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Abstract—Modular inversion, the multiplicative inverse of an
integer in the ring of integers modulo a prime number, is widely
used in public-key cryptography. However, it is one of the most
computationally intensive operations, thus, it remains the main
performance bottleneck for many cryptographic algorithms.

This paper presents to the best of the author’s knowledge, the
first FPGA-based hardware design for computing the multiplica-
tive inverse using the recently proposed fast constant-time Great-
est Common Divisor (GCD) algorithm. This paper introduces two
distinct design architectures targeting different applications: (a)
a full-width design and (b) a sequential design. The presented
designs are compact, parameterizable, and scalable in terms of
area and speed. The evaluation shows the proposed designs,
which are constant-time and protect against timing-based attacks,
outperform existing software and hardware implementations that
use other modular inversion techniques. As a specific example,
this work presents an evaluation focusing on the use of the mul-
tiplicative inverse hardware module to accelerate the ElGamal
cryptosystem. The proposed design achieves a speed-up of 90%
in the modular inverse calculation and a speed-up of 45% in
the overall ElGamal decryption algorithm using our sequential
hardware design of fast constant-time GCD algorithm.

In addition to developing the fast hardware implementation,
this work potentially opens up a new direction for designing
cryptosystems: the inverse operation is often avoided when de-
signing algorithms, due to its complexity. With the new hardware
module, using the inverse becomes more tractable, making it
more appealing to use in the design of new cryptosystems.

I. INTRODUCTION

Public key cryptography schemes often use modular inver-
sions, known to be computationally intensive operations. For
example, in RSA [24], the secret key is obtained through the
inversion of the public key. In Digital Signature Algorithm
(DSA) [19], to generate a digital signature, the per-message
random secret needs to be inverted. Meanwhile, in ElGamal
encryption system [5], to decrypt the message, part of the
ciphertext is inverted.

Apart from cryptographic applications, modular inversion
also has its application in other fields. For example, it is used
in communication and digital signal processing for residue
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number system applications [13], in image processing appli-
cations for image manipulation and production [30], and in
musical scales and multiplicative groups to manipulate music
written in pentatonic scale [29]. This paper mainly focuses on
the cryptographic applications of modular inversion.

The two most well-known methods to compute the modular
multiplicative inverse are the Fermat’s method [27], and the
Euclid’s method [26] (also known as binary extended Eu-
clidean algorithm (BEEA), or greatest common divisor (GCD)
method). Out of these two, the most efficient approach to
perform modular inversion is the BEEA which is derived from
Euclid’s method [26]. This approach is efficient because it
replaces multi-precision divisions by simple right shifts, which
makes this approach quite suitable for both hardware and soft-
ware implementations – yet it is prone to side-channel attacks
due to its non-constant time behavior. Therefore, in order
to thwart timing-based attacks, cryptography researchers and
practitioners have typically used Fermat’s method based on
modular exponentiation. Fermat’s method can be implemented
in constant time and a few of the efficient techniques to do so
are described in [17].

Nevertheless, in 2019, Bernstein and Yang showed that
similar (or even better) performance results can be achieved
using the BEEA, while still being constant-time [3]. The
BEEA variants in [3], which from now on will be referred
to as “fast GCD algorithm” or “fast GCD inverse”, are
based on so called fast constant-time “division steps”, whose
efficiency was demonstrated in two software case studies
using Intel desktop CPUs. However, the implementation and
evaluation on CPUs with smaller multipliers (e.g., certain
ARM CPUs), on Field Programmable Gate Arrays (FPGAs),
and on Application-Specific Integrated Circuits (ASICs) was
left as an open research problem.

Contributions: In this work we present, to the best of our
knowledge, the first compact and scalable hardware designs for
the modular multiplicative inverse for integers using the fast
GCD algorithm. We introduce two architectures for the mod-
ular inverse unit which are further parameterizable allowing
them to be adapted for various applications. The two architec-



Algorithm 1: fast_gcd module to compute g−1

(mod f), assuming f is odd [3]
def iterations(d):

if d < 46:
rounds = (49*d+80)//17 #// does floor division

else:
rounds = (49*d+57)//17

return rounds

def divsteps2(n,delta,f,g):
v,r = 0,1
m = n
for n in range(m):

mask1 = (delta > 0) and (g&1 ==1)
mask0 = (delta <= 0) or (g&1 ==0)
delta,f,g,v,r = (mask0*delta + mask1*(-delta)),

(mask0*f + mask1*g), (mask0*g + mask1*(-f)),
(mask0*v + mask1*r), (mask0*r + mask1*(-v))

g0 = g&1
delta,g,r = 1+delta,(g+g0*f)/2,(r+g0*v)/2
g = ZZ(g) #zz() means Integer Ring

v_out = sign(f)*ZZ(v*2ˆ(m-1))
return v_out

def fast_gcd(f,g):
d = max(f.nbits(),g.nbits())
m = iterations(d)
precomp = Integers(f)((f+1)/2)ˆ(m-1)
v_out = divsteps2(m,1,f,g)
inverse = ZZ(v_out*precomp)
return inverse

tures we present are full-width design and sequential design.
We then evaluate the designs on the ElGamal cryptosystem,
where we present two lightweight hardware designs for ElGa-
mal decryption, one using Fermat’s method and other using
fast GCD algorithm to compute modular inverse and demon-
strate that the presented designs achieve a speed-up of 90% in
the modular inverse calculation and a speed-up of 45% in El-
Gamal decryption algorithm, when using our sequential design
of Fast GCD algorithm. Further, we profile other applications
to estimate how much performance improvement our modular
inverse hardware module would add to them. Additionally,
we make all the code for the modular inverse and ElGamal
decryption algorithm available under an open-source license
at https://caslab.csl.yale.edu/code/fast-constant-time-gcd.

II. RELATED WORK

In 2019, Bernstein and Yang proposed the fast constant-
time GCD algorithm [3], providing the community with a
new tool to compute modular inverse in an efficient manner,
while remaining secure against timing-based attacks. In their
work, the authors provided two variants of the fast GCD
algorithm: a variant for the modular inversion of integers in
the multiplicative group defined by the ring of integers modulo
prime, and a variant for modular inversion of polynomials.
the last one has recently been implemented in hardware [14]
but, to the best of our knowledge, this work presents the
first hardware implementation of the fast GCD algorithm for
modular inversion of integers.

Other recent work on modular inversion includes work
from Azarderakhsh et al. [18] which provides an area-time
efficient architecture for ECC key exchange using Curve25519
targeting Xilinx XC7Z020. In their work, an implementation

of constant-time modular inverse for 255-bit prime using Fer-
mat’s method was designed which takes approximately 89, 911
clock cycles for each modular inverse calculation, running
at a frequency of 200 MHz. In [15], the authors provide
multiple efficient hardware implementations for Supersingular
Isogeny Key Encapsulation (SIKE) [11], a NIST Post Quantum
Cryptography (PQC) competition candidate, targeting Xilinx
Virtex-7 690T. Two implementations of constant-time modular
inverse for 434-bit prime using Fermat’s method are presented,
first one is a 256-bit architecture which takes 47, 098 clock
cycles for each modular inverse operation, running at 142
MHz, and second one is a 128-bit architecture which takes
111, 646 clock cycles for each modular inverse operation
running at a frequency of 154 MHz. In [6], the author provides
details on hardware design of a constant-time modular expo-
nentiation unit for a field width of 2048-bits. This modular
exponentiation can be used to compute modular inverse using
Fermat’s method, and the amount of clock cycles taken per
each modular inverse is 113, 880, 000 while running at 99.7
MHz on an Altera’s Stratix FPGA. In [33], the authors provide
a high-performance non constant-time modular inverse unit
using GCD method, which for a prime of 2048 bits, in its
best-case scenario, takes 98, 198 clock cycles for each inverse
calculation running at 250 MHz on Xilinx XC7VX485T-2.

Regarding software implementations, in [3] the authors
provide results for a software implementation of a modular
inverse unit for a 255-bit prime using the constant-time
fast GCD algorithm and they achieve each modular inverse
computation in 35, 277 clock cycles on an ARM Cortex-A7
processor, 10, 050 clock cycles on Haswell, 8, 778 clock cycles
on Skylake, and 8, 543 clock cycles on Kaby Lake. In [7] the
authors provide a modular inverse targeting a specific prime of
255 bits using Fermat’s method and they achieve each modular
inverse computation in clock cycles ranging between 41, 978
to 151, 997, running at a frequency varying between 48 MHz
and 2000 MHz depending on the target processor.

III. HARDWARE DESIGN

The hardware designs for the constant-time fast GCD
operations presented in this paper are based on the fast
constant-time GCD algorithm by Bernstein and Yang [3]. The
algorithm involves a different set of arithmetic operations,
namely multiplications, additions, and divisions, as shown
in Algorithm 1. Out of all the arithmetic operations, the
most expensive operation is the division. The divisions and
multiplications are done by means of shift operations due to
the fact that they are conducted with powers of 2.

Our hardware constant-time fast GCD designs implement all
the operations from the fast_gcd function in Algorithm 1.
The sizes of inputs f and g are fixed once the size of the
primes is selected (at compile time, based on the algorithm
that is using the fast GCD module). Therefore, the values
of d, m, precomp in fast_gcd function can be pre-
computed and stored as constants in registers or memory. The
final modular multiplication operation (v_out*precomp) is
not computed inside our hardware fast GCD modules since



it is assumed that all the cryptographic applications where
the modular inverse is used already have an existing modular
multiplication unit that can be used to perform this final
modular multiplication step.

In this work, we present two fast GCD designs with two
different time-area trade-offs: the first design provides a fast
version that uses more resources while, the second one,
provides a slightly slower version, but more area-efficient and
with a resulting better time-area product.

A. Fast GCD Algorithm - Full-Width Design
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Fig. 1: Hardware design of fast GCD inverse - full-width
design

Figure 1 shows the hardware design and dataflow of our
first fast GCD algorithm implementation with a full-width
design. As shown in Figure 1, different buses are segregated
based on the colored black, blue, and red lines. Table I shows
the bus widths for respective input width for all the solid
lines from Figure 1. The dotted lines from Figure 1 represent
the control signals. The design includes two adders and one
multiplexer-based variable shifter to handle the multiplications
and divisions. By design, we assume that the multiplications
and divisions are by powers of 2. These three modules (two
adders and one variable shifter) are the major contributors
to the total area of the presented design. The control logic
module consists of all the control signals and counters. The
design follows a full-width datapath due to which the area
is bigger. Keeping in mind the large data-width, the adder
module is designed to register the carry and perform addition
in multiple clock cycles, thus, reducing the critical path due
to the carry propagation. The number of clock cycles taken
by each addition is parameterized and can be decided upon,
so that the design can be clocked at a higher frequency.

From the divsteps2 (Algorithm 1), g = (g + g0 ∗ f)/2
is implemented by rewiring the bits to achieve the right shift.
Whereas implementing r = (r + g0 ∗ v)/2 is not straight

Input Bus Widths
Width Black Blue Red

255 256 739 1024
434 435 1255 2048

1279 1280 3690 4096
2048 2049 5907 8192

Table I: Bus widths of fast GCD inverse - full-width design

forward since r, v values remain as fractions (< 1) most
of the time. Therefore, in order to handle this, a traditional
division handling logic (which includes both multiplication
and division) has been designed with a variable shift. The
variable shift is designed using a barrel shift [22] and masking
which can perform both right shift (for division by 2) and left
shift (for multiplication by 2). The variable shifter’s width
depends on the width of the inputs to the modular inverse
function and is calculated by the iterations function from
Algorithm 1. For example, for an input width of 256 bits, used
in Elliptic Curve Cryptography (ECC) [19], the width of the
variable shifter is 741 bits. For an input width of 1279 bits,
used in ElGamal cryptosystem [5], the width of the variable
shifter is 3689 bits. Finally, for an input width of 2048 bits,
used in RSA [24], the width of the variable shifter is 5906
bits. The barrel shift inside the variable shifter is constructed
by a cascade of multiplexers and, as described in [22], an N -bit
width shifter implemented as a log2N cascade of multiplexers.
This makes the variable shifter considerably large, and it
becomes a major contributor to the overall area of the design.

The time and area results for the full-width design tar-
geting the Zynq UltraScale+ XCZU7EG FPGA are presented
in Table II. The time shown in Table II refers to the time
taken by the hardware design to calculate one modular inverse
operation. It can be seen that as the input width increases, the
area increases considerably, which makes this design suitable
for cases where a modular inverse of a comparatively smaller
width (bit width) is used (for example, in ECC operations).
In the case of input widths of 1279 and 2048 bits, the design
becomes very large. Despite the large number of resources on
the XCZU7EG, the full-width design for input widths 1279-bits
and 2048-bits does not fit on it. The underlying cause is not the
size of the whole module, but rather the fact that the designs
of input widths 1279-bits and 2048-bits need variable shifters
of width 4096-bits and 8192-bits, respectively. Additionally,
each of the designs needs two big registers of size 3690-
bit and 5907-bit. Due to placement and routing constraints,
the synthesis tool could not route the design with such large
registers. The ‘-’ in Table II indicates that the configuration
could not fit in the target FPGA. These large width inputs
are handled easily by our next design, the sequential design
presented next.

B. Fast GCD Algorithm - Sequential Design

The second hardware design of the fast GCD algorithm
follows a Random Access Memory (RAM) based pipelined
iterative architecture. The number of iterations is decided
based on the width of the input, variable m in Algorithm 1,



Input Freq Time Area Time x Area
Width (MHz) (us) Slices FFs % usage ×103

255 207 40.9 1847 6704 6.41% 76
434 202 93.1 3495 8856 12.14% 326
1279 - - - - - -
2048 - - - - - -

Table II: Time and area results for hardware implementation
of fast GCD inverse - full-width design
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Fig. 2: Hardware design of fast GCD inverse - sequential
design

which is public and can be precomputed. The design consists
of four block RAM units, as shown in Figure 2, used to store
the values of f , g, r, and v (from divsteps2 function
in Algorithm 1). As shown in Figure 2, different buses are
segregated based on the colors black, blue, and red lines.
Table III shows the bus widths for respective input width
for all the solid lines from Figure 2. The dotted lines from
Figure 2 represent the control signals. The drawback of the
large variable shifter described in Section III-A is tackled by
using a Sequential Variable Shifter (SVS).

The SVS is derived from the shifter described in Xilinx’s
document [8]. The variable shifter described in the document
supports only left shifting the data when divided into four
chunks. We extended the existing shifter’s capability to support
both left and right variable shifts on a user-defined number of
data chunks. The number of data chunks and the width of each
chunk is fixed before the design is synthesized. This variable
shifter design is scalable from small (four) to large number
(hundreds) of data chunks. The shift is performed sequentially
by dividing the data (e.g. 1024-bits) in to smaller chunks (e.g.
256-bits). Inside the SVS, the input integer of size t-bits is
loaded into a block RAM sequentially in smaller chunks of
x-bits per clock cycle. Once the loading is completed, two
smaller chunks of data are loaded out of the RAM in each
clock cycle, and a partial shift is performed using the small
shifter (of width 2x) until the whole data is shifted.

Input Bus Widths
Width Black Blue Red

255 64 128 256
434 73 128 256
1279 80 128 256
2048 86 128 256

(a) 256-bit architecture

Input Bus Widths
Width Black Blue Red

255 32 64 128
434 44 64 128

1279 43 64 128
2048 43 64 128

(b) 128-bit architecture

Input Bus Widths
Width Black Blue Red

255 22 32 64
434 22 32 64
1279 24 32 64
2048 22 32 64

(c) 64-bit architecture

Input Bus Widths
Width Black Blue Red

255 11 16 32
434 11 16 32

1279 11 16 32
2048 11 16 32

(d) 32-bit architecture

Input Bus Widths
Width Black Blue Red

255 6 8 16
434 6 8 16

1279 6 8 16
2048 6 8 16

(e) 16-bit architecture

Table III: Bus widths of fast GCD inverse - sequential design

Input Period Time Area T×A
Width (ns) (T) (us) Slices (A) FFs BRAM % usage .10ˆ3

256-bit architecture
255 5.25 47 915 803 22.5 3.18% 43
434 5.30 106 920 851 22.5 3.19% 98

1279 5.34 710 922 625 22.5 3.20% 654
2048 5.47 1,680 933 932 22.5 3.24% 1567

128-bit architecture
255 4.00 59 442 722 4 1.53% 26
434 4.00 121 482 638 4 1.67% 58

1279 4.20 992 531 650 4 1.84% 527
2048 4.30 2,540 554 564 12 1.92% 1407

64-bit architecture
255 3.30 68 234 434 2 0.81% 16
434 3.40 188 256 453 2 0.89% 48

1279 3.40 1,506 282 412 2 0.98% 425
2048 3.80 4,399 291 390 6 1.01% 1280

32-bit architecture
255 3.00 115 163 307 1 0.57% 19
434 3.00 316 166 318 1 0.58% 53

1279 3.00 2,613 235 320 1 0.82% 614
2048 3.20 7,335 220 370 1.5 0.76% 1614

16-bit architecture
255 2.89 213 115 241 0.5 0.40% 25
434 2.95 608 120 265 0.5 0.42% 73

1279 2.98 5,148 128 254 1.5 0.44% 659
2048 2.98 13,592 136 275 1.5 0.47% 1848

Table IV: Time and area results for hardware implementation
of fast GCD inverse - sequential design

The time and area results for the sequential implementation
targeting the Zynq UltraScale+ XCZU7EG FPGA are presented
in Table IV. In the sequential design, the datapath can be
configured for different widths (256, 128, and so on) based
on the application. The datapath width is dependent on the
width of the shifter, if the width of the shifter is 2x then the
width of the datapath is x.

From Table II and Table IV it can be seen that the time-
area product for our sequential design is better than our full-
width design. Therefore, we use our sequential design in the
comparisons conducted in the rest of the paper.



Algorithm 2: ElGamal decryption algorithm
Input: Ciphertext 1 (c_1), Ciphertext 2 (c_2),

SecretKey (x)
Output: Message (m)
Step 1: Compute s:=c_1ˆx
Step 2: Compute l:=sˆ(-1)
Step 3: Compute m:=c_2.l

IV. APPLICATIONS

Cryptosystems based on the Discrete Logarithm Problem
(DLP) usually require to compute the multiplicative inverse
either in the encryption or in the decryption algorithm. In this
paper, we first focus on ElGamal decryption, and then we
analyze other possible applications. In all studied cases, the
modular inverse is accelerated from 58% to 90%.

A. ElGamal Decryption

ElGamal cryptosystem [5] is a public-key encryption
scheme defined over any finite cyclic group. Its security is
based on DLP. The cryptosystem is defined by three algo-
rithms: key generation, encryption, and decryption. The details
of each can be found in [5]. We focus on the decryption
algorithm as it is the only one using modular inverse, which
we can accelerate with our hardware modules.

To the best of our knowledge, there are no existing efficient
and suitable hardware implementations which are constant-
time for ElGamal decryption. Thus, one of the contributions
of this work is the hardware implementation of a lightweight
constant-time ElGamal decryption unit itself.

Existing hardware designs from [32] are not publicly avail-
able. The only information about usage of modular inversion
provided in [32] is that the authors use the modular inversion
algorithm specified in [31] and the specified algorithm is
a variation of BEEA which is not constant-time. Also, the
authors do not specifically provide the timing details for the
modular inverse calculation. To demonstrate and evaluate the
impact of the inverse operation in the ElGamal decryption
algorithm (shown in Algorithm 2), we implement our own
hardware design of the ElGamal decryption unit. The min-
imum recommended key-size for ElGamal cryptosystem is
1024-bits [1]. We want to use Mersenne primes as they allow
the computation of modular reductions using only additions as
shown in [10] (Algorithm 2.31). This way, the circuit is smaller
and more efficient. We use the Mersenne prime 21279 − 1 to
define the integer ring in ElGamal because it is the smallest
Mersenne prime bigger than 21024.

From Algorithm 2, we dissect the operations as shown in
Table V. We design two separate constant-time decryption
units, which we will refer to as D1 and D2 in the rest of
the paper. In D1, we use the Fermat’s method [20] for the
modular inverse calculation (which we consider to be the
existing standard method for modular inverse calculation) and
this serves as the reference design for us. In D2 we use our
modular inverse design described in Section III-B.

For both D1 and D2 we design a RAM-based ElGamal
decryption processor. Our goal is to provide a lightweight

Operations Our Method - D1 Our Method - D2

s := cx1 Modular exponentiation Modular exponentiation
l := s−1 Modular exponentiation Fast GCD algorithm
m := c2.l Modular multiplication Modular multiplication

Table V: Operations used in ElGamal Decryption
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Fig. 3: Hardware design of ElGamal decryption module - D1

architecture, so we design a datapath with a width of 16-bits.
The individual components involved in the design of D1 are
Modular Multiplication (MM), and Modular Exponentiation
(ME), and the individual components involved in the design
of D2 are MM, ME, and the fast GCD inverse (FGCD).
One of the important components of both designs is the
MM unit. We design our MM unit with a combination of
Schoolbook Multiplication and Specific Reduction unit for
the given prime (21279 − 1, which is used in ElGamal). For
ME, we use a constant-time left to right, square and multiply
always algorithm described in [17]. For the D1 design, we
combine the MM and ME logic with some additional control
logic, and we design a top-level module to calculate the s,
l, and m values mentioned in Algorithm 2. The simplified
hardware design for D1 is shown in Figure 3. For the D2

design, we use the same logic from D1 to compute s and
m values, however, for computing l we use the fast GCD
inverse with some additional control logic. The simplified
hardware design for D2 is shown in Figure 4. All the bold
lines in Figure 3 and Figure 4 represent 16-bit data buses. We
design parameterizable modules where we provide a parameter
to instantiate the Digital Signal Processing (DSP) functions
or use the Look up Tables (LUTs) and register based logic
for the two sub-modules MUL & ACC and ADD. Further
details on extensions, results, and applications of our ElGamal
decryption design are described in Section V.

B. Other Applications

We perform time profiling on other applications, namely
DSA, ECC, SIKE [11], and RSA. There is a substantial
performance improvement for the inverse operation. However,
the total performance improvement for each algorithm is not
significant since the usage of the inverse in this latter is
limited as it is an expensive operation. Our new hardware
modules significantly improve the computational time of the
inverse operation (from 58% to 90%) and could thus allow for
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Fig. 4: Hardware design of ElGamal decryption module - D2

the development of new or modified algorithms that use the
inverse more widely.

The first additional application we analyze is DSA, where
inversion is used in both signing and signature verification
algorithms [25]. For a 2048-bit DSA, we consider the timing
results provided for the modular multiplication unit in [9] and
calculate the approximate timing for overall DSA signing and
signature verification algorithms. To get the initial estimates,
we consider a default design where the modular inverse is
calculated using the Fermat’s method [27]. Then, we consider
timing by replacing the time taken for the Fermat’s method
modular inversion unit with the time taken by our modular in-
verse unit (described in Section III). The overall improvement
in DSA signing and signature verification is 49% and 33%
respectively, whereas improvement on the modular inverse is
more than 90%.

The second additional application we analyze is ECC using
Curve25519, where we conduct profiling on the lightweight
design described in [18]. We notice that by replacing the
existing inverse functionality with our inverse function (with
a 16-bit architecture), the overall time improvement on each
scalar multiplication is 5%, but note that there is a substantial
improvement of 58% for the modular inverse calculation.

The third additional application we analyze is SIKE [11],
a candidate from the on-going NIST PQC standardization
process. We select a hardware implementation of SIKE given
in [15] for deriving the timing profile. The authors provide two
variations of the design: 128-bit and 256-bit. We profile both
designs separately and notice that by replacing the existing
inverse functionality with our inverse function: in the 128-
bit design, the overall improvement in key generation and
decapsulation is 4% and 3% respectively, with a substantial
improvement of the modular inverse operation of around
82%. In the 256-bit design, the overall improvement in key
generation and decapsulation is 3% and 2% respectively, with
a substantial improvement of modular inverse operation of
around 58%.

Finally, we also analyze the 2048-bit RSA case: we conduct
time profiling on the key generation module provided in [12]
and notice that by replacing the existing inverse functionality
with our inverse function, the overall improvement in the key
generation process is close to 3%, and the improvement for
the modular inverse module is more than 90%.

V. RESULTS AND ANALYSIS

Our hardware for the inverse operations and ElGamal de-
cryption is implemented in VHDL. To test the Fast GCD
Inverse implementation, we use the following methodology:
the fast GCD inverse functionality was provided in a Sage
script by its authors in [3]. The provided Sage implementation
was not constant-time so, we re-wrote the Sage code to make
it constant-time, as shown in Algorithm 1, and our Sage
implementation mimics the procedures used by the hardware
units. This way, we can generate suitable test vectors for
the hardware design. This approach helps us debug the code
during the development phase. After the behavioral simulation
of the VHDL code, the code is synthesized and implemented.
For testing the ElGamal decryption implementation, we write
our own sage reference implementation based on Algorithm 2
and follow similar methodology as testing the fast GCD
inverse module.

We obtain the post-place and route results for our hardware
designs with Xilinx Vivado 2019.2 for Zynq UltraScale+
XCZU7EG. The results for our fast GCD inverse modules
are shown in the Table II and Table IV. The results for our
ElGamal decryption modules are shown in Table VII.

A. Results: Fast GCD Algorithm

Table VI shows timing results for our sequential design
of the fast GCD algorithm (presented in Section III-B) with
different widths and compares it with efficiently implemented
modular inverse hardware designs from the literature. For
brevity and a fair comparison, we only tabulate the results
of the hardware designs. From the cited literature, only [33]
uses Euclid’s method to compute the modular inverse, while
all the other works use Fermat’s theorem. As it can be seen
in Table II and Table IV, our design outperforms the other
designs mentioned in Section II in terms of latency. There
is only one exception where our design does not perform
better and the reason for that is that in [33] the authors
implemented a non-constant time modular inversion which
leaks information about the inverted value and, therefore,
is not suitable for cryptographic applications. In Table VI,
we compare our 2048-bit input width design, which was
implemented on XCZU7EG with the only existing 2048-bit
design from literature [6], which was implemented on Stratix
FPGA, and showcase an improvement of 339×. We compare
results of FPGAs belonging to different process nodes, since:
a) we do not have access to Stratix tools to generate the results
for the design that targeted Stratix and b) we do not have
access to the source code of the design from [6]. One of the
observations that can be made from Table VI is that, when the
field width becomes larger then the improvement caused by
our inverse functionality increases significantly.

B. Results: ElGamal Decryption

The provided ElGamal decryption implementation is tar-
geted for a specific prime: 21279 − 1. We achieve an im-
provement of 90% in the time taken to compute the modular
inverse in D2 when compared to D1. Note that D2 utilizes



Design Device Frequency Clock Time Speed-up
(MHz) Cycles ×103 (ms)

Input Width = 255 bits
Our Work XCZU7EG 190 9 0.05 0.5
Our Work XC7Z020 100 9 0.09 1.0

[18] XC7Z020 200 90 0.45 5.0
Input Width = 434 bits

Our Work XCZU7EG 188 20 0.11 0.64
Our Work Virtex 7 112 20 0.17 1.0

[15] Virtex 7 154 111 0.72 4.2
[15] Virtex 7 141 47 0.33 1.9

Input Width = 2048 bits
Our Work XCZU7EG 182 307 1.68 1.0

[6] Stratix 200 113,880 569.4 339.0

Table VI: Fast GCD inverse (sequential design) timing result
comparison

our sequential design of the fast GCD algorithm (presented in
Section III-B). Based on our lightweight architecture the time
taken per each ciphertext decryption in D1 is 0.11 seconds
which is improved in our optimized design D2 by 45%, taking
0.064 seconds for each decryption. Currently, designs D1 and
D2 support two primes, namely 2127 − 1 and 21279 − 1,
and can be easily extended to support any given Mersenne
prime [4] with some minor modifications in the modular
reduction logic. Further, the designs can be made completely
generic by implementing a generic modular reduction logic
such as Barrett reduction [2].

In Table VII, we compare our implementation results with
the most relevant ones in the literature. In [28], the authors
provide a software implementation of ElGamal decryption
unit, implemented using two techniques which they refer
to as general and linear and they both take 3.2 and 2.8
seconds respectively for each decryption. The results presented
in Table VII show that our designs D1 and D2 are both
more efficient than the provided relevant implementations in
literature. Both D1 and D2 are constant-time implementations,
and consume less than 1% of the target FPGA resources, each.
Hence, a user can focus on D2 to achieve a better performance
while still having good resource utilization. We developed
both designs in order to allow a user the flexibility to choose
between D1 and D2 depending on the requirements. It is worth
remarking the fact that the field-width of the existing imple-
mentations from [28] and [32] is 512-bits whereas our field-
width is 1279-bits. Additionally, all of our implementations are
constant-time whereas no information about being constant-
time is provided for [28] and [32].

VI. CONCLUSION AND FUTURE WORK

In this paper, we offer two distinct constant-time hardware
designs for the recently proposed multiplicative modular in-
verse algorithm, providing a different speed-area trade-off for
different input sizes. Our proposed hardware designs provide
a speed-up up to 339× for the modular inverse calculation
when compared to existing methods.

We also provide two novel lightweight hardware imple-
mentations for ElGamal decryption unit: one with a modular
inverse using Fermat’s method (D1) and another one with our
fast GCD inverse (D2) implementation. We show that we gain

a speedup of 45% for the overall decryption operation in our
design D2 when compared to D1.

The compact fast GCD modular inverse module presented
in this work can be embedded as a hardware accelerator in a
RISC V processor such as [23] and modular inverse function-
ality can be added to its instruction set architecture. This would
potentially provide acceleration benefits for all cryptographic
applications developed on such processors, where modular
inverse functionality is used.

The ElGamal decryption implementation can be extended
to a complete ElGamal cryptosystem and ElGamal signature
scheme. A faster implementation of ElGamal cryptosystem
could potentially be used with other schemes in a hybrid cryp-
tographic protocol or in other cryptographic applications such
as within an electronic voting system as described in [16] and
for homomorphic encryption operations as described in [21].
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