-
ture scheme. In [TYD+11] authors presented an FPGA-based implementation
of the multivariate-based signature scheme Rainbow. Later, in [FG18] authors
presented high-speed, FPGA-based implementation of Rainbow with updated
parameters for NIST’s first round of PQC standardization process. Both de-
signs are operating on small binary fields using a processor array similar to the
code-based designs discussed above. Among ASIC designs, in [ZZL+23] authors
present a processor designed specifically for PQC algorithms, which can support
schemes such as Saber, Kyber, Dilithium, NTRU, McEliece, and Rainbow. This
design also includes a module for the systemization of matrices over small bi-
nary fields, but instead of a processor array composed of several vector units,
the authors here are using only a single a vector unit.

Hardware architectures for algorithms already being standardized by NIST
include [SAW+23], where the authors implement a hardware design of the FAL-
CON scheme and [LSG21,BNG21] where the authors explore hardware imple-
mentations of CRYSTALS-Dilithium (being standardized under the name “ML-
DSA”). [ALCZ20,Saa24,DLK+25] explores implementations of SPHINCS+ (be-
ing standardized under the name “SLH-DSA”).

We are not aware of any other hardware implementation of MEDS and our
work presents a hardware design of MEDS that provides a competitive perfor-
mance and resource utilization compared hardware implementations of other
signature schemes.

Contributions. This paper introduces the first hardware implementation of the
sign and verify operations for the PQC signature scheme MEDS. Our imple-
mentation combines both operations into a single design sharing most resources
between sign and verify. We further provide joint support of all security param-
eter sets in one single design selectable at runtime.

We aim to address the following research questions:

Q1: Does MEDS provide sufficient inherent parallelism to accelerate the sign and
verify operations to a competitive level? What are the associated resource
costs for achieving such a speed-up?

Q2: To what extent can resources be shared in a combined design for the sign
and verify operations?

Q3: What is the overhead of supporting all security parameters at runtime, par-
ticularly concerning arithmetic in two distinct finite fields?

The source code of our hardware designs is available under an open source
license at https://github.com/caslab-code/pqc-hw-meds.

https://github.com/caslab-code/pqc-hw-meds

4 Deshpande et al.

2 Preliminaries

We first introduce our notation in Section 2.1 and then explain the relevant
details of the MEDS specification in Section 2.2.

2.1 Notation

We are following the notation of the MEDS specification document [CNP+23a]
and denote matrices with bold capital letters, e.g., M, A, and B. We follow
the MEDS specification in denoting submatrices with square brackets, e.g.,
M[a, b; c, d] denotes the submatrix of the intersection of rows a to b and columns
c to d of matrix M [CNP+23a, Section 2.1]. If no row or column range is pro-
vided, all rows or columns are included. Fq is a finite field with q elements. We
define an [m× n, k] matrix rank metric code over Fq as k-dimensional subspace
of Fm×n

q . Here, m and n are the codeword sizes and k the code dimension.
The operation SF(M) returns the systematic form of a matrixM if it exists or

⊥ if not. The operation πA,B(M) with A ∈ Fm×m
q , B ∈ Fn×n

q , and M ∈ Fk×mn
q

first maps each row i ∈ {0, . . . , k − 1} of M to a matrix Pi ∈ Fm×n
q such that

Pi[⌊j/n⌋; j mod n] = M[i, j] for j ∈ {0, . . . ,mn − 1}. It then computes P′
i ∈

Fm×n
q as P′

i = APiB, maps the P′
i back to the rows i of a matrix M′ ∈ Fk×mn

q ,
and finally returns M′ as result.

2.2 MEDS

The MEDS scheme [CNP+23a,CNP+23b] was a submissions to the on-ramp to
the NIST PQC signature standardization process8 but it did not advance to the
second round. It is based on the notion of Matrix Code Equivalence (MCE):

Definition 1 (Matrix Code Equivalence). Let C and D be two [m × n, k]
matrix codes over Fq. We say that C and D are equivalent if there exist two
invertible matrices A ∈ Fm×m

q and B ∈ Fn×n
q such that D = A · C ·B, i.e., for

all C ∈ C, A ·C ·B ∈ D.
This gives rise to the MCE problem:

Problem 1 (Matrix Code Equivalence Problem). Given two k-dimensional matrix
codes C,D ⊂ Fm×n

q , find two invertible matrices A ∈ Fm×m
q , B ∈ Fn×n

q such
that D = A · C ·B.

The MCE problem is at least as hard as the linear code equivalence problem
and as hard as the isomorphism of polynomials problem [BFV13], and as hard
as the alternating trilinear form equivalence problem [GQT21,TDJ+22]. Please
refer to [CNP+23a,CNP+23b] for a concrete security analysis.

MEDS uses the MCE problem to construct a signature scheme from an in-
teractive Σ-protocol using the Fiat-Shamir (FS) transform [FS87] with t rounds
and by applying some tricks to improve signature size and performance, i.e., by
using s matrix codes in the public key, by using challenges with a fixed weight
w, by seeding 0-responses, and by generating these seeds from a seed tree.

8 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

Unified MEDS Accelerator 5

Table 1: MEDS parameter sets.

Level Parameter Set q n m k s t w
pk

(byte)
sig

(byte)

MEDS Parameter Sets [CNP+23a, Table 2]:

Level I MEDS-9923 4093 14 14 14 4 1152 14 9923 9896
Level I MEDS-13220 4093 14 14 14 5 192 20 13 220 12 976

Level III MEDS-41711 4093 22 22 22 4 608 26 41 711 41 080
Level III MEDS-69497 4093 22 22 22 5 160 36 55 604 54 736

Level V MEDS-134180 2039 30 30 30 5 192 52 134 180 132 528
Level V MEDS-167717 2039 30 30 30 6 112 66 167 717 165 464

New Parameter Sets May 2024 (signature bytes with seed tree)9:

Level I 4093 26 25 25 2 144 48 21 595 5456
Level III 4093 35 34 34 2 208 75 55 520 10 786
Level V 4093 45 44 44 2 272103 122 000 21 052

MEDS parameters. Table 1 shows the parameter sets of MEDS from the first
round of the NIST PQC signature scheme standardization. In May 2024, the
MEDS submission team announced new parameter sets in the NIST PQC mail-
ing list9 as reaction to refined attacks [NQT24]. However, they suggest to com-
bine these new parameter sets with signature-size optimization techniques intro-
duced in [CNRS24]. These optimizations require algorithmic changes compared
to the MEDS Round 1 specification document [CNP+23a]. We decided to pro-
vide a hardware implementation that follows the MEDS Round 1 specification
and therefore do not implement the optimization from [CNRS24] since there is
no concrete specification for that MEDS variant and since we are interested in
analyzing the effect of supporting different prime fields in a joint design.

MEDS key generation. To generate a key pair, first chose a random G0 ∈
Fk×mn
q . Then choose random invertible matrices A1, . . . ,As−1 ∈ Fm×m

q and

B1, . . . ,Bs−1 ∈ Fn×n
q . Finally, compute the matrices G1, . . . ,Gs−1 ∈ Fk×mn

q

as Gi = SF(πAi,Bi
(G0)), i ∈ {1, . . . , s − 1}. The public key of MEDS con-

sists of the seed for randomly generating G0 ∈ Fk×mn
q and s − 1 matrices

G1, . . . ,Gs−1 ∈ Fk×mn
q . The secret key of s − 1 pairs of invertible matrices

(A−1
1 ,B−1

1), . . . , (A−1
s−1,B

−1
s−1) ∈ Fm×m

q × Fn×n
q .

MEDS signing. During signing, the signer commits to tmatrices G̃i ∈ Fk×mn
q , i ∈

{0, . . . , t− 1} using t maps of pairs of random invertible matrices (Ã0, B̃0), . . . ,
(Ãt−1, B̃t−1) ∈ Fm×m

q ×Fn×n
q such that G̃i = SF(πÃi,B̃i

(G̃0)), i ∈ {0, . . . , t−1}.
The signer then hashes the G̃i to the commitment hash d and parses d to the

9 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/pbT_DnPrc2A/m/

ZPrIVSmFCQAJ

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/pbT_DnPrc2A/m/ZPrIVSmFCQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/pbT_DnPrc2A/m/ZPrIVSmFCQAJ

6 Deshpande et al.

challenge vector h0, . . . , ht−1 of weight w with hi ∈ {0, s − 1}. The signature
finally is composed by providing d as well as the seeds Ãi and B̃i for all i where
hi = 0 and µi = Ãi ·A−1

hi
and νi = A−1

hi
· B̃i for all i where hi > 0.

MEDS verification. For verification, the verifier parses the challenge vector
h0, . . . , ht−1 from d. The verifier then computes Ĝi ∈ Fk×mn

q , i ∈ {0, . . . , t− 1}
as Ĝi = SF(πµi,νi(Ghi)), where the matrices µi = Ãi and νi = B̃i are regen-

erated from the seed-tree seeds for all i with hi = 0, and µi = Ãi · A−1
hi

and

νi = A−1
hi
· B̃i are parsed from the signature for all i with hi > 0. If the hash of

the Ĝi equals the commitment hash d, the verification is successful.

Cost. The most expensive sub-operations in MEDS are SF with a cost of O(mnk2)
finite field operations for performing Gaussian elimination on a matrix of size
k×mn and π with a cost of O(kmn2+km2n) for performing k matrix products
of sizes Fm×m

q times Fm×n
q times Fn×n

q . Hence, the computational cost of SF and
π is quartic in the security parameters with k ≈ m ≈ n.

For key generation, we need to compute SF and π each only s times, where
s ∈ {4, 5, 6} — but for signing and verification, we need to perform these costly
operations t times with t ∈ {112, 160, 192, 608, 1152}. Therefore, signing and
verification are 18.6 to 288 times more expensive than key generation and hence
benefit the most from hardware acceleration. Since verification performs almost
the same computations as signing with only little difference in the control flow,
we combine both operations in a single design, sharing as many resources between
these operations as possible.

3 Unified MEDS Design

We call our hardware design of MEDS a unified design, since it combines both
the MEDS signing and verification operations into a single design, and it provides
joint support for all parameter sets selectable at runtime, while sharing hardware
resources between both operations and all parameter sets as much as possible.

Algorithm 1 and Algorithm 2 in the Appendix show the signing and verifi-
cation operations in detail [CNP+23a, Algorithms 11 and 12]. The inputs to the
signing operation are the secret key sk and the message msg that needs to be
signed. The inputs to the verify operation are the public key pk and the signed
message to be verified. Comparing the main loop in line 14 to line 22 in Algo-
rithm 1 with the main loop in line 12 to line 27 in Algorithm 2 shows that the
main operations of obtaining invertible matrices, applying the π and SF oper-
ations, and computing a commitment hash are structurally identical. Hence, in
our combined design, resources for performing these computations can be shared
efficiently between the sign and the verify operation with little control overhead.

3.1 Top-down Overview of Our MEDS Hardware Design

Figure 1 shows the operation flow of our combined hardware implementation.
Data flow unique to the sign operation is shown in red and unique to the verify

Unified MEDS Accelerator 7

start

XOF ρ, α SeedTree

ExpandSystMat G0

ParseHash PathToSeedTree

XOF σÃi
, σB̃i ExpandInvMat Ãi/µi ExpandInvMat B̃i/νi π G̃i SF G̃i H(Compress(G̃i))

check d = d′

ParseHash

ÃiA
−1
hi

B−1
hi

B̃i

SeedTreeToPath

done

0 ≤ i ≤ t− 1

hi > 0

0 ≤ i ≤ t− 1

Fig. 1: Overview of the operational flow of our combined sign and verify module,
red lines for sign only, blue lines for verify only.

operation in blue. First, both operations expand G0 from seed σG0
, which is

parsed from sk or pk respectively, using the module ExpandSystMat.

Signature generation starts with the generation of the seed δ of length ℓsec seed

from a randomness source. We assume that the seed δ will be initialized by
a top-level hardware module, e.g., by interfacing to a True Random Number
Generator (TRNG) or by implementing the NIST Known Answer Test (KAT)
Pseudo Random Number Generator (PRNG). The seed δ is then expanded using
the module XOF to the root seed ρ of length ℓtree seed of the seed tree and a salt α
of length ℓsalt. In our hardware design, we accomplish this again using a SHAKE256
module via a XOF wrapper. Then the next step is the seed tree generation using
the root seed ρ and the salt α with the SeedTree module. Verification instead
parses the hash and then generates the partial seed tree from the signature. We
implement this in the modules ParseHash and PathToSeedTree.

For the main loop in sign and verify we need to expand the seeds σi from
the seed tree leaves into seeds σÃi

and σB̃i
and expand these seeds to Ãi and

B̃i (i.e., µi and νi respectively for verify) using a ExpandInvMat module. For
signing, we store each σi in a memory which is later used to recompute σÃi

and

σB̃i
and then expand these seeds to Ãi and B̃i for computation of µi and νi. We

then feed the matrices into a Pi module together with the matrix G0, compute
the systematic form G̃i of the result using the module SF. We pull the absorb-
function of the hash function H into the loop to avoid the need to store all G̃i.
We will describe the implementation of this loop in detail in Section 4.5.

The steps after the main loop are different for sign and verify. For sign, we
also absorb the message msg into the hash state and finalize H to obtain the
challenge vector. Then, to compute the final loop, we recompute σÃi

and σB̃i

using σi, and then expand them to generate Ãi and B̃i for the computation of µi

8 Deshpande et al.

and νi using a matrix-matrix multiplication module. Eventually, we compute the
seed tree path for the signature using SeedTreeToPath. For verify, we only need
to check that d = d′ and set the return value of the module correspondingly.

3.2 Joint Security Parameter Design

One of the main questions we want to investigate in this work is the hardware
overhead of supporting several prime fields for different security parameter sets
selectable at runtime in one joint hardware design. For modules that require
both 11-bit arithmetic in F2039 and 12-bit arithmetic in F4093, we are using an
input signal i_sel_4093 that is pulled high for F4093 and low for F2039. The
bus width for field elements is set to 12 bit for the joint design, with the most
significant bit set to zero when F2039 is being selected. Therefore, the cost for
memory storing field elements is defined by the larger field in the joint design.
A similar design approach of constructing field arithmetic modules capable of
operating over two distinct prime fields was adopted in [AMI+23,MR24], where
the authors integrated CRYSTALS-Kyber (which operates over a 12-bit prime
field polynomial coefficients) and CRYSTALS-Dilithium (which utilizes a 23-
bit prime field polynomial coefficients). In contrast, MEDS features prime fields
that differ by only a single bit, enabling support for multiple fields with minimal
overhead.

If the Verilog code is synthesised for one specific field only, we are fixing
i_sel_4093 to constant 0 or 1 respectively so that the optimization step during
synthesis can remove unnecessary logic automatically. This enables us to get
precised resource estimates for hardware designs supporting only one respective
field and for the joint design with otherwise identical logic.

The remaining security parameters besides the prime field are matrix dimen-
sions n,m, and k, the number s of pkmatrices, as well as t and s for the challenge
vector. All these other parameters mostly affect the upper limit of loops and can
easily be selected using multiplexers at runtime at little resource overhead. We
pre-compute related pre-defined constant values (e.g., counter widths) and pro-
vide them as macros and module parameters during synthesis (and simulation).

4 Implementation

For the description of our implementation of the MEDS signature scheme, we
take a bottom-up approach. The different building blocks and sub-modules are
described in the following including finite field arithmetic, matrix operations,
and the complete sign and verify module.

4.1 Finite Field Arithmetic

As described in specified in Section 2.2, all underlying arithmetic operations
multiplication, addition, and inversion in the MEDS signature scheme are per-
formed in the prime field Fq where q is either the 11-bit prime 2039 = 211 − 9

Unified MEDS Accelerator 9

Table 2: Resource consumption and performance of the Fq arithmetic functions
targeting an Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Operation q Area Memory Cycles Freq. Time Time×Area

(LUT) (DSP) (FF) (BRAM) (cyc.) (MHz) (us)

2 039 27 0 23 — 1 244 0.004 0.110× 103

Addition 4 093 28 0 25 — 1 221 0.005 0.127× 103

both 33 0 25 — 1 201 0.005 0.164× 103

2 039 30 1 40 — 4 361 0.011 0.333× 103

Multiplication 4 093 44 1 41 — 4 357 0.011 0.494× 103

both 46 1 45 — 4 343 0.012 0.536× 103

Inverse

2× parallel

2 039 0 0 1 1.0 1 392 0.003 —

4093 0 0 1 1.5 1 392 0.003 —
both 12 0 1 2.5 1 269 0.004 0.045× 103

or the 12-bit prime 4093 = 212 − 3. We implement these operations as integer
arithmetic modulo the prime q. An overview of the resource consumption and
performance for each module is provided in Table 2.

Modular Multiplication. Since the size of each element in Fq is 11 or 12 bits, we
can use the DSPs available on the target FPGA (AMD Artix 7 xc7a200t-3)
to perform integer multiplication followed by full reduction. Using the DSPs
helps to avoid long critical paths in the FPGA design. For modular reduction
after integer multiplication, we design a specific modular reduction unit target-
ing the q value. As q is in a pseudo-Mersenne form (q = 211 − 9 = 2039 or
q = 212−3 = 4093), we use the folding technique to perform the modular reduc-
tion [HGG07]. As the size of the multiplied output is up to 2⌈log2(q)⌉ bits (i.e.,
22 resp. 24 bits), we take the most-significant ⌈log2(q)⌉ bits (i.e., 11 resp. 12
bits), of the output, multiply them by 2⌈log2(q)⌉− q (i.e., 9 = 1001b or 3 = 11b —
since the binary representation of the factor is sparse, we simple shift-and-add
instead of multiplying), and add this to the least significant ⌈log2(q)⌉ bits (i.e.,
11 resp. 12 bits). As the result of the addition may have more than ⌈log2(q)⌉
bits, we repeat this folding process until all most-significant bits are folded and
until there is no more carry generated from addition after folding. Eventually,
we use a multiplexer at the intermediate folded result r to identify corner cases
r ≥ q and in case we detect one of these cases, we subtract the modulus q from r.

Many computations in the joint design are the same for both fields. The only
difference in the folding reduction step is that for q = 2039 we need to multiply
the top bits by 9 and for q = 4093 by 3, which only requires an additional
multiplexer. Also the final conditional subtraction just requires a multiplexer to
select the prime.

The input-independent latency for our modular multiplication unit for all
variants is four clock cycles. One register is placed after the multiplication unit

10 Deshpande et al.

followed by two registers to pipeline the reduction unit efficiently to reduce the
overall critical path. The output is not registered by default.

Modular Inversion. This operation is mostly required for matrix systemization
(described in detail in Section 4.3). To perform that computation efficiently, we
require low-latency field inversion. To achieve this and since the size of the finite
field Fq with 11 and 12 bits is relatively small, we decided not to use expensive,
high-latency inversion algorithms like the extended Euclidean algorithm, Fer-
mat’s little theorem or Montgomery inversion for our modular inversion module.
Instead, we trade computation for memory and precompute the inverse of all
elements in Fq at synthesis time and store them as look-up table in Block RAM
(BRAM). Hence, we have a input-independent latency of only one clock-cycle
for performing modular inversion. To use the memory resources as efficiently as
possible, we are exploiting the dual-ported interface of the BRAM to perform
two independent inversions in parallel, hence halving the effective resource cost.

The joint design for this operation provides look-up tables for both primes
and some additional logic for selecting the output of the requested field. The
resource requirements are shown on Table 2.

Summary. The resource evaluation in Table 2 demonstrates that hardware sup-
port for multiple fields imposes only a small additional cost, provided the fields
are “related,” meaning they share the same reduction algorithm. Similar works
that support two distinct prime fields [AMI+23,MR24] do not present a fine-
grained analysis of the overhead introduced at the modular arithmetic level due
to dual-field support; instead, they primarily emphasize the associated overhead
at the level of polynomial multiplication units. In our reduction module, when
employing the folding technique, efficient resource sharing can be achieved under
the condition that the primes have a low Hamming distance. Consequently, sup-
porting different prime fields in hardware is not prohibitively resource-intensive
if the fields are selected carefully. This can make using different prime fields a vi-
able design choice for cryptographic primitives when using different fields offers
meaningful benefits, such as reduced signature or ciphertext sizes.

4.2 Matrix Multiplication

Matrix multiplication is one of the most used operations in the MEDS It is
used in the π operation and for computing the µi and νi during signing. Con-
sequently, we take care to design an efficient matrix multiplication unit that
is parameterizable at synthesis time to enable performance trade-offs. As men-
tioned in Section 3.1, matrices in MEDS are specified to be sampled in row-wise
order.

The general task of this module is to compute C = A ·B. Instead of tradi-
tional schoolbook matrix multiplication with limited parallelism, we are using
a vector-based approach similar to standard SIMD techniques in our matrix
multiplication design.

Unified MEDS Accelerator 11

X RE
G

RE
G

RE
G

RE
G

+

+

+

+

|| C
BRAM

Control
Logic

A

B C

Va
ria

bl
e

Sh
ift
er

C'

pmm

X

X

X

(a) matrix multiplication module.

Gi
BRAM

G0 Ai Bi

Control
Logic

Gi

pπpm

Matrix
Multiplication

(b) π module.

Fig. 2: Hardware design of the matrix multiplication and π modules.

Asymptotically more efficient matrix multiplication algorithms, e.g., Strassen
or Coppersmith–Winograd, do not apply to MEDS due to the relatively small
matrix dimensions. Additionally, techniques such as the trick by Arlazarov,
Dinic, Kronrod, and Faradžev [ADKF70], which are not asymptotically faster
and are most effective for small fields when the matrix dimension exceeds the
field size (e.g., GF(16) with matrix dimension up to 133 in [BCC+24]), are also
not applicable in the context of MEDS due to the relatively large fields F2039

and F4093 and small matrix dimension of up to 30.
This approach allows us to take advantage of the pipelining of the Fq mul-

tiplier and also allows us to perform single-element additions in each iteration.
This design also allows us to stream the inputs to the multiplication unit and to
make best use of all pipelining registers. The latency lmm of our matrix multi-
plication unit can be computed from the matrix dimensions d1, d2, and d3, the
number of pipeline stages lmmpipe, and the performance parameter pmm (i.e., the
column-block width) as lmm = lmmpipe +

d1·d2·d3

pmm
.

Performance and resource demands for the different parameter sets and de-
sign variants are shown in Table 3. Since the arithmetic latencies of the field-
specific variants and the joint design are identical, the number of cycles depends
only on the matrix dimensions d1, d2, and d3 as well as the degree of paralleliza-
tion pmm. The maximum frequency is in about the same range for all cases with
about 10% variance. The joint design, however, requires more computational
logic resources for the joint field arithmetic (see Section 4.1) and for supporting
different matrix dimensions in the same design.

4.3 Matrix Systemization

Our hardware design for matrix systemization follows the state-of-the art such as
[SWM+10,WSN16,WSN17,CCD+22,ZZC+23,BCH+23]: We are using a proces-
sor array of a quadratic shape that processes column-blocks of the input matrix
in several rounds consisting of several steps. For a detailed description of the
operation of the systemizer, we refer to [CCD+22, Section 3].

12 Deshpande et al.

Table 3: Comparison of the time and area for our Matrix Multiplication module
targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources

d1, d2, d3 pmm q Area Memory Cycles Freq. Time Time×Area
(LUT) (DSP) (FF) (BRAM) (cyc.) (MHz) (us)

Parameter-set specific designs:

14, 14, 14 2 4 093 279 2 197 0.5 1 380 218 6.34 2× 103

22, 22, 22 2 4 093 294 2 206 0.5 5 332 218 24.50 7× 103

30, 30, 30 2 2 039 298 2 206 0.5 13 508 195 69.20 21× 103

14, 14, 14 4 4 093 383 4 317 1.0 792 218 3.64 1× 103

22, 22, 22 4 4 093 396 4 332 1.0 2 912 218 13.38 5× 103

30, 30, 30 4 2 039 387 4 320 1.0 7 208 218 33.11 13× 103

14, 14, 14 8 4 093 598 8 565 1.5 400 218 1.84 1× 103

22, 22, 22 8 4 093 625 8 580 1.5 1 460 199 7.32 5× 103

30, 30, 30 8 2 039 606 8 556 1.5 3 608 199 18.09 11× 103

Joint designs:

14, 14, 14 1 380 6.93 2× 103

22, 22, 22 2 both 335 2 220 0.5 5 332 199 26.79 9× 103

30, 30, 30 13 508 67.88 23× 103

14, 14, 14 792 3.65 2× 103

22, 22, 22 4 both 460 4 348 1.0 2 912 217 13.42 6× 103

30, 30, 30 7 208 33.23 15× 103

14, 14, 14 400 2.04 2× 103

22, 22, 22 8 both 753 8 612 1.5 1 460 196 7.43 6× 103

30, 30, 30 3 608 18.36 14× 103

The design in [BCH+23] combines matrix systemization and matrix mul-
tiplication in one design with the goal to share resources between these two
operations. However, we are using a pipelined overall design to increase signing
and verification performance and hence we need individual modules for matrix
systemization and multiplication. Due to the pipelined overall design, all mod-
ules are under load most of the time (as shown in Table 7) and resources are in
use in parallel — and hence do not need to be shared to achieve efficiency.

The design in [ZZC+23] reduces memory cost by streaming out parts of the
systemized matrix as complete columns become available during computation
without storing the entire matrix on-chip. This optimization does not apply to
MEDS (except if external memory is used), since the large k × nm matrices G̃i

and Ĝi need to be fed row-wise into the hash function.

In contrast to earlier designs aiming at the systemization of matrices over F2

as they appear, e.g., in binary codes used for the code-based McEliece cryptosys-
tem [SWM+10,WSN16,CCD+22] or matrices over binary fields as used, e.g., in
code-based [WSN17] as well as multivariate cryptosystems [FG18,BCH+23], we
are dealing with matrices over medium-sized prime fields, which means that
we are dealing with a longer arithmetic latency: while binary field arithmetic

Unified MEDS Accelerator 13

Table 4: Comparison of the time and area for our Systemizer module targeting
Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Matrix Size pmm q Area Memory Cycles Freq. Time Time×Area
rows×cols (LUT) (DSP) (FF) (BRAM) (cyc.) (MHz) (us)

Parameter-set specific designs:

14× 196 2 4 093 943 6 1 076 1.5 9 345 185 50.52 48× 103

22× 484 2 4 093 1 067 6 1 334 1.5 57 393 177 324.21 346× 103

30× 900 2 2 039 1 178 6 1 511 1.0 199 393 199 1 002.15 1 181× 103

14× 196 4 4 093 2 172 20 2 670 3.0 2 718 177 15.39 33× 103

22× 484 4 4 093 2 288 20 3 155 3.0 15 702 183 85.94 197× 103

30× 900 4 2 039 2 388 20 3 408 2.0 53 222 173 308.32 736× 103

14× 196 8 4 093 6 442 72 7 030 7.5 794 193 4.12 27× 103

22× 484 8 4 093 6 645 72 8 192 7.5 4 069 166 24.54 163× 103

30× 900 8 2 039 6 783 72 8 939 5.0 13 490 170 79.24 537× 103

Joint designs:

14× 196 9 345 52.67 67× 103

22× 484 2 both 1 263 6 1 595 2.5 57 393 177 323.47 409× 103

30× 900 199 393 1 123.78 1 419× 103

14× 196 2 718 15.72 44× 103

22× 484 4 both 2 778 20 3 685 5.0 15 702 173 90.82 252× 103

30× 900 53 222 307.84 855× 103

14× 196 794 4.69 39× 103

22× 484 8 both 8 333 72 9 138 10.0 4 069 169 24.04 200× 103

30× 900 13 490 79.71 664× 103

in earlier work has a latency of one cycle, we decided to deal with the larger
arithmetic latency by using several clock cycles for multiplication and addition.
This does not affect the overall process of the systemization, but we need to
take the latencies into consideration to avoid race conditions during the paral-
lel processing of that data. For example, our design needs to wait for different
amounts of overhead cycles between consecutive rounds to wait for data of the
previous round being written back to memory depending on the number of col-
umn blocks that are being processed in between. Depending on the size of the
processor array, the arithmetic latencies add up and we quickly get an over-
all latency of the processor array of dozens of cycles. However, in contrast to
earlier designs [WSN16,WSN17,CCD+22] we do pipeline computation between
consecutive rounds as much as possible.

Similar to [BCH+23], we are not too concerned about systemization failures,
which happen only very rarely for our field sizes: The probability that a random
n×m matrix (m ≥ n) over a finite field Fq has a systematic form is the same as
that of an n×n matrix over Fq being full rank. For large n and q, this probability
is approximately 1− 1

q . Hence, for q = 4093, we have a probability of success for

the SF operation in line 20 of about 99.98% and for q = 2039 of about 99.96%.

14 Deshpande et al.

start

Control
Logic

done

fail

P
iv

o
ti
n
g

C
o
n
d
it
io

n

fl
u
sh

sw
ap

su
b

1 0

SA_row_in

op

1 -1

add[s] sign

T
ru

e

T
ru

e

F
al

se

do_swap

gf_mul

1

SAR

-
q

gf_mul_add gf_mul_add gf_mul_add gf_mul_add

SAR[0] SAR[1] SAR[2] SAR[pmm-1]

SA_row_next

INV
BRAM

data_in

data_out

(a)

(b)

Processor Row 0

Processor Row 1

Processor Row pmm-1

Fig. 3: Systemizer module with psys vector ALUs of width psys.

In other words, we expect a failure to systemize a matrix over Fq roughly every
q attempts — for q = 4093 we expect one failure roughly every 4093 and for
q = 2039 roughly every 2039 systemization attempts. Therefore, we omit some
of the tweaks described in [CCD+22]: As we do not require a mechanism to
detect failure as early as possible but only at the end of systemization, we do not
need store all operations that are generated in pivoting steps in-place in the data
memory for later use. Instead, we can use a relatively small additional memory as
in [WSN16,WSN17,BCH+23] to store the operations only of the current pivoting
step, overwriting those of previous steps. Similar to these designs, we detect
systemization failure at the end of the computation in the final pivoting step.

Figure 3 shows an overview of the systemizer module. We use the performance
parameter psys to specify the number of both rows and columns of the processor
array. The number of columns corresponds to the column-block width of the
corresponding BRAM that stores the matrix data. We are grouping the processor
elements of each row into a vector Arithmetic Logic Units (ALUs) of width psys.

Unified MEDS Accelerator 15

The design operates by feeding matrix data in column blocks row-by-row
into the processor array, one row in each cycle. Once a pivot matrix row reaches
the corresponding processor row, it is stored in registers SAR[i,j]. The pivoting
rows need to be normalized, which requires a scalar inversion and a scalar-vector
multiplication. Later in the process, incoming rows are reduced by the pivoting
row, which requires a scalar multiplication and a subtraction.

Now, as mentioned before, the prime-filed arithmetic operations have a con-
siderable latency. Since processor array operates in a pipelined fashion, the result
of the normalization is already required for the next input. Overcoming the la-
tencies of the normalization would require several buffer stages. Also, we would
like to use only one vector unit computing scalar-vector multiplication and vector
addition, not two for normalization and reduction.

Our solution to this problem is to delay the normalization of pivoting rows
until they are read out of the processor array. This means that a new pivot row
can be stored in SAR[i,j] unmodified and is available without further latency
in the next cycle. For the normalization and reduction we now can use just one
single vector ALU, but we need to prepare the respective inputs at the cost of
several cycles of latency. The vector ALU now always multiplies SAR[i,j] by a
scalar factor either for normalization or for reduction and adds an input vector
to the result which is either all zero for normalization or input matrix data for
reduction. We need one additional scalar-scalar multiplication per processor row
for normalizing the pivot row towards reducing follow-up rows.

The top part of Figure 3 shows the pipelined modules that prepare the in-
puts for and control the behavior of the vector unit and the bottom part shows
the vector unit itself with psys multiply-and-add units. The overall latency of
each processor row is defined by the sequential operation of the top part and
the parallel latency of bottom part as the latencies of one multiplication, one
addition, and one multiply-and-add operation plus some additional latencies to
optimize data paths of control logic.

The performance of our systemizer design is shown in Table 4. The maximum
frequency ranges between 166MHz and 199MHz. The joint design requires the
same number of cycles but its maximum frequency is rather at the low end of
the range.

4.4 Pi Module

The algorithm for the π operation is given in [CNP+23a, Algorithm 7] and was
introduced in Section 2.1. To recap, the πA,B(G) operation for A ∈ Fm×m

q ,

B ∈ Fn×n
q , and G ∈ Fk×mn

q is defined as follows: arrange the rows of matrix G
into a k separatem×nmatrices {P0, ...,Pk−1} and then compute P′

i = A·Pi ·B.
Finally, we get the result as matrix G′ ∈ Fk×mn

q by packing P′
i into row i of G′.

In our implementation of the π operation, we avoid the first step of arranging
the rows of matrix G into k separate m× n matrices. Instead, while generating
matrix G using the ExpandSystMat module, the matrix is already arranged in k
separate BRAM units. Therefore, we can directly perform the A·Pi ·B operation

16 Deshpande et al.

Table 5: Comparison of the time and area for our Pi module targeting Xilinx
Artix 7 (xc7a200t) FPGA for pπmm = 4.

Resources

k,m, n pπpm q Area Memory Cycles Freq. Time Time×Area
(LUT) (DSP) (FF) (BRAM) (cyc.) (MHz) (us)

Parameter-set specific designs:

14, 14, 14 2 4 093 1 329 8 660 2.0 25 474 218 117.03 155.0× 103

22, 22, 22 2 4 093 1 610 8 706 2.0 91 354 218 419.68 675.0× 103

30, 30, 30 2 2 039 1 655 8 688 2.0 223 474 218 1 026.64 1 697.0× 103

14, 14, 14 4 4 093 2 172 16 1 248 4.0 13 588 218 62.42 135.0× 103

22, 22, 22 4 4 093 2 204 16 1 313 4.0 48 724 196 249.17 548.0× 103

30, 30, 30 4 2 039 2 457 16 1 269 4.0 119 188 196 609.53 1 494.0× 103

14, 14, 14 8 4 093 3 350 32 2 438 8.0 6 796 218 31.22 104.0× 103

22, 22, 22 8 4 093 3 526 32 2 536 8.0 24 364 218 111.93 394.0× 103

30, 30, 30 8 2 039 4 028 32 2 437 8.0 59 596 218 273.78 1 101.0× 103

Joint designs:

14, 14, 14 25 474 117.44 197.0× 103

22, 22, 22 2 both 1 891 8 751 2.0 91 354 217 421.14 705.0× 103

30, 30, 30 223 474 1 030.22 1 725.0× 103

14, 14, 14 13 588 62.64 190.0× 103

22, 22, 22 4 both 2 856 16 1 392 4.0 48 724 217 224.62 682.0× 103

30, 30, 30 119 188 549.46 1 668.0× 103

14, 14, 14 6 796 31.33 174.0× 103

22, 22, 22 8 both 4 732 32 2 661 8.0 24 364 217 112.32 623.0× 103

30, 30, 30 59 596 274.74 1 523.0× 103

using our matrix multiplication unit (described in Section 4.2). We first perform
T = A ·P and then P′ = T ·B. Figure 2b shows the design of our π module.

We provide a performance parameter pπpm for the k matrix multiplications
such that we can select number of matrix multiplications to be performed in
parallel (the “pm” strands for parallel matrix multiplications). We control the
number of parallel finite field operations in the matrix multiplication units of the
π operation individually by setting the performance parameter pmm of the matrix
multiplication unit (see Section 4.2) to pπmm for the π operation. This gives us
two different performance parameters for our π design: first, the number pπmm

of prime field ALUs per matrix multiplication and second, the number pπpm
of parallel matrix multiplications. The latency lπ of our π operation is lπ =

k
pπpm

(
2lmmpipe +

mmn+mnn
pπmm

)
with lmm and lmmpipe as defined in Section 4.2.

The synthesis results for our Pi module for different configurations are shown
in Table 5. The maximum frequency is similar for all variants. The larger matrix
dimensions for k,m,m = 30 seem to outweigh the smaller resource requirement
of F2039 arithmetic. The resource overhead of the joint design compared to the
field-specific variants is moderate.

Unified MEDS Accelerator 17

4.5 Signing and Verification

Figure 4 shows the block diagram of the overall hardware design combining
both MEDS sign and verify algorithms detailed in Algorithm 1 and Algorithm 2
respectively by sharing hardware modules between both operations.

In sign, we assume that byte deserialization of the input data for the secret
key sk into the seed σG0 and the matrices A−1

i and B−1
i using the Decompress

module are performed on a higher layer. We also leave the composition of the
signed message msgsig including the serialization of output data µi and νi using
the Compress module to a higher layer and just provide read ports to its com-
ponents as output ports to the design. We also omit the implementation of the
random number generator Randombytes and instead assume that the random
seed δ is provided from a higher level.

Similarly, in verification, we assume that byte deserialization of the input
data for the public key pk into the seed σG0 and deserialization of signed message
msgsig into p, d, α, and msg are performed at a higher layer.

We note that, in our hardware design, the operations XOF, ExpandInvMat,
SeedTree, and PathToSeedTree share the same SHAKE256 module as shown
in Figure 4 but that we use a separate SHAKE256 module that is shared be-
tween ExpandSystMat, ParseHash for the combined Compress and Hash opera-
tion (line 23 in Algorithm 1 and line 28 in Algorithm 2). The reason for this will
be described in the discussion of the loop pipeline later on in this section.

The most expensive operations π and SF are in the main for-loops of the
sign and verify operations i.e., line 14 to line 22 in Algorithm 1 and line 12 to
line 27 in Algorithm 2 respectively. Initially, we had considered to construct a
large finite field vector ALU for the use in both π and SF. However, the required
multiplexing and control logic likely would have been inefficient, complex, error
prone, and hard to maintain. Also, π requires about two times more finite field
multiplications compared to SF but no finite field inversions and the different
matrices that are systemized in SF and ExpandInvMat have different dimensions.
A joint large finite field vector ALU would hence lead to a less fine-grained control
over performance vs. area trade-offs between those operations. Therefore, to
obtain high performance and high efficiency, we decided to implement this loop
in a pipelined fashion with four pipeline stages.

Stage 1: This stage consists of operations involved in lines 15 to 18 of Algo-
rithm 1 and lines 20 to 23 and lines 14 to 18 of Algorithm 2. In signing, first
a leaf seed (σi) concatenated with the salt (α) and the iteration number (i)
is extended into two seeds σÃi

, σB̃i
using the XOF module. Then σÃi

and σB̃i

are used to generate invertible matrices Ãi and B̃i. In our hardware design, we
accomplish the generation of σÃi

and σB̃i
using the SHAKE256 module and the

XOF interface module by selecting the “XOF mode”. The expanded seeds are
stored in sigmaAB BRAM. Then, the ExpandInvMat module uses the seed σÃi

and the XOF interface and SHAKE256 module by selecting the “ExpandInvMat”
mode. This generates data for matrix Ãi and the Systemizer module inside
the ExpandInvMat module is used to check if the matrix is invertible or not.

18 Deshpande et al.

SH
A
K

E2
56

XOF Interface

Mode Controller

1. XOF

2. ExpandInvMat

SeedTree

XOF

ExpandInvMat

pi_AiBi

G0
BRAM

SF_systemizer

sigma
A,B

BRAM

Gi
BRAM

mem copy

Gi_tilde_flat
BRAM

mem copy

SH
A
K

E256

Gi_tilde
BRAM

mem copy

Compress and Hash

Matrix
Multiplication

A
i_

inverse
B
i_

inverse

SeedTree
BRAM

Main
Controller

P
ipeline

C
ontroller

St
ag

e
1

St
ag

e
4

St
ag

e
3

St
ag

e
2

A_tilde
BRAM

B_tilde
BRAM

m
es

sa
ge

_
in

mu
BRAM

nu
BRAM

nu
m

u
alphapa

th
ou

t

For Loop Pipelined

M
em

ory Buffer

sigma
G0

BRAM

delta
BRAMse

ed

ParseHash

d

Sm

S2

S1

i h

mu and nu
computation

ExpandSystMat

S2

Sm

S3

S4

M
em

ory Buffer
M

em
ory Buffer

va
lid

SeedTreeTo
PathTo

SeedTree

Path
BRAM

pa
th in

message_out

XOF Interface

Mode Controller

1. ExpandSystMat

2. XOF

pa
ra

m
et

er
se

t

sig
n

or
ve

rif
y

se
le

ct

Fig. 4: High-level design overview of the MEDS signing operation.

If it is not invertible then, the module draws another matrix from the current
SHAKE256 state and performs another check for invertability of the matrix. This
process is repeated until an invertible matrix is found. Once it is ensured that
the matrix is invertible then B̃i is generated in similar fashion. We note that,
for each iteration i, we store the related σi value in a BRAM inside Stage 1 for
later use in computing µi and νi matrices.

In verification, if the value of hi = 0 then all operations in stage 1 are similar
to signing except here we use σÂi

and σB̂i
and generate invertible matrices µi and

νi. And in the case of hi > 0, we skip the sampling part inside the ExpandInvMat
and instead copy the µi and νi from the input into the BRAM where sampled
µi and νi are stored and check for their invertability. In case the µi or νi are

Unified MEDS Accelerator 19

non-invertible, then a global “systemization fail” signal is generated, which will
trigger “invalid signature” output.

Stage 2: This stage consists of the π operation (i.e., line 19 of Algorithm 1 and
line 24 of Algorithm 2). In signing, this operation involves matrix multiplication
of rows of G0 ∈ Fk×mn

q with matrix Ãi ∈ Fm×m
q and with B̃i ∈ Fn×n

q . As
shown in Figure 4, in our hardware design, this operation is accomplished by
the Pi module using G0 from G0 BRAM and Ãi, B̃i (generated in Stage 1). For
verification, similar operations are performed as for signing except that Ghi, µi,
and νi are being processed in place of G0, Ãi, and B̃i.

Stage 3: This stage consists of operation SF and the checking if the G̃i has
systematic form (i.e., line 20 of Algorithm 1 or line 25 of Algorithm 2). We use a
Systemizer module (described in Section 4.3) to compute the systematic form.
As described in Section 4.3, there is a possibility that the input matrix does
not have a systematic form. We describe how we handle this situation in detail
below. This step is the same for sign and verify with corresponding inputs.

Stage 4: This stage consists of operations for compressing and hashing matrices
G̃i together with the message msg (i.e., line 23 of Algorithm 1). Although the
compress and hash operation are not part of the for loop in the algorithm, in
our hardware design we move the compression and the hash-absorb operation
inside the for loop. This avoids the need to store all G̃i values in the memory,
which would require a significant amount of BRAM storage on the FPGA. For
this, we use a dedicated SHAKE256 module for Stage 4. This SHAKE256 module
digests each G̃i and maintains the hash state. Hence, we only need to store one
G̃i in the memory at a given time. This step is the same for sign and verify.

After finishing all t iterations of the loop, the message input is absorbed into the
state as well and finally we squeeze the hash state to compute the hash value d.

Pipeline Control and Memory Buffering. The pipelined part of our hardware
design is highlighted in blue in Figure 4. The pipelining in our hardware design
varies from the traditional register-based pipelining: Since the data we move from
one stage to another are relatively large matrices, we use BRAMs as buffers be-
tween the pipeline stages. These memory buffers are shown as blush pink blocks
in Figure 4. The MemCopy modules copy the data from the internal memories
of each stage and move the data to the memory buffers, which can then be
consumed in the next stage.

As the workload of each stage is different, the number of clock cycles taken
by each stage is also different. Therefore, to balance the clock cycles taken by
each stage, we introduce the following five performance parameters:

S1: Stage 1 performance parameter that corresponds to the performance param-
eter psys (see Section 4.3) of the matrix systemizer for checking the inverta-

bility of Ãi and B̃i in the sign operation respective µi and νi in verify. S1

controls the number of rows and columns in the processor array used inside
the matrix systemizer.

20 Deshpande et al.

S2: Stage 2 performance parameter that corresponds to the performance param-
eter pπmm (see Section 4.4) of the matrix multiplication unit inside the Pi

module. S2 controls the vector width inside the matrix multiplication unit.
Smat: Stage 2 performance parameter that corresponds to the performance param-

eter pπpm of the Pi module used inside stage 2. Smat controls number of
matrix multiplications performed in parallel.

S3: Stage 3 performance parameter that corresponds to the performance param-
eter psys (see Section 4.3) of the large k×m ·n matrix systemizer used inside

stage 3 for computing the systematic form of G̃i in sign respective Ĝi in
verify. S3 controls the number of rows and columns in the processor array
used inside the matrix systemizer.

S4: Stage 4 performance parameter that corresponds to the shifter width used
inside the compress and hash module. Larger S4 leads to fewer memory
accesses while compressing and hashing the matrices G̃i respective Ĝi.

Choosing suitable performance parameters. Recall that the goal behind choosing
the performance parameters is to balance the pipeline stages so that all the
modules in the pipeline are busy with their respective workloads. Let us look
at the methodology we followed using the example (shown in Table 6) for the
Security Level I parameter sets: Firstly, we fix the value of Smat = 1 and then we
assign all possible values to S1, S2, S3, and S4 based on the MEDS parameters
up to m = n = k = 14 as shown in Table 6. To further lower the latency of stage
2, the Smat parameter can be tweaked. The latencies reported in Table 6 also
include the clock cycles required for buffering data from one stage to another.
Based on these latencies, we chose a value for each S1, S2, S3, and S4 to meet
our optimization goal (performance or resource consumption),

As an example for parameters with moderate resource requirement, we can
select S1 = 1, S2 = 7, S3 = 6, and S4 = 6 (marked in Table 6) such that the
cycles counts are roughly equal. Setting Smat = 4 in this example brings down
the cycle count of stage 2 to about 12 132/4 = 3033 (plus the unaffected overhead
for data movement between the stages).

Based on this method, we propose different configurations for specific pa-
rameter sets as well as for a unified design that aim at balancing the pipeline
stages in all parameter sets as shown in Table 7. We propose two variants of
configurations: 1) a balanced design choice and 2) a high performance design
choice as shown in Table 7. The choice to parameters is not just limited to the
combinations provided in Table 7. Several such parameter combinations can be
constructed based on resources available on the target device. We note that when
selecting the parameters for a unified design, to avoid resource wastage, we limit
the values of parameters based on m, n, and k values of smallest parameter set.

Data flow. To cope with the different ready-times of each stage that results from
the different cycle counts, we resort to a handshake-based control mechanism to
control the flow of data between the stages. After each stage is done with its
computation, it sends a handshake signal to the next stage to indicate that
the output data is ready for consumption and waits for the response from the

Unified MEDS Accelerator 21

Table 6: Latencies of all pipeline stages for the Security Level 1 parameter sets
with performance parameter Smat = 1.

S1 = S2 = S3 = S4 Stage 1 Stage 2 Stage 3 Stage 4

1 3 534 83 364 48 191 16 599
2 1 432 41 812 14 877 8 521
3 1 142 29 926 8 350 5 883
4 1 104 23 990 5 702 4 503
5 1 042 18 054 4 020 3 751
6 1 120 18 054 3 557 3 178
7 980 12 132 2 477 2 782
8 1 032 12 118 2 294 2 522
9 1 084 12 118 2 153 2 484

10 1 136 12 118 2 054 2 371
11 1 188 12 118 1 955 2 652
12 1 240 12 118 1 912 2 197
13 1 292 12 118 1 869 2 137
14 975 6 195 1 643 1 796

Table 7: Configuration table showing selected configurations for
S1, S2, S3, S4, Smat and idle percentages for the different stages for each
configuration. In case of the unified design the idle percentages are average of
different security levels.

Design Choice Parameter Set q
Perf. Metrics Stage-wise Idle %

S1 S2 S3 S4 Smat 1 2 3 4

Balanced

Level I 4093 1 7 6 6 3 3.6% 0.0% 3.4% 6.1%

Level III 4093 1 11 8 9 5 0.5% 1.7% 0.0% 0.5%
Level V 2039 1 10 10 12 5 0.0% 4.4% 2.8% 5.8%

Unified Level I–V both 1 10 10 12 5 3.4% 5.5% 15.4% 15.7%

High Perf.

Level I 4093 2 14 14 14 4 5.7% 3.8% 2.4% 0.0%

Level III 4093 2 11 22 22 8 1.5% 0.3% 0.0% 3.9%
Level V 2039 2 15 14 15 8 0.2% 2.7% 0.6% 0.0%

Unified Level I–V both 2 14 14 14 4 18.4% 1.3% 17.5% 13.9%

next stage. This handshake mechanism is handled by the PipelineController
module shown in Figure 4.

As mentioned above in Stage 3, an additional challenge in the pipeline design
is the handling of possible systemization failures in some iteration i in Stage 3. In
this case, we need to repeat the operations of the previous stages starting again
at iteration i. We flush all the data from Stages 1 and 2, which are working on
data that belongs to iterations i+ 1 and i+ 2, restart Stage 1 from iteration i,
and step by step refill the pipeline. Stage 4 is not affected by this as it is working
on data that belongs to iteration i− 1. The reason we restart from iteration i is
because of the on-the-fly CompressHash operation in Stage 4. The data fed into
the SHAKE256 module has to be in sequential order to produce the correct hash
value. This means that we would need memory buffers after Stage 3 to store
data related to iterations i + 1 and i + 2 and wait until data from iteration i

22 Deshpande et al.

becomes ready to be loaded into module CompressHash. We avoid this expensive
memory buffering by simply restarting the pipeline. As the failure probability
of the systemizer is low (as specified in Section 4.3), the overhead of restarting
the pipeline is marginal. To restart Stage 1 with iteration i, Stage 1 requires to
backup the seed for i, i.e., σi generated in line 16 of Algorithm 1. After Stage
3 has completed successfully, the stored σi is discarded. The logic related to
flushing and restaring is also handled by the PipelineController module.

Other operations. After the loop is finished, the CompressHash module requests
the message msg as data stream from input port message in and the message is
loaded into the SHAKE256 module to compute the hash value d. Following that,
for verification, this d value is compared against the input d value to ensure the
verfication of the signature. Where as for signing, the value d is then loaded
into the ParseHash module shown in Figure 4, which parses the hash value and
generates the vector h. The ParseHash module also captures i values where
hi > 0 while generating t. This is useful for the following computation of µi and
νi. Rather than iterating over all t values, we only iterate over the w indices
where hi > 0. To compute matrices µi and νi, We first generate the matrices Ãi

and B̃i using the σi seeds stored in Stage 1 and by reusing the logic from Stage
1. The reason for regenerating the matrices Ãi and B̃i is to avoid storing the
t - n × n matrices and t - m ×m matrices, which would otherwise consume a
significant amount of BRAM. Therefore, we opted for regenerating the matrices
instead. Then, we reuse the MatMul units of the Pi module. The result is then
stored in BRAMs mu and nu respectively. If the Pi module is configured to use
multiple matrix multiplication units, the MuNuComputation module computes µi

and νi matrices in parallel. In parallel to the computation of µi and νi, the h
vector along with ρ and α are loaded into the SeedTreeToPath module, which
generates the seed path. The µi, νi, p, d, α values finally can be accessed by a top-
level module through the output ports mu, nu, path, d, and alpha respectively
as shown in Figure 4.

5 Evaluation

Table 8 shows the time and area results for our MEDS signing and verification
hardware design for all parameter sets targeting an AMD xc7a200t-3 FPGA.
We note that the maximum clock frequency is limited by two different factors:
1) In case of MEDS-9923, the critical path lies inside the duplicate detection
logic inside the ParseHash module. We use a bit-vector mapping technique to
perform the duplicate detection and since the value t is large in case of MEDS-
9923, the fully combinatorial variable shifter and comparator is quite large. 2) In
all other cases, the critical path lies inside the sampling unit of XOF interface.

As discussed in Section 4.5, we propose two different design variants for
our implementation: “Balanced” and “High Performance”. The results for these
choices are presented in Table 8. While the high performance design requires
only 4.5ms to 29.5ms for signing and a similar amount of time for verification,

Unified MEDS Accelerator 23

MEDS

Parameter Set

Resources Time Improvment

Area Memory Freq. Sign Verify cyc t T×A

LUT DSP FF BRAM MHz Mcyc ms Mcyc ms

×103 ×103 ×106

Balanced – {S1, S2, S3, S4, Smat } = {1, 7, 6, 6, 3}
MEDS-9923 24.3 66 20.5 112 116 7.5 65 7.4 64 69 4.1 3.1

MEDS-13220 21.6 66 19.5 70 130 1.3 10 1.2 10 68 4.6 0.4

High Performance – {S1, S2, S3, S4, Smat } = {2, 14, 14, 14, 3}
MEDS-9923 46.8 259 44.8 193 115 3.3 29 3.3 29 154 9.3 2.7

MEDS-13220 44.1 259 43.8 151 132 0.6 4 0.6 4 154 10.6 0.4

Balanced – {S1, S2, S3, S4, Smat } = {1, 11, 8, 9, 5}
MEDS-41711 34.0 130 31.2 206 123 9.8 80 9.5 78 151 9.8 5.3

MEDS-69497 33.1 130 30.7 187 125 2.9 23 2.5 20 141 9.2 1.4

High Performance – {S1, S2, S3, S4, Smat } = {2, 11, 22, 22, 8}
MEDS-41711 80.5 601 91.0 205 129 6.1 47 5.9 46 242 16.4 7.6

MEDS-69497 79.6 601 90.5 186 129 1.8 14 1.5 12 227 15.4 2.1

Balanced – {S1, S2, S3, S4, Smat } = {1, 10, 10, 12, 5}
MEDS-134180 38.3 163 39.5 285 130 11.2 87 9.0 70 160 10.9 5.9

MEDS-167717 38.0 163 39.4 328 133 8.1 61 5.3 40 141 9.8 3.9

High Performance – {S1, S2, S3, S4, Smat } = {2, 15, 14, 15, 8}
MEDS-134180 61.5 337 60.9 290 127 5.4 43 4.5 36 322 21.5 4.9

MEDS-167717 60.6 337 60.9 288 131 3.9 29 2.7 21 290 19.9 3.0

Unified Design

Balanced – {S1, S2, S3, S4, Smat } = {1, 10, 10, 12, 5}
MEDS-9923

44.8 163 43.1 344.5 113

5.2 46 5.1 46 100 5.9 4.1

MEDS-13220 0.9 8 0.8 8 98 5.8 0.7
MEDS-41711 13.4 119 13.1 116 110 6.5 10.6

MEDS-69497 3.8 34 3.4 31 105 6.2 2.9

MEDS-134180 11.2 100 9.0 80 160 9.4 8.0
MEDS-167717 8.1 72 5.3 47 141 8.3 5.3

High Performance – {S1, S2, S3, S4, Smat } = {2, 14, 14, 14, 4}
MEDS-9923

72.8 273 63.4 386.5 113

3.3 33 3.3 33 154 8.2 4.2
MEDS-13220 0.5 6 0.5 5 154 8.2 0.7

MEDS-41711 10.2 100 10.1 99 144 7.7 12.9

MEDS-69497 2.7 27 2.6 25 145 7.7 3.3
MEDS-134180 11.1 109 10.7 104 149 7.9 13.7

MEDS-167717 6.7 67 6.2 61 146 7.8 8.2

Reference Software Implementation on an AMD Ryzen 7 PRO 5850U CPU [CNP+23a]

MEDS-9923 — — — — 1900 518.0 273 515.5 271 — — —

MEDS-13220 — — — — 1900 88.9 47 87.4 46 — — —
MEDS-41711 — — — — 1900 1 467.0 772 1 461.9 769 — — —
MEDS-55604 — — — — 1900 387.2 204 380.7 200 — — —

MEDS-134180 — — — — 1900 1 629.8 858 1 612.5 849 — — —
MEDS-167717 — — — — 1900 961.8 506 938.8 494 — — —

Table 8: Performance data for our Sign and Verify modules targeting a Xilinx Artix
7 (xc7a200t) FPGA. Improvements are calculated as T ×A = (tsign + tverify)×LUT

cyc = (Sign+V erify Cycles for Software)
(Sign+V erify Cycles for Hardware) , t =

(Sign+V erify time for Software)
(Sign+V erify time for Hardware) .

24 Deshpande et al.

it also takes up significant resources, mainly in terms of BRAM utilization. We
note that while the storage required for the data remains the same in both the
design choices, due to the wider memory word width in the High Performance
variant, the synthesis tool needs to use multiple BRAM units.

Additionally, for each of the design variants, the design allows further flexi-
bility to be synthesized for a specific parameter set or for a unified design that
allows us to choose any of the six different parameter choices at run-time. While
the unified design does not impact the cycles taken for signing and verification
compared to specific designs, it does have an impact on resource utilization.
However, it can be seen from Table 8 that the resource utilization of the unified
design is close to the utilization of the parameter set specific designs for the
biggest parameter sets (i.e., MEDS-134180 and MEDS-167717).

We note that to the best of our knowledge this is the first and only MEDS
hardware implementation. Therefore, our primary comparison is with the op-
timized software implementation provided along with the MEDS specification
[CNP+23a]. We note that while our design is running at a frequency range of
115MHz to 133MHz, the software implementations results are reported for a
CPU running at a frequency of 1.9GHz. We note that both of our design choices
outperform the optimized software implementation by a significant margin as
shown in Table 8. Our hardware implementation achieves a speed-up of 69× to
322× in sign + verify cycles compared to the software implementation. Similarly,
it achieves a speed-up of 4.1× to 21.5× in sign + verify time, despite operat-
ing at a significantly lower frequency than the processor used in the software
implementation. This answers Research Question Q1 positively, showing that
MEDS algorithms provide inherent parallelism which can be exploited through
hardware implementation to provide substantial speed-up as demonstrated by
our results (in Table 8).

Comparison to Related Work. Table 9 presents a comparison to a number of
other PQC signature schemes that have been presented in literature. We are
unaware of other MEDS hardware implementations, so no other MEDS works
are included in the table. Many works present data for the same XC7A100T
FPGA that we use and they generally report similar frequencies as we. Specific
comparisons with these schemes to our implementation is difficult as different
schemes are based on different mathematical problems. Further, some related
works use high-end FPGAs, which generally give much better performance.

Compared to the hardware (co-)designs of some other PQC schemes shown
in Table 9, our hardware implementation of MEDS (results shown in Table 8)
makes MEDS a competitive choice when the time area product (T×A) is con-
sidered. Some of the other designs are much more efficient than our implementa-
tion, however this is due to the high computational cost inherent to the MEDS
specification in particular compared to lattice-based schemes. Nevertheless, the
performance of our implementation is comparable to several other PQC schemes
such as SPHINCS+/SLH-DSA, SDitH, and Raccoon. We believe that this shows
that the quality of our implementation is on par with other work in this field.

U
n
ifi
ed

M
E
D
S
A
ccelera

to
r

2
5

Design Algorithm FPGA Freq. Sign Verify Resources T×A
(MHz) (ms) (ms) (LUT/FF/DSP/BR)

[BCH+23] ov-Ip-pkc XC7A200T 100 0.08 0.69 37k/25k/2/81 0.03
[BCH+23] ov-V-pkc+skc XC7A200T 100 28.57 3.93 83k/41k/4/359 2.70

[SMA+24] MAYO 1 Arm/Zynq-7020 100 28.60 — 21k/13k/11/129 0.60
[HSK+23] MAYO 1 Artix-7 75 0.43 0.05 106k/38k/2/45.5 0.05

[DHSY24] SDitH L1 GF256 XC7A200T 164 41.00 52.90 17k/9k/0/164.5 1.60
[DHSY24] SDitH L3 GF251 XC7A200T 164 276.10 183.60 34k/31k/472/521.5 15.63

[dPRS23] Raccoon-128 2 shares RISC-V/XC7A100T 78 30.70 18.40
10k/4k/3/—

0.49
[dPRS23] Raccoon-128 32 shares RISC-V/XC7A100T 78 284.10 17.86 3.02

[WJW+19] XMSS SHA256 h = 10 RISC-V/Cyclone V 145 9.95 5.80 7k/10k/—/145 0.11

[LSG21] Dilithium-III F XC7A100T 145 0.85 0.23 30k/11k/45/21 0.03
[BNG21] Dilithium-V Artix-7 116 0.21 0.12 53k/28k/16/29 0.02

[Saa24] SLH-DSA-SHAKE-128f RISC-V/XC7A100T 100 49.00 4.40
14k/—/—/—

0.75
[Saa24] SLH-DSA-SHA2-256s RISC-V/XC7A100T 100 69 620.10 8.90 974.81

[ALCZ20] SPHINCS+-128f-simple XC7A100T 250 1.01 0.16 48k/73k/1/11.5 0.06
[ALCZ20] SPHINCS+-256s-robust XC7A100T 250 36.10 0.20 50k/76k/1/30 1.82

[SAW+23] Falcon-512 ZCU104 188 4.20 — 23k/26k/101/23
0.17

[SAW+23] Falcon-512 ZCU104 214 — 0.62 12k/8k/15/13
[SAW+23] Falcon-1024 ZCU104 188 8.70 — 45k/41k/182/37

0.58
[SAW+23] Falcon-1024 ZCU104 214 — 1.30 13k/9k/2/4

Table 9: Existing FPGA-based hardware implementations of various PQC signature schemes. For the listed related work, if the
prior work implemented different variants of an algorithm, the fastest design is listed. The “—” indicates that the corresponding

parameter was not specified or not implemented. T×A =
(tsign+tverify)×LUT

106

26 Deshpande et al.

Our results emphasize that MEDS is computationally expensive but that FS-
schemes with a large round number can be parallelized efficiently and can achieve
high performance (at high resoruce cost). Possible future works include the im-
plementation of key generation and of recent proposals for the optimization of
MEDS as well as the exploration of supporting different fields in one joint design
for other applicable schemes such as CROSS [BBB+24a], LESS [BBB+24b], and
PERK [ABB+24].

6 Conclusion

In the introduction in Section 1, we raised three research questions:

Research Question Q1 asks if there is sufficient inherent parallelism in MEDS to
speed up the sign and verify operations. Given that there is plenty parallelism
on the low level multiplying and systemizing matrices as well as on the high
level iterating over t independent computations, there is indeed ample oppor-
tunity to accelerate MEDS. We provide performance parameters to control the
low level parallelization and we pipeline the main loop, achieving a significant
speed up for MEDS signing and verification. For e.g., for security level I, our
balanced design achieves a speed-up of 4-5× for both signing and verification
times, whereas our high-performance design achieves a speed-up of 9-10× for
both signing and verification times when compared to the optimized software
reference implementation. Notably, these gains are achieved while our design
operates in the frequency range of 115MHz to 132MHz, whereas the optimized
software implementation runs at 1.9 GHz. However, Q1 also asks about the re-
source cost of accelerating MEDS. Since the computational cost of MEDS sign
and verification is significant, selecting large performance parameters for a high-
performance design results in high resource cost.

Research Question Q2 asks to what extent resources can be shared between the
sign and verify operations in a shared design implementing both operations. Since
the main loop operates very similar in both sign and verify, the resources of sign
can be reused by verify with only little control logic overhead. Sign requires some
additional computations at the end to compute the responses for the signature,
which can simply be skipped by verify.

Research Question Q3 asks about the overhead of supporting all parameter sets
selectable at runtime in a single joint design. The overhead for additional con-
trol logic for supporting different matrix dimensions and challenge lengths is
marginal. To our surprise, supposing arithmetic in multiple prime fields also
comes at only a small overhead as for the fields specified in MEDS, most re-
sources can be shared between both fields. Only slightly more logic than needed
for the larger field is required to support both fields. We conclude that — if the
fields are chosen carefully — supporting multiple fields in a joint hardware im-
plementation is very much feasible. Specifically our results show that arithmetic
for pseudo-Mersenne primes with small Hamming distance can be implemented
jointly with small overhead.

Unified MEDS Accelerator 27

Acknowledgements

This research has been partially supported by the US government through NSF
grant 2332406, by the Korean government through the BK21 FOUR Education
and Research Program for Future ICT Pioneers, the IITP grant IITP-2023-RS-
2023-00256081, and the NRF grant RS-2023-00277326, and by the Taiwanese
government through the NSTC grant 113-2221-E-001-024-MY3.

References

ABB+24. Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor
Dyseryn, Andre Esser, Thibauld Feneuil, Philippe Gaborit, Mukul Kulka-
rni, Victor Mateu, Marco Palumbi, Lucas Perin, Matthieu Rivain, Jean-
Pierre Tillich, and Keita Xagawa. PERK. Technical report, National In-
stitute of Standards and Technology, 2024. available at https://csrc.

nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures.
ADKF70. V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical con-

struction of the transitive closure of a directed graph. Soviet Mathematics
Doklady, 11(5):1209–1210, 1970.

ALCZ20. Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden.
FPGA-based SPHINCS+ Implementations: Mind the Glitch. In 23rd Eu-
romicro Conference on Digital System Design, DSD 2020, Kranj, Slovenia,
August 26-28, 2020, pages 229–237. IEEE, 2020.

AMI+23. Aikata Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, and
Sujoy Sinha Roy. KaLi: A Crystal for Post-Quantum Security Using Kyber
and Dilithium. IEEE Transactions on Circuits and Systems I: Regular
Papers, 70(2):747–758, 2023.

BBB+24a. Marco Baldi, Alessandro Barenghi, Michele Battagliola, Sebastian Bitzer,
Marco Gianvecchio, Patrick Karl, Felice Manganiello, Alessio Pavoni, Ger-
ardo Pelosi, Paolo Santini, Jonas Schupp, Edoardo Signorini, Freeman
Slaughter, Antonia Wachter-Zeh, and Violetta Weger. CROSS — Codes
and Restricted Objects Signature Scheme. Technical report, National In-
stitute of Standards and Technology, 2024. available at https://csrc.

nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures.
BBB+24b. Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse,

Tung Chou, Andre Esser, Kris Gaj, Patrick Karl, Kamyar Mohajerani,
Gerardo Pelosi, Edoardo Persichetti, Markku-Juhani O. Saarinen, Paolo
Santini, Robert Wallace, and Floyd Zweydinger. LESS — Linear Equiva-
lence Signature Scheme. Technical report, National Institute of Standards
and Technology, 2024. available at https://csrc.nist.gov/Projects/

pqc-dig-sig/round-2-additional-signatures.
BCC+24. Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J.

Kannwischer. Nibbling MAYO: Optimized Implementations for AVX2 and
Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2024(2):252–275, Mar. 2024.

BCH+23. Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwis-
cher, Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar:
Modern parameters and implementations. IACR TCHES, 2023(3):321–365,
2023.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures

28 Deshpande et al.

BFV13. Charles Bouillaguet, Pierre-Alain Fouque, and Amandine Véber. Graph-
Theoretic Algorithms for the “Isomorphism of Polynomials” Problem. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 211–227. Springer, Heidelberg, May 2013.

BNG21. Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. High-Performance Hard-
ware Implementation of CRYSTALS-Dilithium. In International Confer-
ence on Field-Programmable Technology, (IC)FPT 2021, Auckland, New
Zealand, December 6-10, 2021, pages 1–10. IEEE, 2021.

CCD+22. Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Nieder-
hagen, Jakub Szefer, and Wen Wang. Complete and Improved FPGA Im-
plementation of Classic McEliece. IACR TCHES, 2022(3):71–113, 2022.

CNP+23a. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovo-
hery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska,
and Monika Trimoska. MEDS — Matrix Equivalence Digital Signa-
ture. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

CNP+23b. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana
Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Tri-
moska. Take Your MEDS: Digital Signatures from Matrix Code Equiva-
lence. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors,
AFRICACRYPT 23, volume 14064 of LNCS, pages 28–52. Springer Nature,
July 2023.

CNRS24. Tung Chou, Ruben Niederhagen, Lars Ran, and Simona Samardjiska.
Reducing Signature Size of Matrix-Code-Based Signature Schemes. In
Markku-Juhani O. Saarinen and Daniel Smith-Tone, editors, Post-
Quantum Cryptography - 15th International Workshop, PQCrypto 2024,
Oxford, UK, June 12-14, 2024, Proceedings, Part I, volume 14771 of Lec-
ture Notes in Computer Science, pages 107–134. Springer, 2024.

DHSY24. Sanjay Deshpande, James Howe, Jakub Szefer, and Dongze Yue. SDitH in
Hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(2):215–251,
2024.

DLK+25. Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer, and
Yunheung Paek. SPHINCSLET: An Area-Efficient Accelerator for the Full
SPHINCS+ Digital Signature Algorithm. ACM Trans. Embed. Comput.
Syst., April 2025. Just Accepted.

dPRS23. Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O.
Saarinen. High-Order Masking of Lattice Signatures in Quasilinear Time.
In 2023 IEEE Symposium on Security and Privacy, pages 1168–1185. IEEE
Computer Society Press, May 2023.

FG18. Ahmed Ferozpuri and Kris Gaj. High-speed FPGA Implementation of the
NIST Round 1 Rainbow Signature Scheme. In 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8,
2018.

FS87. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GQT21. Joshua A. Grochow, Youming Qiao, and Gang Tang. Average-Case Al-
gorithms for Testing Isomorphism of Polynomials, Algebras, and multi-
linear forms. In Markus Bläser and Benjamin Monmege, editors, 38th

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

Unified MEDS Accelerator 29

International Symposium on Theoretical Aspects of Computer Science,
STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Confer-
ence), volume 187 of LIPIcs, pages 38:1–38:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

HGG07. William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast Modular
Reduction. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18
2007), 25-27 June 2007, Montpellier, France, pages 225–229. IEEE Com-
puter Society, 2007.

HQR89. Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic Gaussian
Elimination over GF(p) with Partial Pivoting. IEEE Trans. Computers,
38(9):1321–1324, 1989.

HSK+23. Florian Hirner, Michael Streibl, Florian Krieger, Ahmet Can Mert, and
Sujoy Sinha Roy. Whipping the MAYO Signature Scheme using Hardware
Platforms. Cryptology ePrint Archive, Paper 2023/1267, 2023. https:

//eprint.iacr.org/2023/1267.
KKPY24. Matthias J. Kannwischer, Markus Krausz, Richard Petri, and Shang-Yi

Yang. pqm4: Benchmarking NIST Additional Post-Quantum Signature
Schemes on Microcontrollers. Cryptology ePrint Archive, Paper 2024/112,
2024.

LSG21. Georg Land, Pascal Sasdrich, and Tim Güneysu. A Hard Crystal - Imple-
menting Dilithium on Reconfigurable Hardware. In Vincent Grosso and
Thomas Pöppelmann, editors, Smart Card Research and Advanced Appli-
cations - 20th International Conference, CARDIS 2021, Lübeck, Germany,
November 11-12, 2021, Revised Selected Papers, volume 13173 of Lecture
Notes in Computer Science, pages 210–230. Springer, 2021.

MR24. Suraj Mandal and Debapriya Basu Roy. KiD: A Hardware Design Frame-
work Targeting Unified NTT Multiplication for CRYSTALS-Kyber and
CRYSTALS-Dilithium on FPGA. In 2024 37th International Conference
on VLSI Design and 2024 23rd International Conference on Embedded Sys-
tems (VLSID), pages 455–460, 2024.

NQT24. Anand Kumar Narayanan, Youming Qiao, and Gang Tang. Algorithms
for Matrix Code and Alternating Trilinear Form Equivalences via New
Isomorphism Invariants. In Marc Joye and Gregor Leander, editors, Ad-
vances in Cryptology - EUROCRYPT 2024 - 43rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zurich, Switzerland, May 26-30, 2024, Proceedings, Part III, volume 14653
of Lecture Notes in Computer Science, pages 160–187. Springer, 2024.

Saa24. Markku-Juhani O. Saarinen. Accelerating SLH-DSA by Two Orders of
Magnitude with a Single Hash Unit. IACR Cryptol. ePrint Arch., page
367, 2024. To appear in CRYPTO 2024, August, 2024.

SAW+23. Michael Schmid, Dorian Amiet, Jan Wendler, Paul Zbinden, and Tao Wei.
Falcon Takes Off - A Hardware Implementation of the Falcon Signature
Scheme. IACR Cryptol. ePrint Arch., page 1885, 2023.

SMA+24. Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer,
and Jean-Pierre Seifert. HaMAYO: A Fault-Tolerant Reconfigurable Hard-
ware Implementation of the MAYO Signature Scheme. In Romain Wacquez
and Naofumi Homma, editors, Constructive Side-Channel Analysis and Se-
cure Design - 15th International Workshop, COSADE 2024, Gardanne,
France, April 9-10, 2024, Proceedings, volume 14595 of Lecture Notes in
Computer Science, pages 240–259. Springer, 2024.

https://eprint.iacr.org/2023/1267
https://eprint.iacr.org/2023/1267

30 Deshpande et al.

SWM+10. Abdulhadi Shoufan, Thorsten Wink, H. Gregor Molter, Sorin A. Huss, and
Eike Kohnert. A Novel Cryptoprocessor Architecture for the McEliece
Public-Key Cryptosystem. IEEE Trans. Computers, 59(11):1533–1546,
2010.

TDJ+22. Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youm-
ing Qiao, and Willy Susilo. Practical post-quantum signature schemes
from isomorphism problems of trilinear forms. In Orr Dunkelman and Ste-
fan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of
LNCS, pages 582–612. Springer, Heidelberg, May / June 2022.

TYD+11. Shaohua Tang, Haibo Yi, Jintai Ding, Huan Chen, and Guomin Chen.
High-Speed Hardware Implementation of Rainbow Signature on FPGAs. In
Bo-Yin Yang, editor, Post-Quantum Cryptography, pages 228–243, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

WJW+19. Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina Gupta,
Jakub Szefer, and Ruben Niederhagen. XMSS and Embedded Systems.
In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019, volume
11959 of LNCS, pages 523–550. Springer, Heidelberg, August 2019.

WSN16. Wen Wang, Jakub Szefer, and Ruben Niederhagen. Solving large systems
of linear equations over GF(2) on FPGAs. In Peter M. Athanas, René
Cumplido, Claudia Feregrino, and Ron Sass, editors, International Confer-
ence on ReConFigurable Computing and FPGAs, ReConFig 2016, Cancun,
Mexico, November 30 - Dec. 2, 2016, pages 1–7. IEEE, 2016.

WSN17. Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Key Gen-
erator for the Niederreiter Cryptosystem Using Binary Goppa Codes. In
Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529
of LNCS, pages 253–274. Springer, Heidelberg, September 2017.

ZZC+23. Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun
Wei, and Leibo Liu. Mckeycutter: A High-throughput Key Generator of
Classic McEliece on Hardware. In 60th ACM/IEEE Design Automation
Conference, DAC 2023, San Francisco, CA, USA, July 9-13, 2023, pages
1–6. IEEE, 2023.

ZZL+23. Yihong Zhu, Wenping Zhu, Chongyang Li, Min Zhu, Chenchen Deng, Chen
Chen, Shuying Yin, Shouyi Yin, Shaojun Wei, and Leibo Liu. RePQC:
A 3.4-uJ/Op 48-kOPS Post-Quantum Crypto-Processor for Multiple-
Mathematical Problems. IEEE Journal of Solid-State Circuits, 58(1):124–
140, 2023.

Unified MEDS Accelerator 31

Appendix

Algorithm 1: MEDS sign (from [CNP+23a])

Input: secret key sk ∈ Bℓsk , message msg ∈ Bℓmsg

Output: signed message msgsig ∈ Bℓsig+ℓmsg

1 fsk ← ℓsec seed;

2 σG0
← sk[fsk, fsk + ℓpub seed − 1];

3 fsk ← fsk + ℓpub seed;

4 G0 ∈ Fk×mn
q ← ExpandSystMat(σG0);

5 forall i ∈ {1, . . . , s− 1} do
6 A−1

i ∈ Fm×m
q ← Decompress(sk[fsk, fsk + ℓFm×m

q
],m,m);

7 fsk ← fsk + ℓFm×m
q

;

8 forall i ∈ {1, . . . , s− 1} do
9 B−1

i ∈ Fn×n
q ← Decompress(sk[fsk, fsk + ℓFn×n

q
], n, n);

10 fsk ← fsk + ℓFn×n
q

;

11 δ ∈ Bℓsec seed ← Randombytes(ℓsec seed);

12 ρ ∈ Bℓtree seed , α ∈ Bℓsalt ← XOF(δ, ℓtree seed, ℓsalt);

13 σ0, . . . , σt−1 ∈ Bℓtree seed ← SeedTreet(ρ, α);

14 forall i ∈ {0, . . . , t− 1} do

15 σ′
i ∈ Bℓsalt+ℓtree seed+4 ←

(
α|σi|ToBytes(21+⌈log2(t)⌉ + i, 4)

)
;

16 σÃi
, σB̃i

∈ Bℓpub seed , σi ∈ Bℓtree seed ← XOF(σ′
i, ℓpub seed, ℓpub seed, ℓtree seed);

17 Ãi ∈ GLm(q)← ExpandInvMat(σÃi
,m);

18 B̃i ∈ GLn(q)← ExpandInvMat(σB̃i
, n);

19 G̃i ∈ Fk×mn
q ← πÃi,B̃i

(G0);

20 G̃i ∈ Fk×mn
q ∪ {⊥} ← SF(G̃i);

21 if G̃i = ⊥ then
22 goto line 15;

23 d ∈ Bℓdigest ←
H(Compress(G̃0[; k,mn− 1]) | . . . |Compress(G̃t−1[; k,mn− 1]) |msg);

24 h0, . . . , ht−1 ∈ {0, . . . , s− 1} ← ParseHashs,t,w(d);

25 fv ← 0;

26 forall i ∈ {0, . . . , t− 1} do
27 if hi > 0 then

28 µi ∈ Fm×m
q ← Ãi ·A−1

hi
;

29 νi ∈ Fn×n
q ← B−1

hi
· B̃i;

30 vfv ∈ B
ℓ
Fm×m
q

+ℓ
Fn×n
q ← (Compress(µi) |Compress(νi));

31 fv ← fv + 1;

32 p ∈ Bℓpath ← SeedTreeToPatht(h0, . . . , ht−1, ρ, α);

33 return msgsig ∈ B
w(ℓ

Fm×m
q

+ℓ
Fn×n
q

)+ℓpath+ℓdigest+ℓsalt+ℓmsg=ℓsig+ℓmsg
=

(v0 | . . . | vw−1 | p | d |α |msg);

32 Deshpande et al.

Algorithm 2: MEDS verify (adapted from [CNP+23a])

Input: public key pk ∈ Bℓpk , signed message msgsig ∈ Bℓsig+ℓm

Output: message msg ∈ Bℓ
m or ⊥

1 σG0 ← pk[0, ℓpub seed − 1];

2 G0 ∈ Fk×mn
q ← ExpandSystMat(σG0);

3 fpk ← ℓpub seed;

4 forall i ∈ {1, . . . , s− 1} do
5 Gi ∈ Fk×mn

q ← DecompressG(pk[fpk, fpk + ℓGi]);
6 fpk ← fpk + ℓGi ;

7 p ∈ Bℓpath ← msgsig[ℓsig − ℓdigest − ℓsalt − ℓpath, ℓsig − ℓdigest − ℓsalt − 1];

8 d ∈ Bℓdigest , α ∈ Bℓsalt ,msg ∈ B∗ ←
msgsig[ℓsig − ℓdigest − ℓsalt, ℓsig − ℓsalt − 1],msgsig[ℓsig − ℓsalt, ℓsig − 1],msgsig[ℓsig,];

9 h0, . . . , ht−1 ∈ {0, . . . , s− 1} ← ParseHashs,t,w(d);

10 σ0, . . . , σt−1 ∈ Bℓtree seed ← PathToSeedTreet(h0, . . . , ht−1, p, α);

11 fms ← 0;

12 forall i ∈ {0, . . . , t− 1} do
13 if hi > 0 then
14 µi ∈ Fm×m

q ← Decompress(msgsig[fms , fms + ℓFm×m
q

− 1],m,m);

15 νi ∈ Fn×n
q ←

Decompress(msgsig[fms+ ℓFm×m
q

, fms+ ℓFm×m
q

+ ℓFn×n
q
− 1], n, n);

16 fms ← fms + ℓFm×m
q

+ ℓFn×n
q

;

17 if µi /∈ GLm(q) or νi /∈ GLn(q) then
18 return ⊥;
19 else

20 σ′
i ∈ Bℓsalt+ℓtree seed+4 ←

(
α|σi|ToBytes(21+⌈log2(t)⌉ + i, 4)

)
;

21 σÂi
, σB̂i

∈ Bℓpub seed , σi ∈ Bℓtree seed ← XOF(σ′
i, ℓpub seed, ℓpub seed, ℓtree seed);

22 µi ∈ GLm(q)← ExpandInvMat(σÂi
,m);

23 νi ∈ GLn(q)← ExpandInvMat(σB̂i
, n);

24 Ĝi ∈ Fk×mn
q ← πµi,νi(Ghi);

25 Ĝi ∈ Fk×mn
q ∪ {⊥} ← SF(Ĝi);

26 if Ĝi = ⊥ then
27 return ⊥;

28 d′ ∈ Bℓdigest ←
H(Compress(Ĝ0[; k,mn− 1]) | . . . |Compress(Ĝt−1[; k,mn− 1]) |msg);

29 if d = d′ then
30 return msg;
31 else
32 return ⊥;

	Unified MEDS Accelerator

