
Towards an Antivirus for Quantum Computers
Sanjay Deshpande

Yale University
New Haven, CT, USA

sanjay.deshpande@yale.edu

Chuanqi Xu
Yale University

New Haven, CT, USA
chuanqi.xu@yale.edu

Theodoros Trochatos
Yale University

New Haven, CT, USA
theodoros.trochatos@yale.edu

Yongshan Ding
Yale University

New Haven, CT, USA
yongshan.ding@yale.edu

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—Researchers are today exploring models for
cloud-based usage of quantum computers where multi-
tenancy can be used to share quantum computer hard-
ware among multiple users. Multi-tenancy has a promise
of allowing better utilization of the quantum computer
hardware, but also opens up the quantum computer to new
types of security attacks. As this and other recent research
shows, it is possible to perform a fault injection attack
using crosstalk on quantum computers when a victim
and attacker circuits are instantiated as co-tenants on the
same quantum computer. To ensure such attacks do not
happen, this paper proposes that new techniques should be
developed to help catch malicious circuits before they are
loaded onto quantum computer hardware. Following ideas
from classical computers, a compile-time technique can be
designed to scan quantum computer programs for mali-
cious or suspicious code patterns before they are compiled
into quantum circuits that run on a quantum computer.
This paper presents ongoing work which demonstrates how
crosstalk can affect Grover’s algorithm, and then presents
suggestions of how quantum programs could be analyzed
to catch circuits that generate large amounts of crosstalk
with malicious intent.

I. INTRODUCTION

Researchers across the world are today working to-
wards building large-scale quantum computers, e.g., IBM
most recently announced their 127-Qubit Quantum pro-
cessor called eagle in 2021 [1]. In parallel research,
several schemes are being proposed for sharing quantum
computer hardware following ideas of multi-tenancy [2],
[3], [4]. These schemes envision throughput optimization
by allowing multiple users to run their circuits on the
same quantum computer, but using different qubits.
Although this idea has a good potential to improve

This work was supported in part by NSF grant 1901901.

utilization of quantum computer resources, it opens up
quantum computers to security threats due to crosstalk
errors [5].

Crosstalk errors can occur when one or more qubits
are activated, which adversely affects the state of other
nearby qubits [6]. If the former qubits are controlled
by an attacker circuit, and the latter belong to a victim
circuit, then the attacker can affect computational results
of the victim [7].

As this work-in-progress proposes, it may be possible
to achieve both multi-tenancy and security by introduc-
ing techniques to catch malicious quantum computer
programs during compilation, before they are able run on
the quantum computer. In particular, quantum computer
users today develop their designs in high-level pro-
gramming languages or in quantum assembly language,
which are then transpiled using tools such as Qiskit1

into circuits that are scheduled and eventually loaded
onto quantum computer hardware for execution. During
this transpilation process, we propose that antivirus-
like software can scan the user’s programs and locate
any malicious or suspicious code or circuit patterns.
Based on existing work [7] and our exploration, quantum
CNOT gates can be used to generate crosstalk errors.
Following this, antivirus-like software can be used to
scan if quantum programs contain suspicious patterns of
CNOT gates.

II. BACKGROUND AND RELATED WORK

Existing quantum computers are prone to different
errors such as single-qubit and two-qubit gate errors, de-
coherence errors, crosstalk errors, and readout errors [8].

1Qiskit is an open-source software development kit for working
with quantum computer programs, available at: https://qiskit.org/.

mailto:sanjay.deshpande@yale.edu
mailto:chuanqi.xu@yale.edu
mailto:theodoros.trochatos@yale.edu
mailto:yongshan.ding@yale.edu
mailto:jakub.szefer@yale.edu
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901901
https://qiskit.org/

Our Malicious Circuit

Grover’s 2-Qubit
Circuit

Crosstalk

𝑞0
𝑞1

𝑞2
𝑞3

Fig. 1. Block diagram of the experimental setup. A 5-qubit
quantum computer from IBM, namely the ibmq_lima, is
used to evaluate crosstalk effects of different attacker circuits
on 2-qubit Grover’s algorithm. Note that the fifth qubit is
unused in this example and only two qubits are needed for
victim and two more for the attacker.

Out of these errors, crosstalk errors are of special interest
as they lead to interesting security vulnerabilities [5].
The work from Ghosh et al. [7] shows that the crosstalk
errors could be used in a fault injection attack. It also
showed how an adversary can launch a denial of service
attack on a victim circuit using crosstalk errors.

To counter such threats threats, existing work pro-
poses, for example, execution of the target circuit and
performing measurements to determine if the target
circuits was affected by crosstalk errors from a specific
attacker circuit [9]. In contrast, our work-in-progress pro-
poses that malicious circuits could be caught at compile
time using an antivirus-like approach, before any circuit
is executed on a quantum computer.

III. DEFINING AND TESTING POTENTIAL MALICIOUS

QUANTUM COMPUTER CIRCUITS

To design an antivirus program, we first need to define
what a virus is to quantum computers. We define a virus
to be a malicious circuit that causes the crosstalk errors
and affects the output fidelity of another target victim
circuit. However, as with classical computer antivirus,
the definitions of the virus can be updated and broadened
over time as new understanding of potentially malicious
circuits is developed. As such, we propose to keep a
dynamic library of virus quantum circuits. When a po-
tential attacker circuit is evaluated, we label it as a virus
circuit if it indeed causes crosstalk errors in an adjacent
victim co-tenant. Patterns of such virus circuits can then
be added to a database that the antivirus software uses
when scanning for malicious attackers.

A. Finding Malicious Circuit Types

As a preliminary demonstration, we use the 5-qubit
IBM quantum computer ibmq_lima [10] for conduct-
ing our experiments. The attack example is shown in Fig-
ure 1. We use Grover’s 2-qubit algorithm circuit [11] as

the target victim circuit which is fixed on qubits q0 and
q1. For the malicious circuit we use qubits q2 and q3,
and we define different series of CNOT gates as potential
malicious circuits, following preliminary work by Ghosh
et al.’s work [7] which used a series of CNOT as an attack
circuit to perform fault injection attack.

We observe that without active attack, the output
probability of the Grover’s circuit is Poriginal = 0.87.
Interestingly, when the attacker circuit is a pure sequence
of CNOT gates, we do not notice significant reduction
in the Poriginal. The reason for that is, the transpile
function when ran in optimization mode decomposes
all CNOT gates and converts them in to a delay value
equivalent to all the CNOT gates that are connected in
series. If the number of CNOT gates connected in series
are even, the series of gates is converted into delay and
scheduled at the beginning of the operation and if it
is odd then it is converted in to delay and one CNOT
gate connected in series and scheduled at the beginning
of the operation. Interestingly, this result is in contrast
to [7], which did not seem to consider such existing
transipler optimizations and only tested a pure sequence
of CNOT gates.

In order to bypass the optimizations, we add delay
gates [12] with minimum delay in between each CNOT
gate in the malicious circuit as shown in the Figure 2.
And we noted that with this approach we were able to
bypass the transpile optimizations and preserve the CNOT
gates in the malicious circuit. By running this circuit on
the quantum device, the output probability value of target
circuit is lower than Poriginal.

We define two parameters to perform further analysis
and find more malicious circuits. The first parameter is
the delay value from the delay gate [12]. The delay unit
we use is dt which translates to 2/5 nanoseconds on the
IBM quantum computers. The second parameter is K
that defines the number of gates in the malicious circuit.
These malicious circuits are ran alongside Grover’s 2-
qubit algorithm in all cases. In the plots, the CNOT gates
are labeled as CX , while the other gates are the Pauli
gates X , Y , and Z, and the I gate. The delay gates are
labeled as Delay(i), where i is the delay of the delay
gate given in units of dt.

Below we present the experiments performed for three
cases of possible malicious circuits: series of CNOT and
delay gates in an interleaved fashion, as discussed before,
series of only delay gates, and series of interleaved Pauli
and delay gates. In all the cases we ran experiments by
varying K from 0 to 5000, but for brevity we only plot
results for K from 0 to 300.

q0 : H • H Z • H

q1 : H • H Z • H

q2 : • Delay (1[dt]) • Delay (1[dt]) • Delay (1[dt])

q3 :

Fig. 2. Circuit diagram for one possible attacker circuit with series of interleaved CNOT and delay gates. The attacker circuit
is outlined with a red dotted line, while the other circuit on qubits q0 and q1 is the victim Grover’s circuit.

K (Number of CX and Delay gates connected in interleaved fashion)

O
ut

pu
t

Pr
ob

ab
ili

ty

0

0.25

0.5

0.75

1

0 100 200 300

CX + Delay(1)

CX + Delay(2)

CX + Delay(100)

CX + Delay(0)

Fig. 3. K vs. Output Probability plot where malicious circuit
is CNOT (labled CX in the figure) and delay gates connected
in an interleaved fashion.

Considering CNOT gates interleaved with delay gates,
we ran experiments by fixing delay value to 1 and
varying K and observe that as K increase the output
probability of target circuit decreases and it saturates
around 0.2 as shown in Figure 3. We ran similar exper-
iments by fixing delay values to 2 and 100 and notice
similar results. We also tried the delay value to be 0 (i.e.
no delay) and we notice that the transpiler optimization
can be tricked even with the zero delay value and this
has the same effect on the output probability as in cases
of delay equal 1, 2, 100, as shown in Figure 3.

Considering only delay gates, we used the delay gates
as malicious circuits to observe their effect on the target
circuit. We ran experiments by varying K and observed
that there is not any significant change in the output
probability of the target circuit as shown in Figure 4. The
reason for this is that the transpile function identifies all
the unwanted delays and schedules them at the beginning
of the circuit and performs the operation of target circuit
at the end. We also plot the results where the malicious
circuit is series of CNOT gates and delay gates in the
same plot to provide a comparison.

K (Number of Delay gates connected in series)

O
ut

pu
t

Pr
ob

ab
ili

ty
0

0.25

0.5

0.75

1

0 100 200 300

Delay(1)

Delay(0)

Delay(1000)

Delay(5000)

CX + Delay(1)

CX + Delay(0)

Fig. 4. K vs. Output Probability plot where malicious circuit
is series of delay gates, delay length in units of dt is given in
the parenthesis in the legend; data for CNOT gate experiments
is shown for comparison.

K (Number of Pauli and Delay gates connected in interleaved

O
ut

pu
t

Pr
ob

ab
ili

ty

0

0.25

0.5

0.75

1

0 100 200 300

I + Delay(1)

X + Delay(1)

Y + Delay(1)

Z + Delay(1)

CX + Delay(1)

Fig. 5. K vs. Output Probability plot where malicious circuit
is Pauli gates and delay gates connected in interleaved fashion;
data for CNOT gate experiments is shown for comparison.

Considering Pauli and delay gates, we used the series
of Pauli and delay gates connected in interleaved fashion
as malicious circuits. We ran experiments by varying K
and observed that there is some change in the output
probability of the target circuit in case of X and Y gates

(not as much as in case where malicious circuit is series
CNOT and delay gates) and we also observe there is not
any significant change in output probability in case of I
and Z gates as shown in Figure 5. We plot the results
where the malicious circuit is series of CNOT gates and
delay gates with delay value 1 in the same plot to provide
a comparison.

IV. TOWARDS AN ANTIVIRUS FOR QUANTUM

COMPUTERS

The preliminary results show that the malicious cir-
cuits can be series of CNOT gates interleaved with delay
gates. They can also be circuits with interleaved gates
such as Pauli X and Y gates, and thus can form a large
or even an infinite malicious circuit set. On the other
hand, pure delay gates, or I and Z gates do not produce
noticeable crosstalk errors. Further, pure sequence of
CNOT gates is optimized away, so it does not induce
crosstalk errors in the victim circuit. The former patterns
that can be malicious could be used as the initial set of
virus patterns that should be detected by the antivirus
during the transpilation process.

A. Quantum Computer Antivirus as a Qiskit Extension

In order to detect and eliminate harmful circuits, the
currently used Qiskit framework for developing quantum
computer programs can be extended with the antivirus
and pattern matching features.

As one possibility, an algorithm can be developed to
count the number of appearances of each pattern in the
quantum circuit. With a database of malicious patterns,
the antivirus software can scan the user’s code to find
and count occurrences of the patterns. For example, as
we have identified, when the value K is low, there is low
impact on the output probability of the victim Grover’s
circuit. As result if in a circuit being scanned there is
only one CNOT gate followed by a delay, i.e. K = 1,
then this is likely not a cirucit that could be malicious.
But if the count of CNOT gate followed by a delay is
greater than 5 or 10 this could be judged as possibly
malicious circuit.

To realize the algorithm, both the quantum circuit and
the patterns can be described by a set of Qasm instruc-
tions [13]. Therefore, the problem of quantum circuit
matching can be reduced to find the instruction pattern
in an instruction list. Compared with conventional string
matching problem, the complexity of quantum circuit
matching problem lies in the additional qubits (and
possibly the classical bits and other parameters) for
each instruction. Instructions that are not adjacent in the

source code may still be gates in a series as well. There
also may be multiple patterns dispersed among different
qubits and in different order. Different patterns may cross
with each other as well. All these challenges need to be
addressed when creating a functional antivirus software
for quantum computers.

V. CONCLUSION

This work proposes that multi-tenant quantum com-
puters can be protected by developing mechanisms for
scanning user’s circuits for malicious patterns. By using
an antivirus for preventing attackers from instantiating
circuits which could be causing harmful crosstalk errors,
secure multi-tenant cloud-based quantum computers can
be realized.

REFERENCES

[1] “IBM Unveils Breakthrough 127-Qubit Quantum Processor,”
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthr
ough-127-Qubit-Quantum-Processor, accessed Jan. 2022.

[2] X. Dou and L. Liu, “A new qubits mapping mechanism for
multi-programming quantum computing,” in Proceedings of
the International Conference on Parallel Architectures and
Compilation Techniques, 2020, p. 349–350.

[3] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case
for multi-programming quantum computers,” in Proceedings
of the International Symposium on Microarchitecture, 2019, p.
291–303.

[4] L. Liu and X. Dou, “Qucloud: A new qubit mapping mechanism
for multi-programming quantum computing in cloud environ-
ment,” in Proceedings of the International Symposium on High-
Performance Computer Architecture, 2021, pp. 167–178.

[5] A. A. Saki, M. Alam, and S. Ghosh, “Experimental charac-
terization, modeling, and analysis of crosstalk in a quantum
computer,” IEEE Transactions on Quantum Engineering, vol. 1,
pp. 1–6, 01 2020.

[6] K. M. Rudinger, M. Sarovar, D. Langharst, T. J. Proctor,
K. Young, E. Nielsen, and R. J. Blume-Kohout, “Classifying
and diagnosing crosstalk in quantum information processors.”
https://www.osti.gov/biblio/1513744, accessed Jan. 2022.

[7] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in
NISQ devices and security implications in multi-programming
regime,” in Proceedings of the International Symposium on Low
Power Electronics and Design, 2020, p. 25–30.

[8] Y. Ding and F. T. Chong, “Quantum computer systems: Re-
search for noisy intermediate-scale quantum computers,” Syn-
thesis Lectures on Computer Architecture, 2020.

[9] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen,
and R. Blume-Kohout, “Detecting crosstalk errors in quantum
information processors,” Quantum, vol. 4, p. 321, 9 2020.

[10] “ibmq lima,” https://quantum-computing.ibm.com/services?ser
vices=systems&system=ibmq lima, accessed Jan. 2022.

[11] “Qiskit, Grover’s algorithm,” https://qiskit.org/textbook/ch-alg
orithms/grover.html, accessed Jan. 2022.

[12] “Qiskit, Delay,” https://qiskit.org/documentation/stubs/qiskit.ci
rcuit.Delay.html, accessed Jan. 2022.

[13] “Qiskit, Qasm,” https://qiskit.org/documentation/apidoc/qasm.h
tml, accessed Jan. 2022.

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://www.osti.gov/biblio/1513744
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_lima
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_lima
https://qiskit.org/textbook/ch-algorithms/grover.html
https://qiskit.org/textbook/ch-algorithms/grover.html
https://qiskit.org/documentation/stubs/qiskit.circuit.Delay.html
https://qiskit.org/documentation/stubs/qiskit.circuit.Delay.html
https://qiskit.org/documentation/apidoc/qasm.html
https://qiskit.org/documentation/apidoc/qasm.html

