SecChisel Framework for Security Verification
of Secure Processor Architectures

Shuwen Deng!, Doguhan Gﬁmﬁ@ogluz, Wenjie Xiongl, Sercan Sari’, Y. Serhan Gener>, Corine Lu’,

Onur Demir?, and Jakub Szefer!

Ushuwen.deng, wenjie.xiong, corine.lu, jakub.szefer}@yale.edu,
2doguhan.gumusoglu@std.yeditepe.edu.tr, 3{ssari, sgener, odemir}@cse.yeditepe.edu.tr
Yale University, New Haven, CT 06510, USA
2’3Yeditepe Universitesi, 34755 Atasehir/Istanbul, Turkey

ABSTRACT

This work presents a design-time security verification framework
for secure processor architectures. Our new SecChisel framework
is built upon the Chisel hardware construction language and tools,
and uses information flow analysis to verify the security properties
of an architecture at design-time. To enforce information flow secu-
rity, the framework supports adding security tags to wires, registers,
modules, and other parts of the design description, as well as allows
for defining a custom security lattice and custom information flow
policies. The framework performs automatic security tag propa-
gation analysis in a new SecChisel parser and information flow
checking using the Z3 SMT solver. The same SecChisel codebase is
used to design hardware modules as well as to verify the security
properties, ensuring that the verified design directly corresponds to
the actual design. This framework is evaluated on RISC-V Rocket
Chip expanded with AES and SHA modules. The framework was
able to capture information leaks in the hardware bugs or Trojans
that it was tested with.

CCS CONCEPTS

« Security and privacy — Logic and verification; Embedded
systems security; Information flow control; « Hardware —
Hardware description languages and compilation.

KEYWORDS

formal security verification, secure processors, Chisel, RISC-V

ACM Reference Format:

Shuwen Deng!, Doguhan Giimiisoglu?, Wenjie Xiong', Sercan Sari’, Y.
Serhan Gener?, Corine Lu!, Onur Demir?, and Jakub Szefer'. 2019. SecChisel
Framework for Security Verification of Secure Processor Architectures. In
Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP °19), June 23, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3337167.3337174

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP 19, June 23, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7226-8/19/06...$15.00
https://doi.org/10.1145/3337167.3337174

1 INTRODUCTION

A number of secure processor architectures have been designed
over the last decade, e.g., XOM [15], AEGIS [19], SP [11], Bastion [8],
or HyperWall [20]. They all implemented some new security protec-
tion mechanisms in hardware, typically leveraging encryption and
hashing to protect user’s code or data. These new mechanisms are
used, for example, to enable isolation of trusted software modules
from an untrusted operating system or to protect virtual machines
from an untrusted hypervisor, for example. The ideas presented by
these architectures have been recently incorporated into commer-
cial designs, such as AMD’s SEV [1] or Intel’s SGX [16] processor
architecture security extensions.

Today, however, most of these architectures have not been thor-
oughly and formally verified from the security perspective. Any
security flaws with the hardware will undermine the security of
the whole platform. There is then a need for security verification
frameworks, such as presented in this paper.

To help performing security verification of such architectures,
this paper proposes the new SecChisel framework, which incorpo-
rates security-related features directly into Chisel [4] code. Similar
to existing projects, Caisson [14] and SecVerilog [23], SecChisel
embeds security tags in a modified hardware description language.
New security tags are used in information flow tracking approach
at design-time and do not add overhead to the actual hardware. The
new methodology supports dynamically valued tags, not available
in Caisson [14], which is useful when reasoning about primitives
(such as wires or registers) that may hold public or private data
during different cycles of computation. And, unlike SecVerilog [23],
users of SecChisel need not learn nor write SMT code. To the best
of the authors’ knowledge, this is also the first hardware security
verification framework supporting nested modules, without hav-
ing to check individual module separately. Projects focusing on
run-time checks, such as Sapper [13], are orthogonal to this work.

To demonstrate how SecChisel can protect secure processor ar-
chitectures, the framework is validated on the Rocket Chip [3]
RISC-V [18] processor, developed in Chisel, by implementing and
verifying AES and SHA security modules realized as Rocket Cus-
tom Coprocessor Interface (RoCC) accelerators within the RISC-V
processor. In addition, synthetic hardware bugs and Trojans are
introduced into the AES and SHA modules to show how the frame-
work can detect information leaks. The security verification of the
accelerators takes an average of 21 minutes, while the compilation
and simulation of the Rocket Chip with RoCC takes about 25 min-
utes. This shows that the verification step can be done in parallel

https://doi.org/10.1145/3337167.3337174
https://doi.org/10.1145/3337167.3337174

HASP 19, June 23, 2019, Phoenix, AZ, USA

with the compilation of the design and does not introduce new
timing overhead.

1.1 Contributions

The contributions of this paper are:

o The first security verification framework based on the Chisel
hardware construction language, which leverages informa-
tion flow tracking and an SMT solver.

o The first hardware security verification framework support-
ing verification of nested modules, without having to check
individual module separately.

o Flexible security verification framework supporting static
and dynamic tags, declassification mechanisms, and inter-
ference tables for third party modules.

o Evaluation of the framework’s functionality and performance
using AES and SHA security RoCCs within a RISC-V Rocket
Chip, showing fast runtime and the ability to detect infor-
mation leaks due to hardware bugs or Trojans.

2 VERIFICATION METHODOLOGY

The goal of this work is to provide a design-time methodology to
formally prove security properties of a secure processor architecture
(this Section) and a practical framework using the methodology
(Section 3). Works on run-time security checks, e.g., Sapper [13] or
GLIFT [21], are complementary to this work.

2.1 Assumptions and Threat Model

Either through a bug in a hardware code, or due to a malicious
designer or an adversary, some sensitive data may leak out to un-
trusted low-security outputs, a so-called “information leak.” The
framework checks, at design-time, if there are any such buggy or
malicious flows of information. Using the information flow track-
ing, policy violations such as confidentiality violation or integrity
violation can be detected. Information leaks via physical channels,
such as EM radiation, are not considered as they cannot be ex-
pressed in today’s hardware description languages. Hardware bugs
or Trojans at design time are considered, but after-manufacturing
bugs [7] are orthogonal to this work. The framework assumes a
trusted compiler and toolchains to convert Chisel to an HDL and
then the actual hardware.

2.2 Information Flow Tracking Approach

Our work uses information flow tracking (IFT) approach. Informa-
tion flow refers to the transfer of information between different
entities. Information flow can be explicit, e.g., a = b; where data or
information in b goes to a; or it can be implicit, e.g., b = 0; if (a)
then b = 1; where the value of b reflects whether a is true, but there
is not a direct assignment, or copying of data, from a to b. Typically,
when discussing information flow there are different security levels,
e.g., a lower-security level (“Low”) such as public data, a higher-
security level (“High”) such as secret key. Each data is associated
with a security level, and information flow tracking can be used to
check the security properties, e.g., no transfer of “High” to “Low”
information (for confidentiality) or “Low” to “High” information
(for integrity). Since information flow tracking has inherent pres-
ence of false positive, the SecChisel framework supports tagging

Deng, et al.

at very fine granularity (individual bits) and using declassification
and dynamic tags to minimize the false positives.

3 THE SECCHISEL FRAMEWORK

The proposed methodology is realized in a new SecChisel frame-
work. The framework extends the existing Chisel language and
tools with new security verification functionality. The SecChisel
workflow is shown in Figure 1. SecChisel extends data variables
(e.g., various wires, registers, or other parts of the design) of Chisel
with security tags, allowing designers to annotate the design with
the security tags associated with variables. During compilation, the
SecChisel code is converted to a modified FIRRTL (Flexible Inter-
mediate Representation for RTL) [12] and then translated to logical
statements that can be used with the Z3 SMT solver [9], which
checks for information flow violations based on the security tags.
The SMT solver is used to assert that there are no data transfers
between variables that could violate the security policy. The se-
curity verification steps can be done in parallel with compilation
and simulation of a Chisel design. The whole SecChisel workflow
consists of:

(1) SecChisel Code — hardware description, including the se-
curity lattice description, the new security tags, the dynamic
tag-range functions, and declassification.

(2) SecChisel Parser - tool for generating the modified FIRRTL
that contains both functional description of the design and
information about the security tags.

(3) FIRRTL Code - intermediate representation of the design
with information about the security tags.

(4) SMT Code Generator - tool for parsing FIRRTL into a
FIRRTL statement/expression tree, which is then processed
into SMT statements used by an SMT solver.

(5) SMT Code - code describing the security lattice, the tags,
the dynamic tag-range functions, data flows, and the asser-
tions for information flow checking.

(6) Parallelization — tool that parallelizes the SMT code ac-
cording to the number of processor cores available.

(7) Z3 SMT Solver - tool that does the actual information flow
checking and generates satisfiable or unsatisfiable result
from the SMT code.

(8) Interference Table — an optional step where third-party
black-box modules can be used as part of the verification.

3.1 SecChisel Code (@ in Figure 1)

SecCoreModule class extension and security policy. There is
a new SecCoreModule class that extends the CoreModule class
from Chisel and allows modules to have security lattices bound
to them. Figure 2a shows the sample SecChisel code of a SHA-
256 engine realized as a Rocket Chip RoCC. The io.addend and
io.accum are input ports. The module is extended from the new
base module SecCoreModule to allow its components to be tagged
(line 1), i.e., each basic variable can be associated with a security
tag for information flow analysis. All variables that are not tagged
or within normal CoreModule modules have their security tags set
to undefined by default. Undefined tags are resolved in the SMT
Code Generator step.

SecChisel Framework for Security Verification of Secure Processor Architectures HASP ’19, June 23, 2019, Phoenix, AZ, USA

Interfe-
rence
Table Code

()= Modified for .
SecChisel
[J=Unchanged *
Chisel

. Bl leliza-
code .

Generator

H \
@ FIRRTL Code FIRRTL Verilog

i H SecChlsel S cChisel . N parser

i (with security . code for ASIC, or

i " Code Parser and Verilog . . .

i N tags) 7 . the design simulation |

i P compiler
_ T ~

Figure 1: SecChisel verification workflow. Square boxes represent files or data, ovals represent tools or processes. The unmodified Chisel
tools (in white) can be used to generate the hardware design, while the new SecChisel components (in turquoise blue) perform the security
verification. Black dotted line circles pre-existing baseline Chisel. Green dashed line includes whole SecChisel verification flow. Because the
security tags are embedded in the source code of the design, single codebase can be used for both security verification as well as to generate

the hardware design. The use of third-party modules and interference table is optional in addition to help support third-party IP.

The default security policy is for enforcing confidentiality: it is
not allowed that variables bound to higher security tags leak their
data to the variables with lower security tags. The policy is checked
in Z3 SMT Solver, thus does not require additional specification.
Integrity can be verified in a similar manner.

Security lattice definition. The base Lattice class contains
the simplest possible security lattice with two levels: “High” and
“Low”, where “High” has greater security level than “Low”. Any
new security lattice can be created by extending a new object with
the base Lattice class. Any two tags’ values in the security lattice
have a greatest lower bound (the meet) and least upper bound (the
join). The meet or join operations are used to calculate the resulting
tag value when variables are processed (Case 2 of Section 3.4).

For each SecCoreModule, the designer can define the module’s
own security lattice or implicitly use the default Lattice class.
Sub-modules are allowed to have different security lattices rather
than use top module’s security lattice. Within the object, new secu-
rity lattice elements are defined, and the relationship among the
elements is defined using the overloaded less-than < operator to
show security tag relations between each other. Figure 2a shows
an example of a designer-defined new security lattice (lines 14 - 19)
including a visualization of the security lattice for that class. The
custom lattice will overwrite the default one (line 12).

Static tags. Static tags of variables in the design do not change
their values throughout the verification process and always have
the fixed value assigned by the designer. They are used when the
designer is certain about a variable’s security level for the whole
life cycle of the system. In line 5 of Figure 2b, which shows Sec-
Chisel code for an AES engine realized as a Rocket Chip RoCC, the
encryption key of AES RoCC is tagged as “High” security using the
:> operator.

Dynamic tags. Dynamic tags are tags of which the value de-
pends on the data value of other variables (wires, registers, etc.),
which are known as the dependent variables. The value of the dy-
namic tag is a function of the dependent variables. The function
outputs one of the values from the security lattice, based on rules
specified by the designer, called “tag-range functions” A tag-range
function for dynamic tags in SHA RoCC is defined in lines 21 - 24 of
Figure 2a. The dynamic tags of message_input and message_output
is determined by process_id, and is assigned by the overloaded :>
operator (line 26 - 30 of Figure 2a) combined with the usage of

-

class SHA256_init (implicit p: Parameters)
extends SecCoreModule() (p){

2. val io = IO (new Bundle {
3. val addend = UInt(64.W).asInput
4. val accum = UInt(64.W).asInput
5. val initReady = Bool()
6. val message_output = Vec(16, UInt(32.W)).asOutput})
7. val message_size = io.accum(SIZE_MSB,SIZE_LSB)
8. val process_id = io.accum(ID_MSB,ID_LSB)
9. val message_in = Cat(io.addend(M_PART_ONE_MSB,
M_PART ONE_LSB),io.accum(M_PART TWO_MSB,M PART TWO_LSB))
10.

11. // Specify use of custom lattice
12. override val lattice = SHA Lattice

13.

14. // Define lattice structure High

15. object SHA Lattice extends Lattice {

16. val Intel = NewLatticeElement () Vs b

17. val Inte2 = NewLatticeElement () Intel ////hneZ
18. LOW < Intel < HIGH AL

19. LOW < Inte2 < HIGH } Low

20.

21. // Dynamic value tag function

22. val SHA TagRange =

23. createTagRange (lattice.LOW).add (0, 130, lattice.Intel)
24. .add(131, 500, lattice.HIGH).add(501,1000,lattice.Inte2)

26. // Dynamic value tags
27. message_in :> (SHA_TagRange, process_id)

28.

29. for (i <- 0 to 16-1){

30. io.message_output(i) :> (SHA_TagRange, process_id)}
31 -

32. }

(a) Example from SHA RISC-V Rocket Chip RoCC with custom security

lattice shown in the sqaure box.

1. class KeyExpansion(implicit p: Parameters)
extends SecCoreModule() (p){

2 -

3 val roundkey = Mem(16, UInt(width = 8))
4 roundkey(0):= "h2b".U

5. roundkey :> lattice.HIGH
6
7
8

. for(i<-0 to 176-1){
io.data_output(i) :> (roundkey_ propagate, lattice.LOW)}

(b) Example from AES RISC-V Rocket Chip RoCC.

Figure 2: Example from SHA and AES RISC-V Rocket Chip RoCC
written in SecChisel code, new additions compared to base Chisel
code are in bold. For the Chisel code not in bold, please refer to
Chisel specification [4]. A custom security lattice is shown, of which
“Inte1” and “Inte2” are extra security tags that have security level
between “High” and “Low”.

HASP 19, June 23, 2019, Phoenix, AZ, USA

tag-range function. In this case, the tag of the input message and
output hash value will be either “High” or “Low” determined by
process_id and all of the undefined tags in the sub-modules will
resolve to have the same dynamic tags. The tag-range function can
also be made to support multiple dependent variables by defining
sets of ranges.

Declassification. Information flow will always report a viola-
tion if there is information flow from “High” to “Low” (for con-
fidentiality). Sometimes, however, this kind of information flow
should be allowed. For example, in lines 7 - 8 of Figure 2b, the final
output data_output of AES RoCC is declassified to be “Low” using
:> operator. Although the output depends on the secret key and
will be tagged as “High”, since strong encryption is assumed, the
output conveys no information to the attacker, and thus, it can be
declassified to “Low” value.

When using declassification, the system designer might over-
write some rules and use declassification improperly, causing a false
negative. Our tool reports the number of declassifications used (to
allow users to compare it with the expected number) and also gives
warnings about declassification.

Nested modules. Chisel and SecChisel both support describing
a design with nested modules. To analyze the information flow, the
nested modules will be resolved in SMT Code Generator described
in Section 3.4.

3.2 SecChisel Parser (@ in Figure 1)

Given SecChisel code, it needs to be parsed into the modified FIR-
RTL code. The parser is based on Chisel parser, but it includes the
tags information for the variables (especially, it marks untagged
variables as undefined). Moreover, Chisel sometimes transparently
defines new temporary variables during compilation which are not
in the original Chisel source code. These will be tagged as undefined
in the modified FIRRTL code as the parser generates them.

3.3 FIRRTL Code (® in Figure 1)

FIRRTL language was created to represent the standardized, elabo-
rated circuit produced from Chisel code [12]. It can be efficiently
used to analyze the information flow. SecChisel does not modify
FIRRTL language’s syntax. Instead, the security information is em-
bedded in the comments section of each line of FIRRTL code. When
analyzing the FIRRTL, Chisel’s default tools will ignore the com-
ments so that the hardware can be generated directly from the
SecChisel code without any changes to the back-end of the Chisel
tool-chain. Meanwhile, when FIRRTL is analyzed by the SMT Code
Generator, the security information is included to generate the SMT
code. So the verification and the final hardware are based on the
same design in FIRRTL.

3.4 SMT Code Generation (@ in Figure 1)

SMT Code Generator converts FIRRTL into an expression/statement
tree and then generates SMT code. Processing the FIRRTL tree
to SMT statements is the key part of the SecChisel framework,
especially when dealing with nested modules. The four phases for
transforming FIRRTL code into SMT code are:

(Phase 1) Parse the FIRRTL file and create L;yggedvariable Struc-
ture to store variables and the corresponding explicit

Deng, et al.

Algorithm 1 redefineTags (statement, variable, cur Module)

Input: statement: a line of FIRRTL code containing the variable of
Laefauls whose tag needs to be redefined
variable: the variable (e.g., Reg, Wire, etc.) whose tag needs to be
redefined
curModule: the module that is being checked
Output: redefined tag for variable of Lyegefine
1: if variable has been assigned defined tag then
2: return defined tag
3: else
4 for each statement x € Lgefquir of curModule do
5 if x.lhs == variable then
6: if tag of x lhs is defined (or tag of x.rhs is defined) then
7 tag of statement.rhs < tag of x.lhs (< tag of x.rhs)
8 return tag of statement.rhs
9

else
10: find submoduleList of current module
11: tag of statement.rhs < joinRedefineTags (statement,rhs,
submoduleList, cur Module)
12: tag of x.rhs < tag of statement.rhs
13: tag of x.lhs < tag of x.rhs
14: return tag of statement.rhs

5: if cannot find statement.rhs then
16: if cur Module has outer module then

—_

17: tag of statement.rhs < redefineTags (statement,
statement.rhs, outer module)

18: return tag of statement.rhs

19: else

20: tag of statement.rhs & lowest tag of its security lattice

21: return tag of statement.rhs

tag information in the structure, untagged variables will
have no tags associated with them yet.

(Phase 2) Create tags for all variables: apart from variables explic-
itly tagged by the designer in SecChisel, variables with
no tags are tagged with Unde finedTag, and all data is
stored in new Liefaulr structure.

(Phase 3) Resolve all undefined tags in Lgef gy, through nested
modules of the circuit and store the data in the Ly¢gefine
structure.

(Phase 4) Output SMT code, FsyT, based on security lattice, tag-
range functions and tag information in L, egefine-

In Phase 1, data structure L;qggedvariable is generated to store
security information derived from FIRRTL file. The data structure
Liaggedvariable contains the variables and their tags’ information:
“statically tagged variable” has explicit security tag defined by the
system designer, “dynamically tagged variable” has tag-range func-
tion and the dependent variable(s) defined by the system designer,
and “untagged variable” does not have any tags assigned, i.e., such
variables have no defined tags in the SecChisel code.

In Phase 2, tags for variables associated with the left-hand side
(Ihs), or the right-hand side (rhs), of statements are created based
on information from variables already tagged in L;qggeavariable-
After this phase, all the tag information will be stored in Lge fquis
structure. Especially, there are seven types of FIRRTL statements.
In order to simplify tag assignment, these seven types of FIRRTL
statements can be classified into the following three cases:

SecChisel Framework for Security Verification of Secure Processor Architectures

(Case 1) Definitions: a variable is defined to be a constant,
eg.,a=12.

(Case 2) Assignments: a variable is assigned the results of some
operations of other variables, e.g., b = ¢ + d.

(Case 3) Connections: a variable is assigned to have the same value
as a different variable, e.g., e = f.

For Case 1 and Case 3, if the tag already has an static or dy-
namic tag value assigned, the tag will be kept; otherwise, the
Unde finedTag value will be assigned to the tag. Exceptionally,
port variables of top modules without tags are assigned to the
default lowest security level to guarantee no information will im-
plicitly leak outside the circuit. For Assignments (Case 2), rather
than generate a specific static or dynamic tag, a join statement fol-
lowing three ResRules defined next using tags of the rhs variables
in the statement is generated. The tag resolution rules (ResRule)
for statements of variables A and B on the right-hand side are:

(ResRule 1) (Taga,Tagp) = (join Tags Tagp)

(ResRule 2) (Taga,UndefinedTagg) = UndefinedTag

(ResRule 3) (UndefinedTaga,UndefinedTagg) =
UndefinedTag

Here the (join Tags Tagg) does not compute the join, but is an
SMT statement that will be evaluated in the SMT solver. The Taga
or Tagp could end up being resolved as join of some other tags
following tag relations defined in security lattice, so all the join
operations are computed in the SMT solver at the very end. They
can be either static or dynamic.

In Phase 3, Lgefauir Will be used to generate list Lyegefine
where all the Unde f inedT ags stored inlist Lgef 4,1 Will be checked
recursively using Algorithm 1 to go through nested modules until
there is an assignment statement that assigns some defined tag to
the currently Unde finedTag; this can be a static tag, a dynamic
tag, or a generated join statement following ResRules.

Nested modules support in SecChisel will resolve all the
Unde fi— nedTag first in the current module and then in different
sub-modules and outer modules. One variable can be referenced
in different layers of module hierarchy. In addition, dynamic tags
are resolved to support dependent variables which are in other
parent modules or in sub-modules. Specifically, in “redefineTags” -
Algorithm 1, function “joinRedefineTags” will go through nest mod-
ules (“submoduleList”) of the current module (“curModule”), find
and calculate the tag of the variable using “redefineTags” function
recursively. Recall that the top-most SecCoreModule must have its
inputs and outputs explicitly tagged, so eventually, all variables that
have some connection to input or output will be assigned a definite
tag. Only variables unconnected to the rest of the circuit will remain
with Unde finedT ag, and these will be synthesized away anyway.

In Phase 4, the security lattice structure, tag-range functions
and the Lycgefineq are used to generate SMT format rules and
assertions and output an SMT file FspT.

3.5 SMT Code (® in Figure 1)

The SMT code file, Fs7, contains the information flow assertions
generated based on the FIRRTL code following previous steps. To
enable the assertions to work, it also needs the security lattice and
tag-range functions expressed as SMT statements. It contains tag

HASP ’19, June 23, 2019, Phoenix, AZ, USA

propagation rules which use join of multiple security tags when
computing the right-hand side variable’s security tag of statements
discussed in Section 3.4. In order to speed up verification in SMT
solver, the SMT Code Generator pre-computes “join” results for
the variable pairs in the security lattice. Therefore, SMT solver can
directly fetch the result when “join” operation happens.

For dynamic tags, each tag-range function has a unique ID used
to look up the function in the SMT code. SMT solver will enumerate
all the possible output (tag) values that the tag-range function can
generate for a dynamic tag, based on the dependent variable. Thus, a
join Taga Tagp statement may resolve to many possible tag values,
if either Tag4 or Tagp are dynamic tags.

3.6 SMT Code Parallelization (® in Figure 1)

The Z3 SMT solver does the actual verification. Because of the very
structured nature of the SMT code the framework generates, it is
possible to parallelize the assertion checking. For the SMT code
there are two parts in each SMT file: 1) the predefined rules for the
security tags, tag-ranges, security lattice, and 2) actual assertions
used for checking every operation’s information flow. The rules are
needed for all assertions, but the assertions can be checked indepen-
dently of other assertions. The SMT code can be then parallelized
by converting source SMT file into n different files, where each file
has the same rules, etc., but the assertions are evenly split into the
n files. These n files can then be executed by parallel processes.

3.7 Z3 SMT Solver (& in Figure 1)

The SMT file is used as input to the Z3 SMT solver, but other solvers
could be used as long as they can parse the same SMT-lib syntax.
The assertions check for violations of information flow policy, thus
somewhat counter-intuitively, if an assertion is “satisfied” there is a
violation of information flow policy. If an assertion is “unsatisfied”
there is no violation of information flow policy. The goal is to have
all assertions be “unsatisfied”. E.g., Chisel code “c := i0.a”, assertions
corresponded can be “(assert (< ¢ io.a)) (check-sat)” to ensure that
assigned variable “c” should not have lower security level than
“l0.a”, in which case information will be leaked.

3.8 Interference Table

Sometimes the design will make use of black-box third-party mod-
ules. It may not be possible to directly analyze the information flow
inside such modules (e.g., no source code is given). The trusted
creator of the third-party module can generate an interference table
which lists how the inputs interact with the outputs for the module,
i.e., the information flow from inputs to outputs. The interference
table can then be used for the designers to reason about information
flow across black-box third-party modules included by the designer
in his or her design. The interference table can be generated directly
using SecChisel code and done in parallel with SecChisel Parser
without influencing the main SecChisel flow. The table and FIRRTL
can both be used as input to SMT Code Generator.

HASP 19, June 23, 2019, Phoenix, AZ, USA

4 EVALUATION

SecChisel framework is implemented upon Chisel [4]! and the
system complexity of the new framework is shown in Table 1 for
each of the core parts of SecChisel.

To evaluate the effectiveness and performance of SecChisel, an
AES-128 and a SHA-256 accelerators were implemented as Rocket
Custom Coprocessor Interface (RoCC) within the Rocket Chip [3]
RISC-V processor. The functionality and interoperability of AES
RoCC and SHA RoCC within the Rocket Chip were tested to en-
sure functional tests pass. The SecChisel framework can process
the whole Rocket Chip as it can handle both SecCoreModules
and the unmodified CoreModules. Since SecChisel is a superset
of Chisel, most of the code of Rocket Chip is unmodified, only the
two accelerators and corresponding sub-modules are written as
SecCoreModules. We evaluate RoCC cores within a RISC-V core.
Our framework works with the whole Rocket Chip and can find
improper information flows due to bugs or hardware Trojans. The
evaluation was done using a server with two Intel Xeon E5 CPUs
(total of 24 processor cores) running at 2.90GHz, with 64GB of
memory.

4.1 AES RoCC Implementation & Verification

Firstly, a full 10-round AES-128 was implemented as an RoCC of
Rocket Chip. AES-128 RoCC encryption block diagram is shown in
Figure 3a, note decryption process is symmetric to encryption. In
our sample AES RoCC implementation, security lattice structure
used can be seen in Figure 2a. In the first sub-module - KeyExpansion
of encryption process, the encryption Key is bound to have tag
“High”. Other variables in the AES RoCC are untagged.

Without use of declassification (“AES RoCC v1” in Table 2), run-
ning the whole verification of AES RoCC results in detection of a
possible information leak, where the encrypted output is tagged
“High” because of the interaction with the secret key, but connects
to the “Low” output of the RoCC module. In order to remove this
false positive, declassification is used (“AES RoCC v2” in Table 2).
Especially, the encrypted output can be declassified from “High”
to “Low”, because assuming AES is a cryptographically strong al-
gorithm, the encrypted data cannot be used to learn the plaintext.
Now, there will be no more violation of information flow policy
and there will be no false positives. Verification results illustrated
above are shown in Column “Formal Verification Result” of Table 2.
The decryption module can be verified similarly.

In order to further prove the effectiveness of our framework, we
insert three kinds of hardware bugs or hardware Trojans into AES
RoCC (denoted as “HBT"), as shown in Figure 3 (b-d) and “AES RoCC
v2 with HBT1/HBT2/HBT3” in Table 2. HBT1 outputs the key when
a special input data trigger is sent to the AES RoCC. HBT2 inserts
a register and a time counter inside AES RoCC and the key will be
output when counter is added to some trigger value. HBT3 inserts
a finite state machine inside AES RoCC: when a series of special
input data triggers is processed by AES RoCC in a specific order,
HBT3 will output the key. These HBTs all send “High” security key
to the output. Table 2 shows that SecChisel is able to detect all of
the HBTs as it finds information flows from “High” data to “Low”
outputs of the modules.

1Commit id: bb12fe7 from Chisel repository at https://github.com/ucb-bar/chisel.

Deng, et al.

2 2
> SubBytes £ by SubBytes £
Input % Lookup % Input :D> % Lookup [%
g Tables g data 3 Tables %
v = Key =

Output (g, ion/lcm Output

data 1 [AddKey data

Key||HBT Trigger: 1

@ (b)

13

c

SubBytes €

Lookup 2

Tables (%]

X

=

¥ X output
data

Kfll HBT Trigger
(d)

Figure 3: Block diagrams of AES-128 RoCC encryption modules
without and with hardware bugs or Trojans. HBT components are
shown in lighter color in the figures. (a) Basic AES encryption mod-
ule. (b-d) Encryption module with HBT1, HBT2, and HBT3 hard-
ware bugs or Trojans.

Table 1: System complexity of the SecChisel framework in terms
of lines of code.

[[Modified [Added [Total]

SecChisel Parser 377 77 454

SMT Code Generator 4 2442 2446
Interference Table Generation — 239 239
SMT Code Parallelization — 28 28

4.2 SHA RoCC Implementation & Verification

SHA-256 RoCC was implemented in Rocket Chip to test static tags
(“SHA RoCC v1” in Table 2) and dynamic tags (“SHA RoCC v2” in
Table 2) of SecChisel. SHA-256 is a secure hash algorithm that is
used to generate digests of messages to detect if the message has
been changed. The inputs are message, message size and process_id.
Initialization vector and other constants are hardcoded in the SHA-
256 RoCC. The output is the hash value.

SHA can process both secret and public information (there is no
secret key, just hash function). Therefore, if only using static tags
for SHA RoCC, there are possibilities that input message is tagged
“High” and output hash value is tagged “Low”, where false positives
will be detected (Table 2). Using dynamic tags, the input and output
of the SHA RoCC are both tagged with a dynamic tag, which de-
pends on a process_id sent from input. This process_id represents
the ID provided by the system and will determine whether this
message can be open to public or not (process_id is assumed to
be securely provided). In this case the tag of input message and
output hash value will be either “High” or “Low” determined by
process_id. When propagating tags in the inner sub-modules, all
of the undefined tags will resolve to have the same dynamic tags,
ensuring no false positives as shown in Table 2.

4.3 Designers’ Effort

SecChisel requires the system designers to add extra code to de-
scribe information flow policy and tags, as illustrated in Section 3.
Table 2 Column “Chisel” shows the lines of code designer needs to
write to implement AES RoCCs (including ones with HBTs) and
SHA RoCC. Column “SecChisel” shows that tested modules require

https://github.com/ucb-bar/chisel

SecChisel Framework for Security Verification of Secure Processor Architectures

HASP ’19, June 23, 2019, Phoenix, AZ, USA

(@ Compilation [777] Simulation RZX Verification
520007 | i e e i 72395 72679 i g
z 69383 66145 | 70536 | 704.15 714.35 E:E:E:?E:E 1653.26 64223
£ RRIREE
£ ROKKRKK
= 1 2134.7 2114.05%
1000 2038.99% 2019.83 . s
150011 {iaeed) 1583 69/ 1501 2 RB2H 16086k 166813/ 1672.27) 1ot G
0.00 0.00 geomg %633.%
0
RoCC . RoCC s thHBT th HBT (hHBT3 o
Plain AES prain SHA AESR%\\'\Q oy AESROCE o AESROCc (\061\0“ AESROCC hoal\o“ AESR"CC fcaion oA ROC kmqof“\/ 9"“ R°C check‘“g
(@) @ qaicteod Jassifi g ded \ossi g ded \ass! ng dec \ass! qatictg e
(€)) ©) @) ®) ()
(b) SecChisel Parser [77] ST Code Generator [5&%) 23 SMT Solver
10 200350 185367 1980.67 2094.67 2068.67
] = = — . :
I]
=107
Q
£
F 107
1007
L 000 000 0.00 0.00 0.00 0.00
10° T : .
. 0CC . RoCC using C using
nAESR nSHA sRoC SROC oCCW ocC ROC! RoCS)
P o P) AE@ po eck\“g 0\'\\\/ A\:; \cmon ﬁ(\oax\on AESK e aes(\ca‘“’“ AESR aesfm“’“ g—\/: neck\“g only 5\4;“ oo hecking
gatic @ 1 using d © gatic e ® dyr¥)

Figure 4: Evaluation of runtime of the SecChisel framework, times shown are averages of multiple runs. (a) Comparison of total compilation
and simulation time vs. verification time for the different designs. (b) Runtime of SecChisel parser, SMT Code Generator, and Z3 SMT solver

for the different designs.

Table 2: Effectiveness and designer effort in terms of lines of code
of AES RoCC and SHA RoCC within Rocket Chip. “Formal Verifica-
tion Result” shows effectiveness. FP represents False Positive verifi-
cation result. “Chisel” column shows complexity of design in Chisel,
without any security features. “SecChisel” column shows extra lines
of code added to include information of security tags.

SecChisel Features Used Formal Sec-

Module Static Dynamic [Declassi- | Verification | Chisel | Chisel
Tag Tag fication Result

AES RoCCviw/ x x found FP | 1097 | +14
static tags
AESRoCC vz w/ x v verified | 1097 | +17
declassification
ﬁg’STI:OCC vzwl v X v found HBT | 1107 +17
AES RoCC v2 w/
HBT2 v X v found HBT | 1110 +17
AES RoCC v2 w/
HBET3 v X v found HBT | 1121 +17
SHA RoCC v1 | x x found FP | 1127 | +25
w/ static tags
SHA RoCC v2 x v x verified 1127 | +28
w/ dynamic tags

LB e 2P e PP hracm

10

10°§

Time(s)

0.15 014 015

10"

AES-128 Checking SHA-256 Checking

Figure 5: Runtime evaluation of effects of parallelizing the SMT
code for different number of processors, on a server with 24 cores.

only tens of lines of code in order to do verification based on the
original Chisel design. SecChisel implementation requires system
designer to explicitly add security tags to critical variables, however,
most of the variables in a module will have default (undefined) tags
and the tags will be automatically resolved in SMT code generation
step, and require no designer effort to specify such undefined tags.

4.4 Security Verification Performance

Figure 4 shows compilation plus simulation runtime and verifica-
tion time as well as different parts of verification runtime for AES
RoCC and SHA RoCC using different SecChisel features, and com-
pares it with the runtime of unmodified Chisel tools for reference.
Compilation includes all original Chisel flow before simulation
shown in Figure 1. Verification consists of whole SecChisel verifica-
tion flow circled by green dashed line in Figure 1. The verification
runtime is in all cases slightly less than the compilation plus simu-
lation runtime and the two can be done in parallel. The plain AES
and SHA RoCC written in Chisel have no SecChisel features, so no
related verification performance. Some small differences are due to
the variation in performance of the server.

Shown in Figure 4a, SecChisel verification will not cause extra
overhead to the original Chisel design. Verification can be hidden
in normal compilation and simulation since the total verification
time is always smaller than the compilation plus simulation time
and the verification can be done in parallel with compilation and
simulation. SecChisel’s performance time overhead of changing
RoCC to a secure module class is relatively small (AES RoCC’s is
around 3.8%, SHA RoCC’s is around 2.5% by comparing Design 1,
2 with the other Designs in Figure 4a, respectively). As shown in
Figure 4b, there is no significant performance time difference for
the different cases. Finding the existence of an information leak
by HBTs (Design 5, 6, 7 in Figure 4b) only introduced small time
overhead comparing with Design 4 that does not have HBTs in it,
for example.

4.5 Interference Table Evaluation

Interference table (IT) can be created during FIRRTL generation
and will on average require 0.41s for AES RoCC and SHA RoCC,
which is negligible compared with FIRRTL generation time shown
in the SecChisel parser time in Figure 4b. SMT code generation with
and without IT do not change much on the total runtime, but is
offered a solution for use of trusted third-party modules for which
source code is not available.

HASP 19, June 23, 2019, Phoenix, AZ, USA

4.6 73 SMT Solver and Parallelization

Verifying the AES RoCC v2 and SHA RoCC v2 in Z3 SMT solver
without parallelization cost 1.77s, 1.04s, respectively (Figure 5). For
reference, AES RoCC generates 20832 lines of SMT code and SHA
RoCC generates 9044 lines of SMT code, which is fully automati-
cally generated based on the SecChisel code. Therefore, there is an
approximately linear relationship between lines of SMT code and
run time, including using different SecChisel features like dynamic
tags, as shown in Figure 4b. Based on our experience with AES and
SHA RoCC, we can estimate that one million of lines of Chisel code
(far more than the current Rocket Chip code) will require around
acceptable 2000s SMT runtime.

Parallelizing the SMT checks and running on multi-core system,
as discussed in Section 3.6, can further reduce the run time of the
SMT solver, as shown in Figure 5. For evaluation on a 24-core
processor, the average improvement is about 20x.

4.7 Hardware Performance

The final design generated using the SecChisel code is identical to a
design that would not contain any security tags or other SecChisel
modifications. Specifically, SecChisel does not add any run-time
components to the design as all the security verification is done at
design-time. Therefore, the verified design will not add any perfor-
mance overhead compared with the original design.

5 RELATED WORK

Both SecVerilog [23] and Caisson [14] use information flow tracking
(IFT) to enforce security properties at compile time, but SecChisel
is the first to be based on the Chisel language. Also, SecChisel is the
first hardware security verification tool supporting nested modules
without having to check individual module separately. And unlike
SecVerilog, users of SecChisel need not to learn nor write SMT code.
Meanwhile, Caisson does not support dynamic tags.

VeriCoq [5, 6], Formal-HDL [10], and ReWire [17] use formal
proofs to verify security properties of a design by using the Coq
language (VeriCoq, Formal-HDL) or the Haskell language (ReWire).
Meanwhile, SecChisel uses approach based on SMT solver.

Orthogonal to compile-time verification, there are run-time se-
curity verification approaches including Sapper [13], GLIFT [21],
or RTLIFT [2]. There are also projects which explore design verifi-
cation after manufacturing, e.g., [22] [7], which are complimentary
to our work.

6 CONCLUSION

We proposed SecChisel, the first hardware security verification
framework based on Chisel. SecChisel was tested by implementing
and verifying AES-128 and SHA-256 RoCC accelerators within a
Rocket Chip RISC-V processor, We showed that SecChisel is able
to detect information leaks due to hardware bugs or Trojans, and
that SecChisel is fast and scalable when verifying designs such as
the RISC-V Rocket Chip accelerators.

ACKNOWLEDGMENTS

This work was supported through NSF grant 1524680 and Semicon-
ductor Research Corporation (SRC) award number 2015-TS-2633;
and NSF grant 1813797 and SRC award number 2844.001.

Deng, et al.

REFERENCES

[1] AMD. 2016. AMD Memory Encryption. https://developer.amd.com/wordpress/

media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf.

Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. 2017. Register

transfer level information flow tracking for provably secure hardware design. In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,

1691-1696.

[3] Krste Asanovié¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the Annual Design
Automation Conference. ACM, 1216-1225.

[5] Mohammad-Mahdi Bidmeshki, Xiaolong Guo, Raj Gautam Dutta, Yier Jin, and
Yiorgos Makris. 2017. Data Secrecy Protection Through Information Flow Track-
ing in Proof-Carrying Hardware IP-Part II: Framework Automation. IEEE Trans-
actions on Information Forensics and Security 12, 10 (2017), 2430-2443.

[6] Mohammad-Mahdi Bidmeshki and Yiorgos Makris. 2015. VeriCoq: A Verilog-to-
Coq converter for proof-carrying hardware automation. In International Sympo-
sium on Circuits and Systems. IEEE, 29-32.

[7] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. 2009.
Hardware Trojan: Threats and emerging solutions. In International High-Level
Design Validation and Test Workshop. IEEE, 166-171.

[8] David Champagne and Ruby B Lee. 2010. Scalable architectural support for

trusted software. In HPCA-16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture. IEEE, 1-12.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 337-340.

Yier Jin and Yiorgos Makris. 2013. A proof-carrying based framework for trusted

microprocessor IP. In International Conference on Computer-Aided Design. IEEE,

824-829.

Ruby B. Lee, Peter Kwan, John Patrick McGregor, Jeffrey Dwoskin, and

Zhenghong Wang. 2005. Architecture for Protecting Critical Secrets in Micropro-

cessors. In Proceedings of the International Symposium on Computer Architecture.

ACM, 2-13.

Patrick S. Li, Adam M. Izraelevitz, and Jonathan Bachrach. 2016. Specification

for the FIRRTL Language. Technical Report UCB/EECS-2016-9. EECS Depart-

ment, University of California, Berkeley. http://wwwz2.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-9.html

[13] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-

nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T Chong.

2014. Sapper: A language for hardware-level security policy enforcement. In

ACM SIGARCH Computer Architecture News, Vol. 42. ACM, 97-112.

Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Tim-

othy Sherwood, and Ben Hardekopf. 2011. Caisson: a hardware description

language for secure information flow. In ACM SIGPLAN Notices, Vol. 46. ACM,

109-120.

David Lie, John C. Mitchell, Chandramohan A. Thekkath, and Mark Horowitz.

2003. Specifying and verifying hardware for tamper-resistant software. In Pro-

ceedings of Symposium on Security and Privacy. IEEE, 166 - 177.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and

Software Model for Isolated Execution. In International Workshop on Hardware

and Architectural Support for Security and Privacy.

[17] Adam Procter, William L. Harrison, Ian Graves, Michela Becchi, and Gerard

Allwein. 2015. Semantics Driven Hardware Design, Implementation, and Veri-

fication with ReWire. In Proceedings of the Conference on Languages, Compilers

and Tools for Embedded Systems. ACM, Article 13, 10 pages.

RISC-V 2019. RISC-V Foundation. https://riscv.org/.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas

Devadas. 2003. AEGIS: Architecture for tamper-evident and tamper-resistant

processing. In Proceedings of the International Conference on Supercomputing.

ACM, 160-171.

[20] Jakub Szefer and Ruby B Lee. 2012. Architectural support for hypervisor-secure

virtualization. ACM SIGARCH Computer Architecture News 40, 1 (2012), 437-450.

[21] Mohit Tiwari, Hassan MG Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T

Chong, and Timothy Sherwood. 2009. Complete information flow tracking from

the gates up. In ACM Sigplan Notices, Vol. 44. ACM, 109-120.

Riad S Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish.

2016. Verifiable asics. In Proceedings of Symposium on Security and Privacy. IEEE,

759-778.

Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A

hardware design language for timing-sensitive information-flow security. In

ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 503-516.

[2

—
o)

[10

[11

[12

[14

[15

[16

e
2%

[22

[23

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
https://riscv.org/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Verification Methodology
	2.1 Assumptions and Threat Model
	2.2 Information Flow Tracking Approach

	3 The SecChisel Framework
	3.1 SecChisel Code (1⃝ in Figure 1)
	3.2 SecChisel Parser (2⃝ in Figure 1)
	3.3 FIRRTL Code (3⃝ in Figure 1)
	3.4 SMT Code Generation (4⃝ in Figure 1)
	3.5 SMT Code (5⃝ in Figure 1)
	3.6 SMT Code Parallelization (6⃝ in Figure 1)
	3.7 Z3 SMT Solver (7⃝ in Figure 1)
	3.8 Interference Table

	4 Evaluation
	4.1 AES RoCC Implementation & Verification
	4.2 SHA RoCC Implementation & Verification
	4.3 Designers' Effort
	4.4 Security Verification Performance
	4.5 Interference Table Evaluation
	4.6 Z3 SMT Solver and Parallelization
	4.7 Hardware Performance

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

