
Design of Quantum Computer Antivirus
Sanjay Deshpande

Electrical Engineering
Yale University

New Haven, CT, USA
sanjay.deshpande@yale.edu

Chuanqi Xu
Electrical Engineering

Yale University
New Haven, CT, USA
chuanqi.xu@yale.edu

Theodoros Trochatos
Electrical Engineering

Yale University
New Haven, CT, USA

theodoros.trochatos@yale.edu

Hanrui Wang
EECS
MIT

Cambridge, MA, USA
hanrui@mit.edu

Ferhat Erata
Electrical Engineering

Yale University
New Haven, CT, USA
ferhat.erata@yale.edu

Song Han
EECS
MIT

Cambridge, MA, USA
songhan@mit.edu

Yongshan Ding
Computer Science

Yale University
New Haven, CT, USA

yongshan.ding@yale.edu

Jakub Szefer
Electrical Engineering

Yale University
New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—The development of quantum computers has been
advancing rapidly in recent years. In addition to researchers and
companies building bigger and bigger machines, these computers
are already being actively connected to the internet and offered as
cloud-based quantum computer services. As quantum computers
become more widely accessible, potentially malicious users could
try to execute their code on the machines to leak information
from other users, to interfere with or manipulate results of
other users, or to reverse engineer the underlying quantum
computer architecture and its intellectual property, for example.
To analyze such new security threats to cloud-based quantum
computers, this work first proposes and explores different types
of quantum computer viruses. This work shows that quantum
viruses can impact outcomes of Grover’s search algorithm or
machine learning classification algorithms running on quantum
computers, for example. The work then proposes a first of its
kind quantum computer antivirus as a new means of protecting
the expensive and fragile quantum computer hardware from
quantum computer viruses. The antivirus can analyze quantum
computer programs, also called circuits, and detect possibly ma-
licious ones before they execute on quantum computer hardware.
As a compile-time technique, it does not introduce any new
overhead at run-time of the quantum computer.

Index Terms—quantum computers, viruses, quantum com-
puter viruses, antivirus

I. INTRODUCTION

Quantum computing is an exciting new paradigm of com-
putation that offers the potential to solve problems which are
intractable on classical digital computers, e.g., integer factor-
ization using Shor’s Algorithm [1]. To realize this potential,
researchers worldwide are racing to build bigger and bigger
quantum computers. Already, 127-qubit quantum computers
are available [2], and IBM, one of the quantum computing ven-
dors, has projected to build 1000-qubit computers by 2023 [3].
Similar projections about upcoming quantum computer sizes
have been made by others [4] as well. In addition to increasing
sizes, these machines are now easily accessible to anybody
through IBM Quantum or other similar cloud-based services
such as Amazon Braket or Microsoft Azure.

While much research is focusing on the functional aspects
of the quantum computers, there is little research thus far on

their security. Different from classical computers, quantum
computers are particularly susceptible to low-level attacks.
The reason is two-fold – firstly, current quantum systems
exposes intimate hardware instructions access to their users.
Most quantum computers follow the quantum circuit model,
where programmers have direct access to the hardware el-
ements (qubits) and their control mechanism (e.g., quantum
gates or pulses). An adversarial user could take advantage of
this to exploit or harm the hardware. Secondly, a fundamental
feature of quantum systems is its sensitivity to environmental
disturbance or control noises.

Consequently, in this work, we explore potential vulnerabil-
ities of quantum computers to malicious programs, and then
how to protect them. On the attack side, we show through
our evaluation that attackers can deliberately lower the success
probability of victim’s circuits, for instance, resulting in wrong
outcomes of the Grover’s search algorithm [5], misclassifica-
tions in quantum machine learning algorithms [6], or wrong
results in molecular energy calculations for drug discovery [7].
On the defense side, to help mitigate the threat of virus
circuits, we propose the first quantum computer antivirus
which protects the quantum computers by analyzing whether
an input quantum computer program, also called a circuit, may
be a virus circuit. We also develop the first database of possible
quantum computer viruses, and the antivirus can be extended
in future with new or improved databases as new types of
viruses are discovered.

Although the antivirus is sufficient to identify the virus
circuits, an attacker who has access to the system on which the
antivirus program is running may bypass it, e.g., by modifying
the compilation software. Consequently, we also propose and
demonstrate adding a protection by running the antivirus inside
the Trusted Execution Environment (TEE) of Intel SGX [8]. A
TEE, such as realized by Intel SGX enclaves, helps in increas-
ing the application security by using isolation technology [9]
to protect programs from other software and even the operating
system or the hypervisor. This way, a malicious user cannot
attack the enclave and bypass the antivirus. The program

mailto:sanjay.deshpande@yale.edu
mailto:chuanqi.xu@yale.edu
mailto:theodoros.trochatos@yale.edu
mailto:hanrui@mit.edu
mailto:ferhat.erata@yale.edu
mailto:songhan@mit.edu
mailto:yongshan.ding@yale.edu
mailto:jakub.szefer@yale.edu

compiled and checked by the antivirus is digitally signed by
the SGX hardware, so that the cloud-based quantum computer
provider can authenticate that the program was generated and
checked correctly. At the same time, because users can run the
antivirus locally inside SGX, they do not have to expose the
source code of their quantum computer circuits to the quantum
computer provider, protecting user’s intellectual property.

A. Contributions

The contributions of this work are:
• Demonstrate sample crosstalk-based quantum computer

viruses, using 10 types of attacker circuits which could
affect operation of victim circuits.

• Quantify the impact of the attacks on different variants
of 5 quantum computer victim programs, ranging from
Grover’s search to Machine Learning.

• Propose a method to detect such virus circuits in quantum
programs by expressing both input circuits and malicious
virus circuits as graphs, and formulating the virus check-
ing as a sub-graph isomorphism finding problem which
can be quickly solved with existing algorithms.

• Evaluate the performance of the antivirus with and with-
out use of Intel SGX enclaves.

• Demonstrate the antivirus to have no false positives on
our data set, and zero-overhead at run-time of quan-
tum computers.

II. PRINCIPLES OF QUANTUM COMPUTERS

The bit is the most basic unit in modern computing, and
quantum computing uses an analogous concept, the quantum
bit, or qubit for short. The qubit has two basis states |0⟩ and
|1⟩ but the qubit can be in a state other than |0⟩ or |1⟩. Every
qubit |ψ⟩ can be represented as a linear combination of these
two states:

|ψ⟩ = α|0⟩+ β|1⟩,

where α and β are complex coefficients satisfying |α|2 +
|β|2 = 1.

Two-dimensional vectors can be used to represent one-qubit
quantum states. For example, |0⟩ = [1 0]T and |1⟩ = [0 1]T ,
and then a qubit can be represented as |ψ⟩ = α|0⟩ + β|1⟩ =
[α β]T . Similarly, there are four basis states for two-qubit
quantum states, |00⟩, |01⟩, |10⟩ and |11⟩, and thus two-
qubits quantum states can be represented by four-dimensional
vectors. More generally, n-qubit quantum states can be repre-
sented by 2n-dimensional vectors.

Quantum computation is realized by applying a series of
quantum gates on the input qubits. Quantum gates are unitary
operations which take one quantum state to another quantum
state, i.e. |ψ⟩ → U |ψ⟩, where U is a unitary matrix. One-
qubit and two-qubit gates are the most common quantum gates,
because any n-qubit quantum gates can be decomposed into
them. One-qubit gates are represented by 2 × 2 matrices and
two-qubit gates are represented by 4×4 matrices. For example,
the Hadamard gate is a one-qubit gate, taking the |0⟩ state
to the |+⟩ = (|0⟩ + |1⟩)/

√
2 state and taking the |1⟩ state

= qubit = coupling

IBM Lima 5-qubit IBM Casablanca 7-qubit IBM Kolkata 27-qubit

Fig. 1: Sample topologies of IBM quantum computers. Observe that
only certain qubits are coupled together. Lima and Casablanca are
examples of computers freely available to researchers, while Kolkata
is a bigger chip only available with special access. Note that Kolkata
and all the larger IBM quantum computers today follow a similar
qubit connectivity pattern by repeating the basic pattern of arranging
the qubits in the rectangle shape, which can be tiled to form even
bigger machines.

to the |−⟩ = (|0⟩ − |1⟩)/
√
2 state. CX gate is a two-qubit

gate. If the most significant qubit is the control qubit and
the least significant qubit is the target qubit, then CX flips
the target qubit when the control qubit is |1⟩ and leaves the
target qubit unchanged otherwise, i.e., it takes |0x⟩ to |0x⟩
and |1x⟩ to |1x̄⟩, where x ∈ 0, 1 and 1̄ = 0, 0̄ = 1. In their
matrix representation, Hadamard (H) gate and controlled-NOT
CX gate can be written as:

H =
1√
2

[
1 1
1 −1

]
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


For publicly accessible quantum computers, typically only

a few quantum gates are supported natively. For example,
in current IBM quantum computers there are: four one-qubit
gates (I, Rz,

√
X, and X) and one two-qubit gate (CX). Any

other gate needed by a program, e.g., Hadamard gate, must be
decomposed to these native gates.

A. Device Topologies

Qubit connectivity is an important characteristic of a quan-
tum device. In the case of superconducting quantum archi-
tectures, a pair of qubits are linked by circuit wires (via a
coupler such as a capacitor) to allow interactions between
the pair. We can only apply two-qubit gates on qubits that
are directly coupled; interactions between any remote pair of
qubits requires moving them to be next to each other via
(logical) swapping of qubits. We use a device topology to
describe the layout of the physical qubits. Typically, all-to-
all topology is challenging to implement and manufacture in
superconducting architectures. In fact, sparse topology such
as 2D mesh or lattice graph offers fewer connections between
qubits but higher control precision and milder crosstalk noise.
An example of topologies of some of the IBM quantum
computers are shown in Figure 1.

B. Noise and Crosstalk in Quantum Computers

Noise in quantum computers can be attributed to two classes
of errors: idle errors and operational errors. Idle errors, such
as qubit decoherence and idle crosstalk, are spontaneous errors

2

A A B…

…

…

…… … …

A A C

C

C

A B B B

…… … …

…

…

…

Fig. 2: Example diagram of three users, A, B, and C, being assigned
a disjoint set of qubits within a quantum computer. Each user is
assigned qubits and couplings between the qubits. Couplings between
different users are inactive but physically present, as they cannot
be dynamically reconfigured in current superconducting quantum
devices. Red dashed lines highlight a potential scenario where 2
qubits from user A can cause crosstalk errors in a qubit of user B.

that happen when qubits interact with each other or with
the surrounding environment. Specifically, qubit decoherence
errors are due to the interaction of the qubits with the environ-
ment, resulting in a lost of information stored in the qubits.
Idle crosstalks are always-on unwanted ZZ-type interactions
between qubits due to residual resonance in hardware. In
contrast, operational errors are not spontaneous; they happen
when we apply quantum control, gates, or measurements with
imprecision. For instance, gate errors are due to imprecision
in the control pulses for some quantum gates, such as the
Hadamard gate and CX gate. Readout errors are errors that
occur in measurement operations that affect the probability
distribution of the outcome. Crosstalk errors can also happen
as a result of gate operations – when gates are performed on
one or two target qubits, the effect of the gates can propagate
to unintended nearby qubits. This can be detrimental to the
fidelity of the affected qubits and that of the gates on them.

C. Multi-tenant Quantum Computers

An important trend in the quantum computing is the scaling
of the number of qubits. Although existing computers offer
up to 127 qubits, hardware with more than 200 qubits is
predicted to become a reality in less than 5 years [10], and
IBM is projecting 1000-qubit quantum computers soon as
well [3]. Such resourceful computers can be used to solve
large scale problems or to solve multiple smaller problems
to maximize profit in a cloud-based quantum service model.
Initial proposals on multi-tenant quantum computing already
exist in literature [11]. The ideas for the multi-tenant envi-
ronment in quantum computers are similar to cloud servers in
classical computing, where programs from various users may
run on the same server simultaneously [12]. Each program
may use different copies of computational blocks or the same
copy in a time-multiplexed manner. Similarly, IBM already
allows for cloud-based access to time-multiplexed quantum
computers, but no multi-tenancy is implemented. When multi-
tenancy is enabled, not only time-sharing, but spatial sharing
will be possible, with two or more quantum programs running
simultaneously on different sets of qubits within a quantum
computer; an example is shown in Figure 2. Crosstalk can
present a challenge to such a computing model, where different

programs (running on adjacent qubits) may generate excessive
crosstalk to affect other programs in the spatially shared
quantum computer.

III. THREAT MODEL

This work assumes that users with gate-level or pulse-level
access to a quantum computer attempts are able to submit
quantum programs or circuits to be executed on a target
machine. It is assumed the programs are compiled by a trusted
compiler before they are allowed to execute on the quantum
computer. Today, for example, all programs submitted to IBM
are compiled by their compiler using Qiskit framework. In
the future, if users do not fully trust the quantum computer
provider, they could compile the circuits locally inside a
trusted execution environment, such as SGX, and send the
compiled circuits plus attestation that it was generated using
an approved (by the quantum computer providers) compiler.

We assume that potentially malicious users could try to
execute their code on the machines to leak information from
other users, to interfere with or manipulate results of other
users, or to reverse engineer the underlying quantum computer
architecture and its intellectual property, for example. Or that
virus circuit could be part of a library that a benign user
unintentionally uses. We assume the circuits are expressed at
the gate-level or pulse-level, as is common today.

This work considers both single-tenant and multi-tenant
or multi-programming settings. In the single-tenant setting,
currently available from commercial quantum computers, the
malicious quantum computer circuit could be hidden as part of
library or third-party code downloaded by users, for example.
Or the user could directly try to execute virus circuits. In the
multi-tenant setting, the malicious quantum computer circuit
could be executed by one user, while the victim circuit is
executed concurrently by another user. While multi-tenant
quantum computers are not available today, initial proposals
on multi-tenant quantum computing already exist in litera-
ture [11]. In either setting, we assume the objective of the
virus circuit is to leverage crosstalk to affect computation
of the victim circuit, such as to get the victim circuit to
generate incorrect results, or to leak information from the
victim circuit by observing how the victim’s operation affects
the malicious user. Or the malicious goal can be to perform
frequency sweep or other operations to find out details about
the underlying hardware.

IV. ATTACK EVALUATION

One of the main weaknesses of quantum computers is the
crosstalk. Thus, our work focuses on crosstalk as one of the
main attack vectors. To perform the crosstalk evaluation, we
use the experimental setup described in Figure 3. We adapt
our setup from [12]. We evaluate five benchmark circuits
described in Section IV-A against ten variants of virus circuits
described in Section IV-B. We use two different IBM quantum
computers to perform our evaluation based on the size of our
virus circuits. For virus circuits with one and two qubits, we
use the 5-qubit IBM quantum computer ibmq_lima and for

3

Virus Circuit

Victim Circuit

Crosstalk

𝑞0
𝑞1

𝑞2
𝑞3
𝑞4

Topology Map Timing Diagram

𝑞0 𝑞1

𝑞2

𝑞3

𝑞4

Fig. 3: Topology map of IBM Lima machine and timing diagram
of a crosstalk attack example. The example shows a 2-qubit victim
circuit on the green qubits and a 2-qubit attacker circuit on the red
qubits. Although the couplings between victim and attacker qubits
are physically present, they are not used to emulate a multi-tenant
setup and isolation of the two users. Note the fifth qubit is idle
in this example as only four qubits total are needed by the victim
and attacker.

three and four qubit virus circuits, we use the 7-qubit IBM
quantum computer ibmq_casablanca. Topologies of these
computers were previously shown in Figure 1.

A. Benchmark Victim Circuits

This section introduces a number of important quantum
algorithms, shown in Figure 4, which we use as benchmark
victim circuits to analyze the impact of the attacker circuits
on the outputs generated by these circuits.

a) Grover’s Algorithm:: Grover’s algorithm demon-
strates the capability of providing quadratic speed-up in an
unstructured search. An unstructured search can be defined
as follows, given a large list of items (N = 2n, where n
is a number of bits) arranged randomly, among these items
is one item X that we want to locate. To locate X using a
classical computation, one would have to check N/2 items on
average or N in worst case scenario. Using Grover’s algorithm,
the search complexity reduces to

√
N. More details on the

algorithm can be found at [5].
b) Deutsch-Jozsa Algorithm:: In the Deutsch-Jozsa al-

gorithm [13], we are given an unknown Boolean function
f that takes n-bit input and generates 1-bit output. We are
promised that f is either ‘balanced’ or ‘constant’ – A constant
f always returns 0 or always returns 1 for any inputs, whereas
a balanced f returns exactly half 0’s and half 1’s. The task here
is to determine whether the function is balanced or constant.

c) Bernstein-Vazirani Algorithm:: The Bernstein-
Vazirani algorithm [14] is an extension of the Deutsch-Jozsa
algorithm. Rather than finding the type of the function, this
algorithm returns a bitwise product of the n-bit input with
some n-bit binary string ‘s’ (where ‘s’ is unknown). On a
classical computer this would take n function calls to retrieve
the ‘s’ completely, whereas on a quantum computer, this
could be solved with one call to the function.

d) VQE:: The Variational Quantum Eigensolver (VQE)
is a kind of variational algorithm that computes the ground
state energy of a molecule. A variational circuit is a trainable
quantum circuit where its quantum gates are parameterized
(e.g., by angles in quantum rotation gates). The parameterized
quantum circuit Φ(x, θ) is used to prepare a variational quan-

q0 : H • H Z • H

q1 : H • H Z • H

c : /2
0 1

(a) Circuit for 2-qubit Grover’s algorithm.
q0 : H

Oracle

0
H

q1 : H
1

H

q2 : X H
2

c : /
2

0 1

(b) Circuit for 2-qubit Deutsch-Jozsa algorithm, details of the
Oracle are not shown due to limited space.

q0 : H I H

q1 : H • H

q2 : H Z

c : /
2

0 1

(c) Circuit for 2-qubit Bernstein-Vazirani algorithm.
q0 :

Parameterized Quantum Gates

0

q1 : 1

c : /
2

0 1

(d) Circuit for 2-qubit VQE algorithm, details of the
Parametrized Quantum Gates are not shown due to limited
space.

q0 :

Encoder

0

Parameterized Quantum Gates

0

q1 : 1 1

c : /
2

0 1

(e) Circuit for 2-qubit QNN algorithm, details of the Encoder
and Parametrized Quantum Gates are not shown due to lim-
ited space.

Fig. 4: Timing diagrams of the benchmark victim circuits, later used
to demonstrate the effectiveness of different virus circuits’ ability to
affect output of these victim circuits through crosstalk. The horizontal
lines labeled q represent qubits, and the lines labeled c represent the
output classical bits read out from the qubits

tum state: |ψ(x, θ)⟩ = Φ(x, θ) |0 . . . 0⟩, where x is the input
data related to the computation and θ is a set of free variables
for adaptive optimizations. During parameter training, the
objective is to minimize the expectation value of the ground
state energy. For demonstration purpose, we implement the
VQE for H2 molecule. The circuit uses two qubits with a
series of U3 and CU3 gates as the trainable layers for quantum
state preparation.

e) QML:: Quantum machine learning (QML) explores
performing ML tasks on quantum devices. For demonstration
purpose, we implement the Quantum Neural Networks (QNN)
for MNIST handwriting digits image classification tasks. The
encoder uses rotation gates to embed the pixel values in
qubits. Then we use U3 and CU3 gates as the trainable
gates. The measurements are performed on the Z-basis and
the expectation values are sent to a softmax function to
obtain the probability of each digit class. The MNIST 2-
classification circuit requires 2 qubit and the 4-classification

4

q0 : • •
q1 :

…

…

(a) V1

q0 : • Delay (0[dt]) • Delay (0[dt])

q1 :

…

…

(b) V2

q0 : • Delay (0[dt]) Delay (0[dt])

q1 : • …

…

(c) V3

q0 : • H Delay (0[dt]) H • H Delay (0[dt]) H

q1 :

…

…

(d) V4

q0 : X Delay (0[dt]) X Delay (0[dt]) …

(e) V5

q0 : Y Delay (0[dt]) Y Delay (0[dt]) …

(f) V6

q0 : Z Delay (0[dt]) Z Delay (0[dt]) …

(g) V7

q0 : H Delay (0[dt]) H Delay (0[dt]) …

(h) V8

q0 : • •
q1 : • •
q2 :

…

…

…

(i) V9

q0 : Delay (0[dt])

q1 : • •

q2 : • •

q3 : • • Delay (0[dt])

…

…

…

…

(j) V10

Fig. 5: Virus circuits, each subfigure is shown with 2 copies of the
corresponding virus circuit type.

requires 4 qubits.

B. Quantum Computer Virus Circuits

We define a quantum computer virus circuit as a circuit
that does not necessarily perform any meaningful operation
itself, yet its presence would affect (negatively) the output
fidelity or success rate of another (victim) circuit that shares
the quantum computer with it. Alternatively, the virus circuit
could be one which measures its own fidelity to act as receiver
of information leak due to the victim’s operation. Lastly, it
could also measure behavior of the underling hardware to leak
information about the hardware’s design. Due to limited space,
we focus on the first kind of viruses, which aims to disrupt
operation of the victim. As the output of a quantum program
is the most valuable information, disrupting the output can
have negative consequences, such as giving the user the wrong
solution to a routing optimization problem, which may then
have real-world impact of the user wasting energy or time
using incorrect routing in package delivery, for example.

For our experiments, we define the 10 types of preliminary
virus circuits which we refer as V1 − V10, due to space
limitation they are summarized only as Figure 5. We do want
to highlight the use of delay gates with 0 delay as means of
tricking the current Qiskit compiler into not optimizing away
the repeated gates used in the virus circuits.

C. Virus Attack Evaluation

For the evaluation, we only consider 5-qubit and 7-qubit
quantum computers that are freely available to researchers.
Consequently, we vary our selection of virus circuits between
1-qubit (V5 − V8), 2-qubits (V1 − V4), 3-qubits (V9), and 4-
qubits (V10). We limit the maximum number of qubits used by
the virus circuit to be four to be able to fit the victim circuit
along with the virus circuit. Figure 6 shows an example of one
of our experiments where we run our Grover’s 2-qubit algo-
rithm circuit shown in Figure 4a along with our virus circuit

q0 : H • H Z • H

q1 : H • H Z • H

q2 : • Delay (0[dt]) H • Delay (0[dt])

q3 :

c :/4
0 1 2 3

…

…

Fig. 6: Circuit diagram for 2-qubit Grover’s Circuit alongside with
our virus circuit V2 (highlighted with dotted red line).

V2 shown in Figure 5b. We use similar setup across all the
benchmarks circuits alongside with all our virus circuits. We
run all non-parameterized circuit experiments with 4, 000 shots
and parameterized circuits (QNN and VQE) with 8,192 shots.
QNN and VQE training leverages the TorchQuantum library
and follows the setup of QuantumNAS [15].

We choose two different evaluation metrics and procedures
to perform our evaluations:

1) For the benchmarks: Grover’s, Deutsch-Jozsa, and
Bernstein-Vazirani, we quantify the amount of crosstalk
using the output probability. For these experiments,
we use the experimental setup shown in Figure 6 and
vary duration for each virus pattern (DM) by varying
the number of patterns in virus circuits. We limit the
maximum value of DM based on duration of benchmark
circuit (DB).

2) For the benchmarks: QML and VQE circuits, we quan-
tify the amount of crosstalk based on the accuracy of
the circuit. For these experiments, we first run bench-
mark circuits without any virus circuit (as shown in
Figure 4e and Figure 4d) and note the accuracy of these
circuits. Following that, we run these circuits alongside
with virus circuit. We select the DM value to be the
maximum possible value (based on the value DB) and
note if the virus circuit has any effect on the accuracy
of these benchmark circuits.

1) Attack Evaluation Results: For the evaluation of
Grover’s, Deutsch-Jozsa, and Bernstein-Vazirani, we group the
results from 1-qubit, 2-qubit, and 3 & 4-qubit virus circuits
together. Figure 7a, Figure 8a, and Figure 9a demonstrates
the effectiveness of our 2-qubit virus circuits across different
benchmark circuits. We make an observation that, as the
duration of the virus circuit increases (i.e., as the number of
gates in the virus circuit increase) the output probability of
all the benchmark circuits is lowered. Figure 7b, Figure 8b,
and Figure 9b show the results for our 1-qubit virus circuits.
We observe that out of our four 1-qubit virus circuits only
V5 demonstrates the reduction in the output probability of the
benchmark circuit.

Figure 7c, Figure 8c, and Figure 9c show the results
for our 3-qubit and 4-qubit virus circuits. We observe that
although there is some decrease in the output probability of
the benchmark circuits it is not as much as we note in the
case of the 2-qubit virus circuits. The reason for this is when
the CX gates are connected step-wise as shown in Figure 5i
and Figure 5j the duration of these circuits is longer than

5

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M1 M2 M3 M4

Duration of Virus Circuit

V1 V2 V3 V4

(a)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M5 M6 M7 M8

Duration of Virus Circuit

V5 V6 V7 V8

(b)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M9 M10V9 V10

Duration of Virus Circuit

(c)

Fig. 7: Output probability for 2-qubit Grover’s circuit vs. different duration of virus circuits. (a) Results for 2-qubit virus circuits (V1, V2,
V3 and, V4), ran on ibmq_lima machine. (b) Results for 1-qubit virus circuits (V5, V6, V7 and, V8), ran on ibmq_lima machine. (c)
Results for V9 and V10, ran on ibmq_casablanca machine.

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M1 M2 M3 M4V1 V2 V3 V4

Duration of Virus Circuit

(a)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M5 M6 M7 M8

Duration of Virus Circuit

V5 V6 V7 V8

(b)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M9 M10

Duration of Virus Circuit

V9 V10

(c)

Fig. 8: Output probability for 2-qubit Deutsch-Jozsa circuit vs. different duration of virus circuits. (a) Results for 2-qubit virus circuits (V1,
V2, V3 and, V4), ran on ibmq_lima machine. (b) Results for 1-qubit virus circuits (V5, V6, V7 and, V8), ran on ibmq_lima machine. (c)
Results for V9 and V10, ran on ibmq_casablanca machine.

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M1 M2 M3 M4

Duration of Virus Circuit

V1 V2 V3 V4

(a)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M5 M6 M7 M8

Duration of Virus Circuit

V5 V6 V7 V8

(b)

Duration of Malicious Circuit

O
ut

pu
t P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0 5,000 10,000 15,000 20,000 25,000

M9 M10

Duration of Virus Circuit

V9 V10

(c)

Fig. 9: Output probability for 2-qubit Bernstein-Vazirani circuit vs. different duration of virus circuits. (a) Results for 2-qubit virus circuits
(V1, V2, V3 and, V4), ran on ibmq_lima machine. (b) Results for 1-qubit virus circuits (V5, V6, V7 and, V8), ran on ibmq_lima machine.
(c) Results for V9 and V10, ran on ibmq_casablanca machine.

when they are connected in series as in case of Figure 5a
and Figure 5b. This limits the number of gates in the selected
malicious pattern, since we reach the DB with fewer gates.
We note that the more CX are in the virus circuit pattern, the
crosstalk effect is higher. Out of our ten virus circuits our most
effective virus circuits are V1 to V5.

Figure 10 and Figure 11 show the results for VQE
circuits with 2 qubits on the ibmq_lima (V1-V8) and
ibmq_casablanca (V9-V10) machines with victim circuits
of around 15,000 dt (short) and 45,000 dt (long) duration,
respectively. The ground truth expectation value is −1.84.
For the short circuit, 9 out of 10 virus circuits degrades the
performance as the measured value is farther from the ground
truth. For long circuit, 8 out of 10 kinds of virus circuits

worsen the performance. We observe that the virus circuits
with only single qubit gates (V5-V8) have less significant
negative impact to the performance of the victim.

Figure 12 and Figure 13 show the results for QNN circuit
with 4 qubits on the ibmq_casablanca machine with
victim circuits of around 30,000 dt (medium) and 45,000
dt (long) duration, respectively. We did not experiment with
V10 because that requires 8 qubits, exceeding the maximum
number we can access (7 qubits). For the medium circuit,
we observe that 8 out of 9 kinds of virus circuits degrade the
accuracy of the QNN classification. The average accurate drop
is 6.4%. For the long circuit, we observe that the accuracy is
in general lower than the medium one because the noise-free
simulation accuracy of the two circuits are similar, while more

6

Calculated speedup-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.71172726901404-1.46710818034324
M2 -1.655464162 -1.61297284
M3 -1.655464162 -1.602850755
M4 -1.655464162 -1.606761233
M5 -1.655464162 -1.636103459
M6 -1.655464162 -1.645967476
M7 -1.655464162 -1.64586786
M8 -1.655464162 -1.647786765
M9 -1.668556465 -1.679034371
M10 -1.668556465 -1.573040064

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.57
-1.68-1.65-1.65-1.65-1.64-1.61-1.60-1.61

-1.47

-1.67-1.67-1.66-1.66-1.66-1.66-1.66-1.66-1.66
-1.71

w/o Malicious Circuit w/ Malicious Circuit
M

ea
su

re
d

E
xp

ec
ta

tio
n

Va
lu

e

Calculated speedup-1-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.61210979430928-1.333682759
M2 -1.583553266 -1.498032074
M3 -1.583553266 -1.499889018
M4 -1.583553266 -1.495424545
M5 -1.583553266 -1.590153322
M6 -1.583553266 -1.588682043
M7 -1.583553266 -1.598299061
M8 -1.583553266 -1.589258354
M9 -1.531287925 -1.618058129
M10 -1.531287925 -1.383384145

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.38

-1.62-1.59-1.60-1.59-1.59
-1.50-1.50-1.50

-1.33

-1.53-1.53
-1.58-1.58-1.58-1.58-1.58-1.58-1.58-1.61

w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
E

xp
ec

ta
tio

n
Va

lu
e

Calculated speedup-1-1-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.527877941 -1.054482959
M2 -1.521789887 -1.387123461
M3 -1.521789887 -1.393571418
M4 -1.521789887 -1.37885164
M5 -1.521789887 -1.52544467
M6 -1.521789887 -1.515105362
M7 -1.521789887 -1.529224639
M8 -1.521789887 -1.523129567
M9 -1.418903772 -1.472354101
M10 -1.418903772 -1.19315091

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.19

-1.47
-1.52-1.53-1.52-1.53

-1.38-1.39-1.39

-1.05

-1.42-1.42
-1.52-1.52-1.52-1.52-1.52-1.52-1.52-1.53

w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
E

xp
ec

ta
tio

n
Va

lu
e

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

w/o Virus Circuit w/ Virus Circuit

Fig. 10: VQE results for circuit of 15,000 dt duration, with
different virus circuits. Lower value is more accurate.

Calculated speedup-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.71172726901404-1.46710818034324
M2 -1.655464162 -1.61297284
M3 -1.655464162 -1.602850755
M4 -1.655464162 -1.606761233
M5 -1.655464162 -1.636103459
M6 -1.655464162 -1.645967476
M7 -1.655464162 -1.64586786
M8 -1.655464162 -1.647786765
M9 -1.668556465 -1.679034371
M10 -1.668556465 -1.573040064

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.57
-1.68-1.65-1.65-1.65-1.64-1.61-1.60-1.61

-1.47

-1.67-1.67-1.66-1.66-1.66-1.66-1.66-1.66-1.66
-1.71

w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
E

xp
ec

ta
tio

n
Va

lu
e

Calculated speedup-1-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.61210979430928-1.333682759
M2 -1.583553266 -1.498032074
M3 -1.583553266 -1.499889018
M4 -1.583553266 -1.495424545
M5 -1.583553266 -1.590153322
M6 -1.583553266 -1.588682043
M7 -1.583553266 -1.598299061
M8 -1.583553266 -1.589258354
M9 -1.531287925 -1.618058129
M10 -1.531287925 -1.383384145

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.38

-1.62-1.59-1.60-1.59-1.59
-1.50-1.50-1.50

-1.33

-1.53-1.53
-1.58-1.58-1.58-1.58-1.58-1.58-1.58-1.61

w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
E

xp
ec

ta
tio

n
Va

lu
e

Calculated speedup-1-1-1-1

UCCSD-Melbourne Quantumas
melbourne

M1 -1.527877941 -1.054482959
M2 -1.521789887 -1.387123461
M3 -1.521789887 -1.393571418
M4 -1.521789887 -1.37885164
M5 -1.521789887 -1.52544467
M6 -1.521789887 -1.515105362
M7 -1.521789887 -1.529224639
M8 -1.521789887 -1.523129567
M9 -1.418903772 -1.472354101
M10 -1.418903772 -1.19315091

-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

-1.19

-1.47
-1.52-1.53-1.52-1.53

-1.38-1.39-1.39

-1.05

-1.42-1.42
-1.52-1.52-1.52-1.52-1.52-1.52-1.52-1.53

w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
E

xp
ec

ta
tio

n
Va

lu
e

w/o Virus Circuit w/ Virus Circuit

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Fig. 11: VQE results for circuit of 45,000 dt duration, with
different virus circuits. Lower value is more accurate.

gates in the longer circuits introduce additional noise sources.
For the long victim circuit, all virus circuits can negatively
impact the measured accuracy, by 3.3% on average. In addition
to 4-classification task, we also perform experiments on 2-
classification. However, the accuracy drop is not as significant
because 2-classification accuracy is typically higher than 90%,
which means a larger boundary between classes and better
error resilience.

2) Attack Sensitivity to Qubit Mapping: The defense tech-
nique recommended in [12] against the crosstalk attacks
is to leave an idle qubit between victim circuit and virus
circuit. [12] suggests that this technique reduces the near-
est neighbor crosstalk. To validate this recommendation, we
performed experiments using one Grover’s 2-qubit circuit
(described in Section IV-A) as a victim circuit and virus
circuit V2 (described in Section IV-B) with duration DB . We
use 7-qubit IBM quantum machine ibmq_casablanca to
perform this experiment with number of shots set to 8, 192. We
first run only the victim circuit on the quantum computer (as
shown in Figure 14 (a)) and observe the output probability to
be 0.891. We then fix the coupling map to use qubits without
any idle qubits between the victim circuit and virus circuit and
measure the output probability as shown in Figure 14 (b) and
we note that the output probability is 0.669 (output probability
lowered due to the crosstalk). Following that, we add an
idle qubit between victim and virus circuits and measure the
output probability as shown in Figure 14 (c) and we observe
the output probability to be 0.692. We note that even with
the idle qubit in between the victim circuit and the virus
circuit, reduction in output probability can still be observed.
Furthermore, keeping one idle bit between adds overhead in
the overall hardware required. Consequently, in Section V we
introduce our antivirus, which rather than trying to isolate
the circuits, helps find and prevent virus circuits from being

Calculated speedup-1-1-2

UCCSD-Melbourne Quantumas
melbourne

M1 0.44 0.3

M2 0.4166666667 0.5
M3 0.4166666667 0.36
M4 0.4166666667 0.4066666667
M5 0.4166666667 0.3833333333
M6 0.4166666667 0.3166666667
M7 0.4166666667 0.33
M8 0.4166666667 0.2866666667
M9 0.4166666667 0.3166666667

Table 2

w/o Malicious
Circuit

w/ Malicious
Circuit

M1 0.44 0.3

M2 0.4166666667 0.5

M3 0.4166666667 0.36

M4 0.4166666667 0.4066666667

M5 0.4166666667 0.3833333333

M6 0.4166666667 0.3166666667

M7 0.4166666667 0.33

M8 0.4166666667 0.2866666667

M9 0.4166666667 0.3166666667

0.2

0.3

0.4

0.5

M1 M2 M3 M4 M5 M6 M7 M8 M9

0.32
0.29

0.330.32

0.38
0.41

0.36

0.50

0.30

0.420.420.420.420.420.420.420.42
0.44

w/o Malicious Circuit w/ Malicious Circuit

 M
ea

su
re

d
A

cc
ur

ac
y

Calculated speedup-1-1-2-1

UCCSD-Melbourne Quantumas
melbourne

M1 0.36 0.3

M2 0.3233333333 0.3033333333
M3 0.3233333333 0.3
M4 0.3233333333 0.29
M5 0.3233333333 0.3
M6 0.3233333333 0.2933333333
M7 0.3233333333 0.2933333333
M8 0.3233333333 0.2866666667
M9 0.3233333333 0.2866666667

Table 2-1

w/o Malicious
Circuit

w/ Malicious
Circuit

M1 0.36 0.3

M2 0.3233333333 0.3033333333

M3 0.3233333333 0.3

M4 0.3233333333 0.29

M5 0.3233333333 0.3

M6 0.3233333333 0.2933333333

M7 0.3233333333 0.2933333333

M8 0.3233333333 0.2866666667

M9 0.3233333333 0.2866666667

0.26

0.31

0.36

M1 M2 M3 M4 M5 M6 M7 M8 M9

0.290.29
0.290.29

0.30
0.29

0.300.300.30

0.320.320.320.320.320.320.320.32

0.36
w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
A

cc
ur

ac
y 0.50

w/o Virus Circuit
0.50

w/ Virus Circuit

V1 V2 V3 V4 V5 V6 V7 V8 V9

Fig. 12: QML results using circuit of around 30,000 dt
duration, measured on ibmq_casablanca.

Calculated speedup-1-1-2

UCCSD-Melbourne Quantumas
melbourne

M1 0.44 0.3

M2 0.4166666667 0.5
M3 0.4166666667 0.36
M4 0.4166666667 0.4066666667
M5 0.4166666667 0.3833333333
M6 0.4166666667 0.3166666667
M7 0.4166666667 0.33
M8 0.4166666667 0.2866666667
M9 0.4166666667 0.3166666667

Table 2

w/o Malicious
Circuit

w/ Malicious
Circuit

M1 0.44 0.3

M2 0.4166666667 0.5

M3 0.4166666667 0.36

M4 0.4166666667 0.4066666667

M5 0.4166666667 0.3833333333

M6 0.4166666667 0.3166666667

M7 0.4166666667 0.33

M8 0.4166666667 0.2866666667

M9 0.4166666667 0.3166666667

0.2

0.3

0.4

0.5

M1 M2 M3 M4 M5 M6 M7 M8 M9

0.32
0.29

0.330.32

0.38
0.41

0.36

0.50

0.30

0.420.420.420.420.420.420.420.42
0.44

w/o Malicious Circuit w/ Malicious Circuit

 M
ea

su
re

d
A

cc
ur

ac
y

Calculated speedup-1-1-2-1

UCCSD-Melbourne Quantumas
melbourne

M1 0.36 0.3

M2 0.3233333333 0.3033333333
M3 0.3233333333 0.3
M4 0.3233333333 0.29
M5 0.3233333333 0.3
M6 0.3233333333 0.2933333333
M7 0.3233333333 0.2933333333
M8 0.3233333333 0.2866666667
M9 0.3233333333 0.2866666667

Table 2-1

w/o Malicious
Circuit

w/ Malicious
Circuit

M1 0.36 0.3

M2 0.3233333333 0.3033333333

M3 0.3233333333 0.3

M4 0.3233333333 0.29

M5 0.3233333333 0.3

M6 0.3233333333 0.2933333333

M7 0.3233333333 0.2933333333

M8 0.3233333333 0.2866666667

M9 0.3233333333 0.2866666667

0.26

0.31

0.36

M1 M2 M3 M4 M5 M6 M7 M8 M9

0.290.29
0.290.29

0.30
0.29

0.300.300.30

0.320.320.320.320.320.320.320.32

0.36
w/o Malicious Circuit w/ Malicious Circuit

M
ea

su
re

d
A

cc
ur

ac
y

w/o Virus Circuit w/ Virus Circuit

V1 V2 V3 V4 V6V5 V7 V8 V9

Fig. 13: QML results using circuit of around 45,000 dt
duration, measured on ibmq_casablanca.

Victim Qubits Virus Qubits

(b) (c)(a)

Idle Qubits

Fig. 14: (a) Coupling map for the experiment running only the
benchmark victim circuit. (b) Coupling map for the experiment with
virus circuit and victim circuit running alongside without an idle qubit
between. (c) Coupling map for the experiment with benchmark circuit
and victim circuits running alongside with an idle qubit between.
Given topology is for ibmq_casablanca.

executed on the quantum computer in the first place.
For NISQ quantum computers, decoherence time is short

and thus will also make a difference when circuits are long
enough. Decoherence and crosstalk will both interfere to
our results, especially when the jobs execute in different
calibration periods, since the decoherence time, gate errors,
and other physical properties may vary a lot. Our future
direction is to obtain the results, considering and getting rid
of the decoherence effect.

V. QUANTUM COMPUTER ANTIVIRUS

As we have demonstrated in the prior sections, a virus
circuit co-located with a victim circuit can abuse crosstalk
to degrade the output fidelity of the victim circuit. We have
evaluated a number of potential malicious patterns. As they are
able to severely impact the victim circuits, we consider these
malicious patterns as viruses – which should be detected and
prevented.

The virus circuits can be detected at compile time using the
antivirus, which we define and describe in this section. The
core idea of the antivirus is to scan input quantum computer

7

H

X

H X

H

qc=QuantumCircuit(3)
qc.h([0, 2])
qc.x([1, 2])
qc.cx(0, 1)

pt=QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)

0: h
4: cx

2: x

1: h 3: x

0: h 1: cx

0: h
4: cx

2: x

1: h 3: x

Qubit assign.: {0: 0, 1: 1}
Clbit assign.: {}
Pattern Count: 1

a c

Quantum Circuit (QC)

Pattern (PT)

Qiskit Code for QC

Qiskit Code for PT

DAGNC for QC

DAGNC for PT Results from Antivirus

Subgraph Isomorphism

b c

d

Fig. 15: Overview and workflow of the antivirus program. (a) Specify the quantum circuit (QC) and the pattern (PT) in Qiskit. (b) Convert
the QuantumCircuit object to the directed acyclic graph with non-commutativity (DAGNC) representation. Vertices in DAGNC are gates in
quantum circuits, and edges specify orders between gates. (c) Find patterns using subgraph isomorphism algorithm and check whether the
found mappings are exact. (d) Analysis of the results. Qubit and clbit assignment is represented as a Python Dict object, whose keys (values)
are qubit and clbit indices in QC (PT). Pattern count is the number of occurrences of found PTs in QC.

programs for occurrences of malicious patterns. If there is a
considerable number of such patterns in the circuit, it will be
classified as malicious. The number of occurrences of these
patterns is an important indication of potential maliciousness
of a quantum circuit.

A. Architecture of the Quantum Computer Antivirus
In this section, we introduce our approach for quantum

computer antivirus. The idea is to firstly specify patterns
that are considered to be malicious, such as those in Sec-
tion IV-B, and then use a pattern matching algorithm to scan
for malicious patterns in quantum circuits. In our antivirus
program, a directed acyclic graph (DAG) is used to represent a
quantum circuit, and thus the pattern matching problem can be
reduced to the subgraph isomorphism problem, i.e., to find the
subgraphs in one graph that are isomorphic to another graph.
Our program can find the locations of all given patterns and the
associated information, such as their qubits and classical bits.

In quantum computing, DAG has been previously used for
gate optimization [16], [17], [18]. For instance, subsets of
gates are substituted based on the commutation relations be-
tween gates to reduce the depth or number of gates. However,
such optimizations (e.g., gate substitution and reordering) can
significantly change the circuits’ crosstalk effect and thus their
maliciousness. To address this problem, the antivirus program
should only consider independent gates, i.e., gates operating
on disjoint qubits and classical bits, to be commutable, while
commutation relations between other gates are neglected. As
such, we leverage and modify the existing DAG representation
for gate optimization in [16] and the canonical form for
quantum circuits [19] to satisfy our needs.

Specifically, in our DAG with non-commutativity (DAGNC)
representation, a quantum circuit can be represented as a
multigraph. Vertices in the multigraph correspond to gates in
the quantum circuit, and edges correspond to orders between
gates. The edge from node i to j means that the gates
corresponding to node i and j have at least one qubit or
classical bit in common, and the gate corresponding to node
i executes before the gate corresponding to node j. As shown
in Figure 15 (b), all five gates in the quantum circuit are

represented by five vertices associated with indices in the
multigraph of DAGNC. The edges from vertex 0 and 2 to
vertex 4 are created due to that the Hadamard gate and the
Pauli X gate above will execute prior to the CX gate, and so
does the edge from vertex 1 to vertex 3. There is no edge
between the vertices above and the vertices below, because
there is no specified order between them. Compared with
DAGNC, there is no edge from vertex 2 to vertex 4 in the
DAG of the canonical form, because when the Pauli X gate
operates on the target qubit of CX gate, the Pauli X gate and
the CX gate are commutable.

After converting quantum circuits to the DAGNC represen-
tation, finding patterns in the quantum circuit is equivalent to
finding subgraphs in the DAGNC of the quantum circuit that
are isomorphic to the DAGNC of the pattern – an instance of
the subgraph isomorphism problem. A mapping is found when
a subgraph matches a target pattern. As efficient methods for
subgraph isomorphism already exist, we leverage the Python
networkx [20] package to solve this problem, which imple-
ments the VF2 algorithm [21] for graph isomorphism testing.

In our antivirus program, the subgraph isomorphism is
followed by checking whether the found mappings are exact
mappings. A mapping is exact if and only if there is a qubit and
classical bit (clbit) assignment for the found mapping that can
fully reconstruct the pattern circuit. Not all found mappings are
exact due to the asymmetry of multi-qubit gates. For example,
if the pattern circuit consists of “H(0); CX(0,1)”, that is, an H
gate on qubit 0 and a CX gate whose control qubit is 0 and
target qubit is 1. The mapping is not exact if we found “H(1);
CX(0,1)”, because there is no qubit assignment/reordering that
reconstructs this mapping to the pattern circuit. The resulting
mappings from VF2 algorithm in networkx are not always
exact; only exact mappings should be selected. As such, we
test if a mapping is exact by building the qubit and clbit
assignment in the process of transversing all vertices in the
found mapping, and checking if the assignment of the new
vertex is contradictory to the current assignment.

The final output of the antivirus is a count for each of
the malicious patterns, i.e., the number of occurrences of the

8

Malicious # Copies # Detected Detection
Circuits Accuracy

V1 8 8 100%
V2 8 8 100%
V3 4 4 100%
V4 6 6 100%
V5 65 65 100%
V6 65 65 100%
V7 65 65 100%
V8 65 65 100%
V9 2 2 100%
V10 1 1 100%

TABLE I: Malicious pattern counts found by antivirus program in
the virus circuits. The duration of the virus circuits was set to about
10, 000dt, the same as used for attack evaluation in prior sections,
and the # Copies lists how many repetitions of each malicious pattern
fit in that time.

Victim # Detected Detected Labeled as
Circuits Copies Pattern Virus?
Grover 0 – No

Deutsch-Jozsa 0 – No
Bernstein-Vazirani 1 V1 No

VQE 0 – No
QML 0 – No

TABLE II: Malicious pattern counts found by antivirus program in
the victim circuits.

patterns in a quantum circuit. Based on our evaluation in
previous sections, we see that a higher malicious pattern count
(i.e., longer duration of virus circuit) results in higher crosstalk
errors and poses a higher risk to neighboring victim circuits.

B. Antivirus Evaluation Results

To evaluate the antivirus, we tested it on the malicious
patterns which we have evaluated to cause crosstalk in the
earlier sections. We further tested it on the benign victim
circuits to observe if any will be labeled as a virus.

Table I shows the results of scanning the 10 virus circuits
using our antivirus. In all cases the antivirus correctly identi-
fied the malicious pattern and number of copies of the pattern
that occur in the circuit.

Table II shows the results of scanning the victim circuits. It
can be seen that the malicious patterns do not generally appear
in the victim circuits. For Bernstein-Vazirani the antivirus
detected 1 copy of V1 within this circuit because V1 consists
only one CX gate and there is one CX in Bernstein-Vazirani
algorithm, but as the evaluation shows for V1 with just one
copy is not enough to cause crosstalk. Please note that V10
is malicious with only one copy since V10 has duration of
10, 000dt even with one copy, while one copy of V1 has
duration of only about 1, 250dt. Consequently, we did not see
any false positives on our tested circuits.

C. Securing Antivirus from Attacks

Although the antivirus is able to detect all the malicious
patterns, an attacker may attempt to bypass the antivirus to
get his or her virus circuits to run on the quantum computers.

A solution is to either run the compilation and antivirus at
the quantum computer provider site or run on the client side
with use of a Trusted Execution Environment (TEE) to protect
the antivirus and attest to the quantum computer provider
that the circuits were compiled and checked for viruses using
TEE attestation mechanisms. It should be noted that today,
users typically run the compiler, i.e. Qiskit on their own
computer and send compiled circuits to IBM for execution
on the quantum computer backends – there is no protection
from malicious or modified Qiskit being used.

In Figure 16 we show the three workflows: (a) the workflow
today with no antivirus protection and all the code being
compiled on the user’s end, (b) code being compiled on the
cloud provider’s end, (c) code compiled on user’s end with
SGX protection.

a) Existing Qiskit Workflow: The existing Qiskit work-
flow does not provide any antivirus-like protections. Further,
as the compilation is done on the user’s end, the quantum
computer provider, i.e. IBM, does not have any assurance
about the compiled circuit, other than the user who submitted
it. This workflow is shown in Figure 16 (a).

b) Executing Antivirus by Quantum Computer Provider:
To provide the antivirus protection, we propose one solution
to run the antivirus on the cloud provider’s end. Already, the
tools, i.e. Qiskit, is vendor specific, so it could be run by the
provider. This ensures the provider can enforce the antivirus
checking, may be lower cost to users (since compilation
and related computation is done by the provider), but users
lose control of their code (since the provider accesses raw
code to compile and check it). This workflow is shown in
Figure 16 (b).

c) Executing Antivirus Locally with SGX: To allow users
more control of their code and to run the compilation and
the antivirus locally, the antivirus could also be run inside a
Trusted Execution Environment (TEE), which is an isolated
execution environment for executing code, in which those
executing the code can have high levels of trust for the
applications running on the device. One such TEE is from Intel
Software Guard Extension (SGX) [22] technology available in
current classical hardware. Intel SGX offers hardware-based
memory encryption that isolates specific application code and
data in memory. Intel SGX allows user-level code to allocate
private regions of memory, called enclaves, which are designed
to be protected from processes running at higher privilege
levels. In our work, we port Qiskit to run inside SGX. By
running the antivirus inside the SGX enclaves, we avert po-
tential attackers from maliciously modifying or bypassing the
antivirus. SGX is also able to provide attestation, so that the
quantum provider can verify that the circuit and the antivirus
report were generated by genuine antivirus. Further, since
antivirus and compiler are run locally, the user exposes less
potentially proprietary information to the quantum computer
provider. In our work, we use Gramine [23] to run the Qiskit
(which is written in Python) inside SGX. This workflow is
shown in Figure 16 (c).

9

H

X

Compiler
(e.g. part of

Qiskit)

a

Input	 User
Quantum	Circuit	 (QC)

Local	User

Request	to	Execute
Quantum	Circuit

Quantum	Computer	 Provider

b

cc

Quantum
Computer
Manager

Runtime
(e.g. part of

Qiskit)
Computation

ResultsReturn	Results
to	User

Executing	Antivirus	by	Quantum	Computer	 Provider:

H

X
Input	 User

Quantum	Circuit	 (QC)

Local	User

H

X
Input	 User

Quantum	Circuit	 (QC)

Local	User

Existing	Qiskit Workflow:

Executing	Antivirus	Locally	with	SGX:

Compiler
with

Antivirus

Request	to
Compile	and	Execute Quantum

Computer
Manager

Runtime

Return	Results
to	User

Quantum	Computer	 Provider

Compiler
with

Antivirus

Quantum	Computer	 Provider

SGX

Request
to	Execute

Quantum
Computer
Manager

Runtime

Computation
ResultsReturn	Results	to	User

Compiled	and	Checked
Circuit

Fig. 16: Three quantum compiler workflows: (a) exiting workflow in Qiskit today, (b) proposed workflow with antivirus running on the
quantum provider end, and (c) proposed workflow with antivirus running on the user end with SGX protections.

D. Antivirus Overhead Evaluation

We evaluated the overhead of running the antivirus on
an Intel(R) Xeon E-2286G CPU at 4GHz. The timing was
measured using the perf Linux profiler and the time elapsed
was extracted as metric.

The actual pattern scanning operation is very quick, on the
order of 1s and the main timing overhead without or with SGX
is that of loading Qiskit and the antivirus code. We observed
that SGX has a very large, but almost constant overhead factor
of about 250s regardless of the tested circuit duration time.
This large overhead comes from setting up the SGX enclave
and loading all the necessary Qiskit and Python code into the
enclave. The time for generating the SGX attestation report as
well as sending the circuit to the quantum computer provider
for execution is an additional time overhead on top of the
values reported in the table. Since IBM does not support
receiving SGX attestation reports, this was not evaluated.

We also observed that considering a fixed duration, it
takes longer to scan virus circuits V5 to V8. For these virus
circuits, where each copy uses fewer or simpler gates, more
circuit copies fit in the fixed duration of time. The scanning
algorithm’s complexity depends on the depth (counted in
number of gates) of the circuit, and for a fixed time duration,
the number of gates is different for different circuits. As a
result, some circuits of the same duration take different amount
of time to scan.

VI. RELATED WORK

There is currently limited, but growing, literature on security
of quantum computers, including surveys [10], [24].

For superconducting quantum computers, recent work [12]
shows that the crosstalk errors could be used in fault injection
attacks. It also showed how an adversary can launch a denial
of service attack on the victim circuit using crosstalk errors,

similar to our evaluation. In addition, due to the difference of
eigenstates, qubit-sensing employs malicious circuits to sense
qubits of victim circuits based on already known statistical
information [25]. Researchers have also proposed different
methods to fingerprint quantum computer hardware by charac-
terizing error patterns unique to each device or qubit [26], [27].
In trapped-ion quantum computers, repeated shuttle operations
can elevate the ion-chain’s energy, which can damage the
fidelity of victim circuits [28], [29].

Motivated by the attacks, recent work has explored some
preliminary defenses. After detecting crosstalk errors by ana-
lyzing execution of a circuit [30], they can be mitigated using
connectivity reduction, qubit frequency tuning, and coupler
tuning are proposed [31]. Other defenses include instruction
scheduling modifications [32]. One common trend observed
across all the methods is that the crosstalk errors can be
controlled up to a certain point, but not eliminated completely.
We also demonstrated in this work that the defenses such as
using idle qubits, in Section IV-C2, do not prevent crosstalk.
As an alternative, the antivirus proposed in this work aims
to detect possibly virus circuits at compile time, before the
circuits are even allowed to execute on the quantum computers
and trigger crosstalk errors. The antivirus especially does not
require executing the circuit to do the analysis whether the
circuit is malicious.

VII. CONCLUSION AND FUTURE WORK

This paper presented the first antivirus for quantum com-
puters. The work first evaluated a number of virus circuits
that use different patterns of gates to trigger crosstalk errors
on adjacent qubits. The work demonstrated that these virus
circuits can impact adjacent victim circuits running on the
same quantum computer and cause crosstalk errors that affect
the output probabilities of the victim circuits. The work also
showed that defenses such as keeping idle qubits do not fully

10

work, and a solution such as the antivirus is needed. The attack
experiments were evaluated on real, publicly accessible cloud-
based IBM quantum computers showing the threats are not just
theoretical but can be measured on real hardware. As a result,
the antivirus was developed as means to proactively check for
virus circuits in the source code of the quantum programs.
It was shown to have 100% detection with no false positives
on the tested virus and victim circuits. The antivirus was also
shown to work effectively as part of Qiskit with two use cases:
without and with use of SGX enclaves.

Moving forward, we point out further research need to
investigate more virus circuits or to decouple possible deco-
herence issues from crosstalk when evaluating the attacks, for
example. Quantum computer security is a nascent research
area and more virus definitions can be added in the future,
so that the antivirus can check for new viruses as they are
discovered. Further, pulse-level viruses can be also analyzed
and new antivirus extension developed for them.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants 1901901
and MIT–IBM Watson AI Lab. We would like to thank Dmitrii
Kuvaiskii from Intel for help with Intel SGX and Gramine
tools.

REFERENCES

[1] F. de Lima Marquezino, R. Portugal, and C. Lavor, Shor’s
Algorithm for Integer Factorization. Cham: Springer International
Publishing, 2019, pp. 57–77. [Online]. Available: https://doi.org/10.
1007/978-3-030-19066-8 4

[2] “Ibm unveils breakthrough 127-qubit quantum processor,”
Nov 2021. [Online]. Available: https://newsroom.ibm.com/
2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

[3] A. Cho, “Ibm promises 1000-qubit quantum computer—a milestone—by
2023,” Science, September, vol. 10, 2020. [Online]. Available:
doi:10.1126/science.abe8122

[4] S. Castellanos, “Google aims for commercial-grade
quantum computer by 2029,” The Wall Street Journal,
2021. [Online]. Available: https://www.wsj.com/articles/
google-aims-for-commercial-grade-quantum-computer-by-2029-11621359156

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 212–219. [Online].
Available: https://doi.org/10.1145/237814.237866

[6] E. Farhi and H. Neven, “Classification with quantum neural networks
on near term processors,” arXiv preprint arXiv:1802.06002, 2018.

[7] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, 2017.

[8] “Intel sgx,” https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html.

[9] J. Greene, “Trusted execution environment.” [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/trusted-execution-technology-security-paper.pdf

[10] A. A. Saki, M. Alam, K. Phalak, A. Suresh, R. O. Topaloglu, and
S. Ghosh, “A survey and tutorial on security and resilience of quantum
computing,” 2021.

[12] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in
nisq devices and security implications in multi-programming regime,”
in Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 25–30. [Online].
Available: https://doi.org/10.1145/3370748.3406570

[11] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for
multi-programming quantum computers,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 291–303. [Online]. Available: https://doi.org/10.
1145/3352460.3358287

[13] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 439, pp. 553 – 558, 1992.

[14] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM J.
Comput., vol. 26, no. 5, p. 1411–1473, oct 1997. [Online]. Available:
https://doi.org/10.1137/S0097539796300921

[15] H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, F. T. Chong, and S. Han,
“Quantumnas: Noise-adaptive search for robust quantum circuits,” arXiv
preprint arXiv:2107.10845, 2021.

[16] R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner, “Exact
and practical pattern matching for quantum circuit optimization,” ACM
Transactions on Quantum Computing, vol. 3, no. 1, jan 2022. [Online].
Available: https://doi.org/10.1145/3498325

[17] M. Chen, Y. Zhang, and Y. Li, “A quantum circuit
optimization framework based on pattern matching,” SPIN,
vol. 11, no. 03, p. 2140008, 2021. [Online]. Available:
https://doi.org/10.1142/S2010324721400087

[18] N. Abdessaied, M. Soeken, R. Wille, and R. Drechsler, “Exact template
matching using boolean satisfiability,” in 2013 IEEE 43rd International
Symposium on Multiple-Valued Logic, 2013, pp. 328–333.

[19] M. M. Rahman, G. W. Dueck, and J. D. Horton, “An algorithm for
quantum template matching,” J. Emerg. Technol. Comput. Syst., vol. 11,
no. 3, dec 2015. [Online]. Available: https://doi.org/10.1145/2629537

[20] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[21] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved
algorithm for matching large graphs,” in In: 3rd IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition, Cuen, 2001,
pp. 149–159.

[22] “Intel software guard extensions.” [Online]. Available:
https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html

[23] W. Porzyck and M. kowalzyck, “Gramineproject/gramine: A library os
for linux multi-process applications, with intel sgx support,” Oct 2021.
[Online]. Available: https://github.com/gramineproject/gramine

[24] A. A. Saki, M. Alam, and S. Ghosh, “Impact of noise on the resilience
and the security of quantum computing,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021, pp. 186–191.

[25] A. A. Saki and S. Ghosh, “Qubit sensing: A new attack model for multi-
programming quantum computing,” 2021.

[26] K. Phalak, A. A. Saki, M. Alam, R. O. Topaloglu, and S. Ghosh,
“Quantum puf for security and trust in quantum computing,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 11, no. 2, pp. 333–342, 2021.

[27] A. Mi, S. Deng, and J. Szefer, “Short paper: Device- and locality-specific
fingerprinting of shared nisq quantum computers,” in Proceedings of
the Workshop on Hardware and Architectural Support for Security and
Privacy, ser. HASP, October 2021.

[28] A. A. Saki, R. O. Topaloglu, and S. Ghosh, “Shuttle-exploiting attacks
and their defenses in trapped-ion quantum computers,” IEEE Access,
vol. 10, pp. 2686–2699, 2022.

[29] ——, “Muzzle the shuttle: Efficient compilation for multi-trap trapped-
ion quantum computers,” 2021.

[30] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and
R. Blume-Kohout, “Detecting crosstalk errors in quantum information
processors,” Quantum, vol. 4, p. 321, Sep. 2020. [Online]. Available:
https://doi.org/10.22331/q-2020-09-11-321

[31] Y. Ding and F. T. Chong, “Quantum computer systems: Research for
noisy intermediate-scale quantum computers,” Synthesis Lectures on
Computer Architecture, 2020.

[32] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari,
“Software mitigation of crosstalk on noisy intermediate-scale quantum
computers,” Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, Mar 2020. [Online]. Available: http://dx.doi.org/10.1145/
3373376.337847711

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901901
https://doi.org/10.1007/978-3-030-19066-8_4
https://doi.org/10.1007/978-3-030-19066-8_4
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
doi:10.1126/science.abe8122
https://www.wsj.com/articles/google-aims-for-commercial-grade-quantum-computer-by-2029-11621359156
https://www.wsj.com/articles/google-aims-for-commercial-grade-quantum-computer-by-2029-11621359156
https://doi.org/10.1145/237814.237866
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://doi.org/10.1145/3370748.3406570
https://doi.org/10.1145/3352460.3358287
https://doi.org/10.1145/3352460.3358287
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1145/3498325
https://doi.org/10.1142/S2010324721400087
https://doi.org/10.1145/2629537
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://github.com/gramineproject/gramine
https://doi.org/10.22331/q-2020-09-11-321
http://dx.doi.org/10.1145/3373376.3378477
http://dx.doi.org/10.1145/3373376.3378477

	Introduction
	Contributions

	Principles of Quantum Computers
	Device Topologies
	Noise and Crosstalk in Quantum Computers
	Multi-tenant Quantum Computers

	Threat Model
	Attack Evaluation
	Benchmark Victim Circuits
	Quantum Computer Virus Circuits
	Virus Attack Evaluation
	Attack Evaluation Results
	Attack Sensitivity to Qubit Mapping

	Quantum Computer Antivirus
	Architecture of the Quantum Computer Antivirus
	Antivirus Evaluation Results
	Securing Antivirus from Attacks
	Antivirus Overhead Evaluation

	Related Work
	Conclusion and Future Work
	References

