
New Predictor-Based Attacks in Processors
Shuwen Deng and Jakub Szefer

Department of Electrical Engineering
Yale University

New Haven, USA
{shuwen.deng, jakub.szefer}@yale.edu

Abstract—The microarchitectural state held by predictors in modern

processors can leak sensitive information. This is the first work to analyze

the security of a special type of predictor, the value predictor, and

demonstrate new security attacks. The new attacks bypass all the existing

predictor defenses which have not yet considered value predictors as

sources of vulnerabilities. This work further shows there are many value

predictor attack variants, as derived using our new attack model. This

paper highlights the importance of security analysis of processor features

before they are realized in silicon, so the security is understood at the

design time.

I. INTRODUCTION

Over the last few years, security attacks on processors have demon-
strated the dangers of introducing performance-enhancing features
that end up contributing to information leaks. Many performance-
enhancing features found in current processors have not been thor-
oughly analyzed for security vulnerabilities, leading to various at-
tacks, e.g., [4], [14]. Especially, a variety of predictors such as branch
predictors or prefetchers have been found to be sources of security
vulnerabilities, e.g., [4]. The microarchitectural state held by these
predictors can be abused through various timing-based attacks to leak
secrets, such as cryptographic keys, e.g., [4]. Further, speculative ex-
ecution attacks such as Spectre [7] also leverage predictors as part of
the speculative attacks to recover the secrets. Understanding different
types of predictors, in the context of Spectre or by themselves, is
important to ensure the security of modern processors.

This is the first work to focus on understanding a special type
of predictor, the value predictor, and demonstrating new security
attacks on these predictors. Although not implemented in the real
hardware today, numerous value predictor architectures have been
proposed and are being considered for inclusion in future processors.
Since the original last value predictor [8], a number of improvements
have been developed, e.g., [11], including recent work in the last two
years, e.g., [12]. These value predictors have demonstrated to improve
processor performance, however, as we show, they can contribute to
new security vulnerabilities.

By exploring value predictor attacks (and defenses), this work
fills in the missing understanding of the security of value predictors.
Attacks and defenses should be analyzed at design time before new
features, such as the value predictors, are added to real machines. It
has been shown many times before [4], [14] that attacks are found due
to features introduced without proper design-time security analysis.

A. Processor Pipeline with a Value Predictor

A processor pipeline with a value predictor is shown in Figure 1.
A typical value predictor [8] uses the instruction address (program
counter) to keep track of the loaded values. For each instruction, once

⇤ This work was supported in part by NSF grant 1813797 and SRC
award number 2844.001. Shuwen Deng was supported through the Google
Ph.D. Fellowship.

a value is predicted correctly for more than a confidence number of
times, the predictor starts to use the previous (last) value when a cache
miss occurs. This allows instructions to proceed while the actual data
value is still being fetched, providing data with high confidence and
preventing the performance penalty of a cache miss. Different variants
of value predictors have been demonstrated, which can improve the
processors’ performance from 4.8% [11] to 11.2% [9].

For a typical predictor shown in Figure 1, for each load instruction,
the Value Prediction System (VPS) keeps track of the index, the data
value to be predicted, and the past value history (VHist). The index
can be the program counter (PC), or the data address, depending on
the type of value predictor. The VPS typically further uses the full
address as the index, e.g., [12]. Using a subset of the address bits
is possible, but will introduce conflicts between different addresses
and reduce the prediction rate. On each load, the value history and
predicted value are updated. If the predicted value is verified to be
correct (after the actual load data is available), the confidence and
usefulness values are increased and there are no changes to the
original load and dependent instructions. Meanwhile, a misprediction
will cause not only the predicted load but also dependent instructions
to be squashed and reissued. Within the VPS, if there are not enough
entries, the entry with the smallest usefulness value will be evicted.

B. Security Threats due to Value Predictors

To understand attacks on value predictors, one of the contributions
of this work is the approach for analyzing the behavior of value
predictors. When analyzing attacks, we consider a sender and a
receiver processes who can 1) train the predictor, 2) modify the
predictor by re-training, 3) trigger the predictor, then 4) encode the
secret obtained through prior steps into a covert channel, and finally
5) decode the secret from the channel. The first three steps deal
with manipulating the state of the predictor to learn the information.
Meanwhile, encode and decode steps deal with volatile, persistent,
or timing-window microarchitectural channels to reveal the secret. In
particular, we believe this to be the first work to consider timing-
window microarchitectural channels that leverage timing differences
of memory accesses when no value prediction vs. a correct value pre-
diction is made. Unlike other types of predictors, such as prefetchers,
value predictors do not only have correct and incorrect predictions
but also have no prediction (if the confidence level is not reached)
timing variants. We show in our attacks for the first time that no
prediction vs. correct prediction can be abused to leak secrets.

C. Contributions and Paper Outline

The contributions of this work are as follows:

1) Present threat model and approach for evaluating the value
predictor security (Section II).

978-1-6654-3274-0/21/$31.00 ©2021 IEEE



Memory System
TLBs main 

memory …caches

Fetch Decode Rename Issue Execute Writeback CommitPC

Value Prediction System
no

prediction
index confidence usefulness value VHist

… … … … …

is load
instruction

Value Prediction Engine 

load data

has 
prediction

predicted
value

update

load 
data

Value 
Prediction 

Verification 

predicted
value

cached
data

correct

commit

incorrect

squash the
pipeline

forward speculated data

Fig. 1: Processor pipeline with a Value Prediction System (VPS).

2) Demonstrate the first, new attacks on value predictors, which
can be used to attack applications and bypass existing protection
schemes (Section IV).

3) Develop the first, systematic model for analyzing value predictor
attacks, used to demonstrate different variants of attacks that can
leverage value predictors to leak information (Section V).

4) Propose and evaluate three security techniques for securing value
predictors (Section VI).

The code developed for this work will be made available un-
der an open-source license at https://caslab.csl.yale.edu/code/value-
predictor-security/.

II. THREAT MODEL

We present the first threat model for analyzing value predictors.
The model assumes there is a sender (victim) process that has access
to a secret and a receiver (attacker) process which aims to learn
the secret. Two processes can execute on the same core or different
cores. Especially, in internal-interference attacks (which involve only
the sender’s accesses), two processes do not need to share the value
predictor, as long as the receiver can observe timing differences in
the execution of the sender (as affected by the value predictor’s state
or use of the value predictor). The attacker is assumed to know the
source code of the victim process which is not secret by itself. The
attacker further can trigger the value prediction by meeting the right
condition, e.g., making confidence number of accesses, or other
condition used by the VPS.

We assume predictors can be broadly PC-based predictor (use
the program counter, i.e., instruction address, for indexing the pre-
dictor’s state) or data-address-based predictor (use the address of
the accessed data to index the predictor’s state) and we assume the
address is a virtual address1. The address can also incorporate other
information, such as a process identifier, pid, if the value predictor
uses that for indexing the predictor’s state. We use the term index to
describe the information used to index the predictor’s state. I.e., in
PC-based predictors, the index is the PC plus any potential identifiers.

This work focuses on load-based VPS2, where 1) training3 or
2) modifying the value predictor state, or 3) triggering the value
predictor to make a prediction, requires a cache miss. The miss is
assumed to occur naturally as part of the code’s execution or can be
forced by a malicious attacker that invalidates or flushes the cache.
Having value prediction at the frontend or in the execution stage of
the pipeline will not influence the attacks we propose in this work,

1Physical-address-based attacks are also possible, but we focus on attacks
using virtual address as most value predictors we studied use virtual addresses.

2Non load-based VPS is possible, where the attacks can be triggered without
causing cache misses, discussion of such VPS is omitted due to limited space.

3To train the predictor to make a prediction, we assume a confidence number
of accesses are required. Thus, the predictor will output a first prediction on
the confidence+ 1 access.

Attacks due to 
Transient Execution

Attacks Leveraging 
Transient Execution

Transient Execution 
Attacks

using
Timing-Window 

Channel:
Misprediction

vs. Correct Prediction

using
Timing-Window 

Channel :
No prediction

vs. Correct Prediction

using
Timing-Window 

Channel :
No prediction vs. 

Incorrect Prediction
Branchscope [4], 

Jump over ASLR [3], 
This Work

This Work (No known 
examples)

using
Persistent or 

Volatile Channels:

Spectre variants [7], 
This Work

New
Type!

Fig. 2: Taxonomy of timing-window microarchitectural channels.

We are the first to present a no prediction vs. correct prediction

timing attack.

// --  Sender (program A) ------------------------ //
PC:
 1.  main() {
 2.    for (i=0;i<C;i++) {
 3.      if (secret) {
 4.        flush(arr1); // 2) Modify step
 5.        r1 = arr1; // modify val. pred.  
 6.      } // at PC index 5 if secret = 1
7. }

// --  Receiver (program B) -------------------- //
PC:
 1. access() {
 2.    nop();  // pad to map to
 3.    nop();  // sender’s index 5
 4.    nop();
 5.    r3 = arr3; // access maps to val.
 6. }.           // pred. PC index 5
 7.
 8. main() {
9. for (i=0;i<C;i++) {

10.      flush(arr3);
11.      access(); // 1) Train step
12.    } // set val. pred. at PC index 5
13.    sleep(); // wait for sender to run
14.
15. flush(arr3);
16.    fence(); // 4) Encode step
17.    t1 = rdtscp();
18.    access();// 3) Trigger step
19. dependent_alu_mem_ops()
20.    fence();
21.    t2 = rdtscp();
22.  if (t2-t1 > threshold) // 5) Decode step
23.  print(‘secret is 1’);
24. else
25.   print(‘secret is 0 or index does not map’);
26. }

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr3

Train 
(r3=arr3)

!!

1) Train

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr1

Modify

(r1=arr1)

2) Modify

Send secret = 1 

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr3
No access

Send secret = 0

Value Prediction System
index confidence usefulness value
1
..

5 1 0 arr3

3) Trigger, 4) Encode and 5) Decode

Value Prediction System
index confidence usefulness value
1
..

5 C+1 1 arr3

secret = 0secret = 1

Trigger(r3=arr3)

Trigger(r3=arr3)
Wrong pred.

(slower access)
Correct pred.
(faster access)

!!!!

!!!!

Fig. 3: Proof-of-concept code and diagram of the value predictor’s

state for a Train + Test attack.

since the attack mechanism is independent of stages in the pipeline
where the VPS is used, as long as the prediction can happen before
the actual value is obtained.

III. ATTACKS TAXONOMY

Figure 2 shows the taxonomy of transient execution attacks and
attacks leveraging transient execution. Attacks leveraging transient
execution modify transient execution behavior based on the secret
value. For this type, there are timing-window attacks that rely on
misprediction vs. correct prediction timing, e.g., Branchscope [4],
Jump over ASLR [3], or one of our attack variants. We also show a
different attack variant that uses no prediction vs. correct prediction
timing-window attack, which is a different, new type of attack. No
prediction vs. incorrect prediction attacks theoretically exist but such
types are not known. In addition, we also show value predictor attack
variants that can be used with regular transient execution attacks.

IV. NEW VALUE PREDICTOR ATTACKS

In this section, we demonstrate two new proof-of-concept attacks
on value predictors.

A. Train + Test Attack
The first new attack we present is the Train + Test attack, as

is shown in Figure 3. In this attack, the attacker (receiver) is able



// --  Sender (program A) ----------------------------- // 
PC:
 1.  main() {
 2.    for (i=0;i<C;i++) {
3.      flush(secret_bit);
 4.      r1 = secret_bit; // 1) Train step
5.       // set pred. at PC index 4 
6.  }

// --  Receiver (program B) ------------------------- //
PC:
 1.  check_hit() {
 2. nop(); // pad with nops
3. flush(known_bit);
 4.    x = known_bit; // access maps to val.
5.    return x;       // pred. PC index 4
 6.  }
 7.
 8.  main() {
9.    sleep(); // wait for sender to run

10.
11. flush(arr2);
12. x = check_hit(); // 3) Trigger step, 
13. y = arr2[x*512]; // 4) Encode step, 
14. // x will be accessed speculatively
15. // and modify cache based on x
16. sleep(); // wait for spec. exe.
17.
18. for (j=0;j<256;j++)
19. t1 = rdtscp(); // 5) Decode step, 
20.      r2 = arr2[j*512]; // check which
21.      t2 = rdtscp(); // entry was modified
22.
23.    if (t2-t1 < threshold)
24.      print(‘secret_bit candidate is: %x’, j);
25.   } // print secret read from cache channel
26.  }

Value Prediction System
index confidence usefulness value
1
..

4 C 1 1
Train 

(r1=secret_bit)

1) Train

Send secret_bit = 1

Value Prediction System
index confidence usefulness value
1
..

4 C 1 0
Train 

(r1=secret_bit)

Send secret_bit = 0

Value Prediction System
index confidence usefulness value
1
..

4 1 0 0

3) Trigger

Value Prediction System
index confidence usefulness value
1
..

4 C+1 1 0

secret_bit = known_bit = 0secret_bit != known_bit

Trigger
(x=known_bit)

Trigger
(x=known_bit)

Correct 
prediction

Wrong 
prediction

L1 Data Cache
index tag value
1
f(0) xx
f(1) xx

4) Encode and 5) Decode

L1 Data Cache
index tag value
1
f(0) xx
f(1)

Slower 
access

secret_bit
indexed access

!!!!

!!!!

secret_bit
indexed access

Faster access
to known_bit

Faster access 
to secret_bit

Faster access
to known_bit/

secret_bit

Fig. 4: Proof-of-concept code and diagram of the value predictor’s

state for a Test + Hit attack.

to derive the value predictor index accessed by the victim (sender)
during a load operation, and with the knowledge of the source code,
the receiver can correlate the index accessed to the secret value 1 or
0 they are trying to learn. In this attack, first, the predictor is set to
a known state in the train step by having a confidence number of
accesses to a known index. In the modify step a further confidence
number of secret-related access can be made to set a new valid
predictor state or 1 access can be made to cause the previously trained
value to be invalidated. In the final trigger step, there is 1 memory
access to a known index, as in the first step.

If modify step involves confidence number of accesses, as is
shown in Figure 3, there will be a correct prediction in the last step
if secret and known indices are different or secret is 0, since the
predictor state was not modified by the middle modify step.4 There
will be a misprediction if indices are the same and the secret is 1
(predictor state was modified by the middle step that maps to the same
index as the known index steps). If the modify step has 1 access and
secret-dependent access by the sender maps to the same index as the
known index access, it resets the confidence value to 0 and leads
to no prediction in the last step. Otherwise, there will be a correct
prediction as no modification of states in the middle step.

B. Test + Hit Attack
The second attack we present is a Test + Hit attack, shown in

Figure 4. In this attack, the receiver is able to derive the secret bit
value that was trained into the value predictor state by the sender’s
accesses. First, the sender accesses the secret at least a confidence
number of times to train the predictor. The receiver can for example
force the sender to repeatedly execute the code that uses the secret
value and causes it to be trained into the value predictor state. Next,
the receiver makes access in the trigger step (no modify step is used
in this attack) to a known data at the same index as the sender did.
The access triggers the value predictor to make a prediction related to
the secret value. When prediction occurs, during transient execution

4There can be a correct prediction also if the indices are the same and the
secret data and known data happen to be the same. However, for index-focused
attacks there is no assumption about data knowledge and the probability of
this is approximately 1�64 for 64-bit data. Further, if this attack involves
known data, it becomes equivalent to the Test + Hit attack.

pvalue=0.8169 pvalue=0.0420

pvalue=0.7521 pvalue=0.0000

Fig. 5: Timing distribution results of Train + Test attacks using

timing-window channel (1-2) and persistent channel (3-4). Red pvalue
means the related attack is effective, while black means it is not.

the output of the value predictor can be encoded into the persistent
cache channel. Similar to Spectre attacks, array access is performed
in Figure 4, where the index is the value from the value predictor. To
recover the secret value from the cache channel, the receiver checks
the timing of accessing the array elements, to learn which one was
previously placed into the cache and thus recover the secret.

C. Experimental Setup

To evaluate new value predictor attacks, we implemented value
predictors in a modified gem5 simulator [2], and run the code on
the simulator. The gem5 simulator was used in syscall emulation
mode (SE) with the O3CPU model and Ruby cache for testing. We
implemented a baseline (non-secure) LVP [8] predictor. and an oracle
VTAGE [10]. The oracle value predictor makes predictions only for
the target load instruction to maximize the attacker’s advantage. To
judge whether an attack is successful, we report averages over 100
runs for each attack, with a 95%-confidence interval [1] calculated
using the Student’s t-test [5] to distinguish measured timing distribu-
tions.

D. Attack Evaluation and Results

For our evaluation, we focus on analyzing if the receiver can
distinguish two types of timings – “mapped” vs. “unmapped” cases –
as explained below. We use pvalue calculation result to determine if
two types of timings can be distinguished. If the pvalue is smaller than
0.05, timing distributions are differentiable and the attack succeeds.

1) Train + Test Attack Results: For the timing-window channel,
when the secret and known indices map to each other and secret is 1,
misprediction leads to longer timing in the trigger step. Meanwhile,
there will be a correct prediction in the trigger step when not mapped,
since the predictor state set in the train step was not modified.

We also evaluate a persistent channel variant of this attack, where
mapped case means two indices are the same and secret is 1, resulting
in misprediction in the trigger step, which encodes the data into the
cache, and a cache hit is observed in the reload part of the covert
channel. Otherwise, the unmapped case results in a cache miss.

In Figure 5 (1) and (3) it can be seen that without value predictor
(no VP), different timing distributions cannot be distinguished, and
the attacks are not possible. Meanwhile, in Figure 5 (2) and (4) it
can be seen that when (non-secure) LVP value predictor is enabled,
timing distributions for mapped and unmapped cases are different,
and the secret value can be leaked.



1. void _gcry_mpi_powm (gcry_mpi_y_ res,
2. gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)
3. {
4.      mpi_ptr_t rp, xp; /* pointers to MPI data */
5.      mpi_ptr_t tp;  
6.      ...
7.      for(;;) {
8.       /* For every exponent bit in expo*/
9.     _gcry_mpih_sqr_n_basecase(xp, rp);

10.     if(secret_exponent || e_bit_is1) {
11.         /* unconditional multiply if exponent is
12.               * secret to mitigate FLUSH+RELOAD
13.               */
14.              _gcry_mpih_mul(xp, rp);
15.          }
16.           if(e_bit_is1) {
17.               /*e bit is 1, use the result*/
18.               tp = rp; rp = xp; xp = tp;
19.               rsize = xsize;
20. }
21.      }
22. }

Fig. 6: Code of modular exponentiation from libgcrypt, adapted

from [6]. The highlighted red-colored part shows conditional access

to the tp index which can be leaked through value predictor attacks.

Fig. 7: Sequences of the receiver’s observation for each iteration

when the e_bit is 0 or 1 (line 16 shown in Figure 6).

Our proof-of-concept code can be extended to real applications. For
example, Figure 6 shows the RSA related portion of libgcrypt
code with conditional memory access. The code is already protected
against Flush + Reload cache timing attacks [14]. However, when the
value predictor is trained through repeated accesses (due to repeated
invocations of the code with the same cryptographic key), the index
of the tp access can be leaked through the value predictor attack,
leaking the value of e_bit_is1 as is shown in Figure 7. The
success rate of correctly transmitting e_bit is 95.7% for 60 runs,
which is enough to reconstruct the full key based on prior work [6].
Without further optimization, the transmission rate is 9.65Kbps.

Our attack is demonstrated on RSA modular exponentiation which
does not use blinding techniques. We do this because most related
work in architecture does not consider blinding and we target similar
code for easier comparison. There are blinding techniques for both
RSA and ECC, due to limited space, we do not discuss blinding
here. However, we expect that a variant of our value prediction attack
actually works if the blinding scheme is used. If the secret is accessed
by a load or similar instruction during the blinding operation, we can
use value prediction to extract the secret (it is not possible to extract
the blinding factor, as it is random each time, while the secret is
constant and gets trained into the value predictor). This type of attack
is not possible with branch predictor or cache side channels but is
possible to value predictor attacks.

2) Test + Hit Attack Results: For the timing-window channel,
mapped data means that the data accessed in the train step and the
trigger step are the same and a correct prediction can be derived in the
trigger step (faster timing), while in the unmapped case the two data
are different (slower timing). For the persistent channel, the mapped
case means the secret value encoded by the train step is brought to
the cache, causing reloading a fast timing. Therefore, the secret value
can be observed through cache hits in the cache channel. Otherwise,
only cache misses can be observed for the unmapped case.

As is shown in Figure 8, when no value predictor is used,

pvalue=0.2630 pvalue=0.0072

pvalue=0.6111 pvalue=0.0000

Fig. 8: Timing distribution results of Test + Hit attacks using timing-

window channel (1-2) and persistent channel (3-4). Red pvalue means

the corresponding attack is effective, while black means it is not.

there is no attack due to no significant difference in the timing
distributions. Meanwhile, with (non-secure) LVP enabled, the mapped
and unmapped timing distributions are significantly different.

3) Value Predictor Type Influence: We further evaluate whether
the type of value predictor, e.g., LVP vs. VTAGE, has impacts on
the attacks. For both predictor types, timing distributions between
mapped and unmapped cases are significantly different to leak data.
The VTAGE data and details are omitted due to limited space.

V. VALUE PREDICTOR ATTACK MODELING

Based on the two proof-of-concept attacks, we further present the
first model for analyzing value predictor security. The model further
points to additional attack types. The model is based on exploring all
possible steps that the victim or the attacker can perform to affect or
observe the value predictor state, and how that can leak information.

1) Train Step: In this step, the value predictor is trained using
load access at a certain index, to set up a deterministic predictor
state for the PC’s or data address’s prediction entry. This step can be
secret-related if performed by the sender who is the only one with
logical access to the secret. In this case, this step is used to put the
secret-related data into the predictor state so it can be revealed by
other steps. Otherwise, this step is used to provide a known reference
state that can be later used to derive secret information by observing
state changes, which can be performed by the sender or the receiver.

To train the value predictor, the loads usually need to be accessed at
least confidence number of times to set the predicted state. However,
for certain attacks, the access is made confidence � 1 number of
times, so that the access in the next modify step can be detected if
it pushes the total accesses to the confidence number of times, and
the prediction is triggered to output a value during a cache miss.

2) Modify Step: In some attacks, the modify step is needed to alter
the value predictor’s state set in the first step before an observation is
made. This step is useful if the first step was to known data or index,
and a state modification (due to secret-related access) is needed to
observe potential interferences. This step is also useful if the first
step is secret-related, and the state modification is due to another
(possibly the same) secret-related access, or due to a known data or
index access. For this step, most attacks will repeatedly execute load
more than confidence number of times to encode the value into the
predictor’s state. However, for some attacks, only 1 extra access in
this step is needed if the train step uses confidence� 1 accesses.



TABLE I: Possible actions for each step of value predictor attacks.

Action Description

SKD , SKI Sender makes access to data, or respectively index, that it knows.
RKD , RKI Receiver makes access to data, or respectively index, that it knows.

SSD0
,

SSD00
Sender makes access to secret data the receiver tries to learn. For
attacks leveraging interference between sender’s accesses, secret
data D0 and D00 may or may not be the same, which is what the
receiver is trying to learn. For attacks that involve known data, the
goal is to learn if the known D is or is not the same as the secret.

SSI0 ,
SSI00

Sender makes access to secret-dependent index the receiver tries
to learn. For attacks that involve the known index, the goal is to
learn if the known I is or is not the same as the secret index.

— This step is not used, this is only for the modify step for attacks
that do not have any actions in the modify step.

3) Trigger Step: A single access is required in this step to probe
the value predictor to observe the interference that can reveal the
secret, or even directly observe the secret through timing variations.

4) Encode and 5) Decode Step: The sensitive information
obtained from predictor states needs to be encoded into a channel
to exfiltrate the information. This can be a persistent channel (e.g.,
cache channel), a volatile channel (e.g., port contention channel), or a
timing-window channel (e.g., directly measure the timing of the load
access and subsequent instructions). Depending on the types of three
possible channels used, related ways are used to decode the secret.

A. Modeling Results
To understand possible attacks, we consider the first three steps, as

the last two steps are about exfiltrating the information, and are not
specific to value predictors. The first three steps can be performed by
the sender S or the receiver R. The possible actions in each step are
shown in Table I. With these actions, there are in total 576 possible
three-step combinations for the train, modify, and trigger steps: 8 step
types for train step (SKD , SKI , RKD , RKI , SSD0

, SSD00
, SSI0 ,

and SSI00 ) ⇥ 9 step types for modify step (the same as train step
plus —) ⇥ 8 step types for trigger step (the same as train step) =
576 combinations. However, the majority of these 576 combinations
do not represent attacks or can be reduced to simpler patterns. We
define rules to determine if a pattern corresponds to a possible attack,
and eventually show that there are exactly 12 effective attacks, as
discussed in Section V-B. Rule description and soundness analysis
of the model are not included due to limited space.

B. Value Predictor Attack Variants
Following our analysis, there are 12 value predictor attack variants.

The attacks are summarized below and shown in Table II. If the
predictor indexing function uses pid or another identifier, and two
known data or index steps are done by different processes (not both
S nor both R), then the known data or index has to come from the
shared library so both can access the same index. However, if the
index is just based on the address and no pid (as is the case of many
known value predictors [9]–[12]), then no shared library is needed.5

1) Train + Test: Details of this attack were given in Section IV.
2) Test + Hit: Details of this attack were given in Section IV.
3) Train + Hit: This is a two-step attack where in the train step the

predictor state is first set by the confidence number of accesses to a
known data. Next, 1 secret-related access is made. Correct prediction
makes execution faster which shows that the known data is the same
as secret-related data, otherwise execution is slower and two data

5Using pid only increases difficulties for attacks but does not eliminate it.

TABLE II: List of value predictor attacks and attack categories that

each attack belongs to. Each step is explained in Section V-A. Each

attack category is explained in Section V-B.

Step 1 
(Train)

Step 2 
(Modify)

Step 3 
(Trigger)

Attack Cateogry

SKD  — SSD' Train + Hit
SKI SSI' SKI Train + Test
SKI SSI' RKI Train + Test
RKD  — SSD' Train + Hit
RKI SSI' SKI Train + Test
RKI SSI' RKI Train + Test
SSD' SSD'' SSD' Spill Over
SSD'  — SKD Test + Hit
SSD'  — RKD Test + Hit
SSD'  — SSD'' Fill Up
SSI' SKI SSI' Modify + Test
SSI' RKI SSI' Modify + Test

TABLE III: Value predictor attack evaluation for all the attack

categories. Red pvalue means the corresponding attack is effective

with transmission rate shown, while black means it is not. Tran. Rate
is the transmission rate, or bandwidth, of the attack.

Attack Category
Timing-Window Channel Persistent Channel

No VP VP (Tran. Rate) No VP VP (Tran. Rate)

Train + Hit 0.1620 0.0086 (7.72Kbps) — —
Train + Test 0.8169 0.0420 (7.38Kbps) 0.7521 0.0000 (6.88Kbps)
Spill Over 0.2989 0.0000 (8.12Kbps) — —
Test + Hit 0.2630 0.0072 (7.81Kbps) 0.6111 0.0000 (7.43Kbps)

Fill Up 0.3734 0.0083 (8.22Kbps) 0.4677 0.0000 (6.85Kbps)
Modify + Test 0.2966 0.0000 (8.00Kbps) — —

are different. A timing-window channel can be used to observe the
timing difference of correct prediction vs. misprediction.

4) Spill Over: This type of attack aims to determine if two secret-
related states are the same or different. First, confidence�1 number
of accesses are made to secret data. Next, 1 access is made to possibly
the same or different secret data. Finally, in the trigger step 1 access
is made to the same secret data as in the first step. The last step
will be predicted correctly if all the secrets accessed are the same.
Otherwise, the confidence value is not reached (since the middle
step accesses a different value) and there is no prediction. A timing-
window channel can show the timing difference of correct prediction
vs. no prediction, to learn if the values are the same or not.6

5) Fill Up: This two-step attack has a confidence number of
accesses to secret data in the train step and 1 access to secret data
in the trigger step, which is possibly the same or different secret.
The last step has correct prediction if two secrets match, otherwise
a misprediction is derived. A timing-window channel shows timing
differences of correct and incorrect prediction to learn the secret. The
secret can also be extracted from transient execution using a persistent
or volatile channel since the predictor is trained on the secret.

6) Modify + Test: This is a flipped image of the Train + Test
attack. First, a confidence number of secret-related accesses is
performed in the train step. In the modify step there are confidence
accesses or 1 access to a known index to change or invalidate the pre-
dictor state, respectively. In the trigger step, there is 1 secret-related

6If all the data are the same, the secret value can be itself extracted from
transient execution in the last step, but this reduces to the Fill Up attack since
confidence� 1 plus 1 access add up to confidence accesses captured by
the train step in the Fill Up attack. Further, this is a weaker version of Fill Up
attack, since it only leaks data if all the accesses are the same secret, while
Fill Up leaks data in all the cases using a persistent or volatile channel.



index access. A timing-window channel shows the timing difference
of correct vs. incorrect prediction or correct vs. no prediction.

All the attack variants discussed above can use a timing-window
channel to observe the timing difference due to prediction states.
Further, 2) Train + Test, 4) Test + Hit, and 5) Fill Up can use a
persistent or volatile channel to extract secret data from transient
execution since the predictor is trained on the secret before the trigger
step. Evaluation results of all the attack categories are shown in
Table III, which proves the effectiveness of all the attack variants.

VI. SECURE VALUE PREDICTORS

Security defenses such as InvisiSpec [13] can prevent existing
transient execution attacks, but have not considered value prediction
in particular, and are not effective against our new attacks. Conse-
quently, we present value-predictor-specific defenses which shows an
estimation of possible defense value predictors can consider.

A. Defense Techniques
Always predict a value (A-type) defense makes the predictor

always predict the value based on a fixed value or on a history
value regardless of whether confidence level is reached or not. In
this case, the attacks based on differentiating from prediction vs. no
prediction timing are protected. Delay side-effects (D-type) defense
targets delaying the microarchitectural state changes and can only
be used for preventing value predictor attacks based on persistent
channels. Randomly predict a value (R-type) defense randomly
predicts a value out of a window around the actual accessed value.
Assuming the window size is S, the rate of randomly predicting the
correct value is 1/S.

B. Defense Strategies Evaluation
When all the A-type, D-type, and R-type defenses are combined, all

attacks we have considered can be defended. Note that R-type defense
has a (predictable) probability of attacker learning the correct value
based on the window size. This probability can be made arbitrarily
small at some cost to performance.

The Train+Test attack can be prevented as long as the R-type
defense is applied. D-type defense is effective only against the
persistent-channel variant of Train+Test attack but not others. The
Modify+Test attack can be prevented when the R-type defense is
applied as well. The Test+Hit attack can be prevented by combining
both A-type and R-type defense. D-type defense is effective against
only the persistent-channel type of Test+Hit attack. The Train+Hit
attack can be prevented by combining both A-type and R-type
defense. The Spill Over attack can be prevented by the A-type defense
directly. The Fill-Up attack can be prevented by R-type defense.

Due to the limited space we only provide the analysis of the
Train+Test and Test+Hit attacks below.

For the Train+Test attack, it will be prevented as long as the R-
type defense is applied, and optionally D-type can be applied for
preventing persistent channel variants. We evaluated the influence of
the window size and found that a window size of 3 is the minimal
size for this type of attack to guarantee security (p-value larger than
0.05 in our experiments), while at the same time maintaining the
performance. Since Train+Test differentiates correct prediction vs.
misprediction, A-type defense will not work, so this defense is not
helpful in this case. For attack variants that use a persistent channel,
D-type defense can be used.

For the Test+Hit attack, combining A-type and R-type defense
can prevent the attack. For the R-type defense, in our experiments,
on Test+Hit attack, the evaluation shows that window size of 9 is

the minimal size for this type of attack to guarantee security (p-
value larger than 0.05). This will cause large degradation to the
performance. Therefore, a smaller window size is selected to maintain
performance and partial security, e.g., size of 5. In addition, adding
A-type defense is required to assist in fully preventing the attacks. D-
type defense can be used for the persistent channel type of Test+Hit
attack, but again it by itself will not defend non-persistent-channel
attack types, so both A-type and R-type should be used.

VII. CONCLUSION

Improving processor performance without considering security at
the architecture level can lead to serious security problems that have
been publicized in recent years, especially due to information leaks
and timing channels. One of the processor features proposed for
performance improvement is value prediction, but prior to this work,
their security has not been evaluated. As we show in this work,
value predictors are indeed vulnerable to information leaks. We also
presented three security features to protect value predictors from
different attacks, and suggest defenses that should be used when value
prediction is implemented in real processors.

REFERENCES

[1] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in Conference on
Computer and Communications Security, 2019, pp. 785–800.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[3] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump Over
ASLR: Attacking Branch Predictors to Bypass ASLR,” in International
Symposium on Microarchitecture, 2016.

[4] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 693–707.

[5] W. S. Gosset, “The Probable Error of a Mean,” Biometrika, pp. 1–25,
1908.

[6] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security Symposium, 2018, pp. 955–972.

[7] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher et al., “Spectre Attacks: Exploiting
Speculative Execution,” in Symposium on Security and Privacy, 2019,
pp. 1–19.

[8] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Load
Value Prediction,” in International Conference on Architectural Support
for Programming Languages and Operating System, 1996, pp. 138–147.

[9] A. Perais and A. Seznec, “BeBoP: A Cost Effective Predictor Infras-
tructure for Superscalar Value Prediction,” in International Symposium
on High Performance Computer Architecture, 2015, pp. 13–25.

[10] A. Perais and A. Seznec, “Practical Data Value Speculation for Future
High-End Processors,” in International Symposium on High Performance
Computer Architecture, 2014, pp. 428–439.

[11] R. Sheikh, H. W. Cain, and R. Damodaran, “Load Value Prediction
via Path-based Address Prediction: Avoiding Mispredictions due to
Conflicting Stores,” in International Symposium on Microarchitecture,
2017, pp. 423–435.

[12] R. Sheikh and D. Hower, “Efficient Load Value Prediction using Multiple
Predictors and Filters,” in International Symposium on High Performance
Computer Architecture, 2019, pp. 454–465.

[13] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy,” in International Symposium on Microarchitecture, 2018, pp.
428–441.

[14] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack.” in USENIX Security Symposium,
2014, pp. 719–732.


