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Abstract
Many secure cache designs have been proposed in literature with the aim of mitigating different types of cache timing–based
attacks. However, there has so far been no systematic analysis of how these secure cache designs can, or cannot, protect
against different types of the timing-based attacks. To provide a means of analyzing the caches, this paper presents a novel
three-step modeling approach that is used to exhaustively enumerate all the possible cache timing–based vulnerabilities.
The model covers not only attacks that leverage cache accesses or flushes from the local processor core, but also attacks
that leverage changes in the cache state due to the cache coherence protocol actions from remote cores. Moreover,
both conventional attacks and speculative execution attacks are considered. With the list of all possible cache timing
vulnerabilities derived from the three-step model, this work further manually analyzes each of the existing secure cache
designs to show which types of timing-based side-channel vulnerabilities each secure cache can mitigate. Based on the
security analysis of the existing secure cache designs using the new three-step model, this paper further summarizes different
techniques gleaned from the secure cache designs and their ability help mitigate different types of cache timing–based
vulnerabilities.

Keywords Secure caches · Timing-based attacks · Security analysis · Side channels · Covert channels

1 Introduction

Research on timing-based attacks in computer processor
caches has a long history, e.g., [1, 3, 5, 19, 36], predating
their recent use in Spectre [26] attacks. These past attacks
have shown the possibility to extract sensitive information
via the timing-based channels, and often the focus is on
extracting cryptographic keys. In addition, due to the recent
Spectre [26] attacks, there is now renewed interested in
timing channels. Especially, the Spectre attacks consist of
two parts: first, speculative execution is used to access some
sensitive information; second, a timing-based channel is
used to actually transfer the information to the attacker.

� Shuwen Deng
shuwen.deng@yale.edu

Wenjie Xiong
wenjie.xiong@yale.edu

Jakub Szefer
jakub.szefer@yale.edu

1 Yale University, New Haven, CT 06520, USA

Whether by itself, or combined with speculative execution,
the timing-based channels in processors pose a threat to a
system’s security, and should be mitigated.

We have recently proposed a three-step model [11] in
order to analyze cache timing–based side-channel attacks.
The previous model considers cache timing–based side-
channel vulnerabilities as a set of three “steps” or actions
performed by either the attacker or the victim, which can
affect the states of the cache. In this work, our methodology
from [11] is improved to better represent actions of the
attacker and the victim: For each step, all possible states
for a cache block are enumerated in terms of whether the
operation is driven by the attacker or the victim, what
memory range the data being operated on belongs to, and
whether the state is changed because of a memory access
or data invalidation operation (due to a cache coherence
operation or a flush instruction, for example). To understand
which possible three-step actions can lead to an attack, we
further propose and develop a cache three-step simulator,
and apply a set of reduction rules to derive a complete list
of vulnerabilities by eliminating three-step combinations
that do not map to an attack. Furthermore, we consider
both normal and speculative execution for the memory

Journal of Hardware and Systems Security (2019) 3:397–425

/ Published online: 20 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-019-00075-9&domain=pdf
http://orcid.org/0000-0002-9782-5038
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0001-9721-3640
mailto: shuwen.deng@yale.edu
mailto: wenjie.xiong@yale.edu
mailto: jakub.szefer@yale.edu


operations and modeling of the cache attacks. Speculative
execution has gotten increased attention due to recent
Spectre [26] attacks, many of which depend on timing
channels to actually extract information—speculation alone
is not enough for most of these attacks. Our model considers
timing channels in general, independent of whether it is a
side or a covert channel.

In the process of development of the improved three-
step model, we have uncovered 43 types of timing-based
vulnerabilities which have not been previously exploited
(in addition, there are 29 types that map to attacks already
known in literature). We cannot directly compare the types
of vulnerabilities found in this work and in our prior
work [11] due to the improved and different categorizations
of the states of the cache block.

To address the threat of the prior cache timing–based
attacks, to date, 18 different secure cache designs have
been presented in academic literature [7, 10, 12, 22, 23,
25, 27, 29, 30, 38, 48–53, 56, 57]. The secure processor
caches are designed with different assumptions and often
address only specific types of timing-based side-channel or
covert-channel attacks. To help analyze the security of these
designs, this work uses our three-step modeling approach to
reason about all the possible timing-based vulnerabilities.
Especially, since our work demonstrates a number of new
timing-based attacks, the existing secure caches have never
been analyzed with respect to these new attacks before.
For this work, we manually reviewed and analyzed the 18
existing secure cache designs [7, 10, 12, 22, 23, 25, 27,
29, 30, 38, 48–53, 56, 57] in terms of the security features
and implementations. Most of these designs do not have
publicly available hardware implementation source code, so
automatic analysis of the caches is not possible.

Based on the analysis, we summarize cache features
that help improve security. Especially, we propose that an
“ideal” secure caches and processor architectures should
provide new features to let software explicitly label memory
loads or stores of sensitive data, and differentiate them from
normal loads and stores, so sensitive data can be efficiently
identified and protected by the hardware. The caches can
use partitioning to isolate the attacker and the victim and
prevent the attacker from being able to set the victim’s
cache blocks into a known state, which is needed by many
attacks. To mitigate attacks based on internal interference,
the caches can use randomization to de-correlate the data
that is accessed and the data that is placed in the cache. More
details of the possible defenses are discussed in Section 5
and Section 6.

1.1 Contributions

The new contributions of this work over [11] are as follows:

• A new formulation of the three-step model with new
cache states and derivation of a new set of types
for covering all the cache timing–based vulnerabilities
(Section 3).

– Inclusion of cache coherence issues into the
three-step mode.

– Expansion of the three-step model to consider
both cases of normal and speculative execution
attacks.

– Design of reduction rules and cache three-
step simulator to automatically derive the
exhaustive list of all the three steps which map
to effective vulnerabilities; and elimination of
three-step patterns which do not map to a
potential attack.

• Overview of the 18 secure cache designs that have been
presented in academic literature (Section 4).

• Manual evaluation of 18 secure processor cache designs
to determine how they can help prevent timing-based
attacks and analysis of security features secure caches
used (Sections 5 and 6).

• Discussion of “ideal” secure caches and the features
they would need (Section 6).

• Attack strategies description and comparison among
different attack strategies (Appendix A).

• Analysis of the soundness of the three-step model and
why three-steps are able to describe all timing-based
vulnerabilities (Appendix B).

2 Cache Timing–Based Attacks
and the Threat Model

Modern processor caches are known to be vulnerable to
timing-based attacks. The timing of the memory accesses
varies due to caches’ operation. For example, a cache hit
is fast while a cache miss is slow. The cache coherence
protocol can also change the cache states and affect the
timing of the memory operations. The cache coherence
may invalidate a cache block from a remote core, resulting
in a cache miss in the local core, for example. Also,
the timing of cache flush operations varies depending on
whether the data to be flushed is in the cache or not.
Flushing an address using clf lush with valid data in the
cache is slow, while flushing an address not in the cache
is fast, for example. From these timing differences of
memory-related operations, the attacker can infer a data’s
specific memory address or corresponding cache index
value, and thus learn some information about the victim’s
secrets.
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2.1 Threat Model

This work focuses only on timing-based attacks in processor
caches. Numerous other types of side and covert channels
that do not use timing or caches exist, e.g., power-based [9],
EM-based [2] (including RF), thermal-based [33], and in
processor channels based on features such as power state of
the AVX unit [40], for example. This work aims to explore
main cache attacks only, but similar approach can be done
for the other buffers or cache-like structures, which may be
target of attack once main processor caches are secured.

In our threat model, an attacker’s objective is to retrieve
victim’s secret information using timing-based channels in
the processor cache. Specifically, we consider the situation
where the victim accesses an address u and the address
depends on some secret information. The address u is within
some set of physical memory locations x, which are known
to the attacker. The goal of the attacker is to obtain the
address u or at least partial bits of it which relate to the cache
index of the address.

We assume the attacker knows some of the source code
of the victim. Especially, the attacker can only learn some
information 1 about the address u from the timing channels,
but with knowledge of the source code, he or she can further
infer the likely specific value of u, and thus infer the secret
he or she is trying to learn.

The attacker cannot directly access any data in the state
machine of the cache logic, nor directly read the data of the
victim, if the two are not sharing the same address space.
The attacker can, however, observe its own timing or the
timing of the victim process. And the attacker knows how
the timing of the memory-related operations depends on the
cache states.

The attacker further is able to force the victim to execute
a specific function. For example, the attacker can request
victim to decrypt a specific piece of data, thus triggering the
victim to execute a function that makes use of a secret key
he or she wants to learn. The victim in the cache attacks can
be user software, code in an enclave, operating system, or
another virtual machine.

The processor microarchitecture and the operating
system are assumed to be able to differentiate between the
victim and the attacker in different processes by assigning
different process IDs. If the victim and the attacker are in
the same process, e.g., attacker is a malicious library, they
will have the same process ID. The system software (e.g.,
operating system or hypervisor) is responsible for properly

1For a hit-based vulnerabilities, the attacker is able to learn the
full address of the victim’s sensitive data, while for the miss-based
vulnerabilities, the attacker usually can learn the cache index of
the victim’s sensitive data. For more details of these vulnerabilities’
categorizations, please refer to Section 3.3.3.

setting up virtual memory (page tables) and assigning IDs,
which may be used by the hardware to identify different
threads, processes, or virtual machines. When analyzing
secure cache designs, the system software is considered
trusted and bug-free. The attacker is also assumed not to be
able to undermine the physical implementation or change
the hardware, e.g., he or she cannot influence randomness
generated by any random number generators in hardware.
Physical or invasive attacks are not in scope of this work.
For secure cache designs which add new instructions
for security-related operations, the victim process or
management software is assumed to correctly use these
instructions. During speculative execution, the cache state
can be modified by the instructions executed speculatively,
unless a processor cache architecture explicitly prevents or
forbids certain speculative accesses.

2.2 Side and Covert Channels

This work focuses on both side and covert channels. Covert
channels use the same methods as side channels, but the
attacker controls both the sender and the receiver side of
the channel. All types of side-channel attacks are equally
applicable to covert channels. For brevity, we just use the
term “victim” in the text to represent both the victim (for
side channels) and the sender (for covert channels).

2.3 Hyperthreading Versus Timing-Slice Sharing

When the hyperthreading is supported in a system, the
attacker and the victim are able to run on different threads
in parallel instead of running once every time slice (when
no hyperthreading is used). Our model can be applied to
both of the scenarios since our model abstracts away how
the sharing happens.

3Modeling of the Cache Timing–Based
Side-Channel Vulnerabilities

This section explains how we developed the three-step
modeling approach and used it to model the behavior of
the cache logic and to enumerate all the possible cache
timing–based vulnerabilities.

3.1 Introduction of the Three-StepModel

We have observed that all of the existing cache timing–
based attacks can be modeled with three steps of memory-
related operations. Here, “memory-related operation” refers
to loads, stores, or different flushes that can be done by the
victim or the attacker on the same core or different cores.
When the victim and the attacker are on different cores,
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cache coherence will also be triggered when one of the
memory-related operations is performed.

The three-step model has three steps, as the name
implies. In Step 1, a memory operation is performed,
placing the cache in an initial state known to the attacker
(e.g., a new piece of data at some address is put into the
cache or the cache block is invalidated). Then, in Step 2,
a second memory operation alters the state of the cache
from the initial state. Finally, in Step 3, a final memory
operation is performed, and the timing of the final operation
reveals some information about the relationship among the
addresses from Step 1, Step 2, and Step 3.

For example, in Flush + Reload [55] attack, in Step

1, a cache block is flushed by the attacker. In Step 2,
security critical data is accessed by, for example, victim’s
AES encryption operation. In Step 3, the same cache block
as the one flushed in Step 1 will be accessed and the time of
the access will be measured by the attacker. If the victim’s
secret-dependent operation in Step 2 accesses the cache
block, in Step 3 there will be a cache hit and fast timing

of the memory operation will be observed, and the attacker
learns the victim’s secret address.

To model all the timing-based attacks, we write the three
steps as: Step 1 � Step2 � Step3, which represents a
sequence of steps taken by the attacker or the victim. To
simplify the model, we focus on memory-related operation
affecting one single cache block (also called cache slot,
cache entry, or cache line). Cache block is the smallest
unit of the cache. Since all the cache blocks are updated
following the same cache state machine logic, it is sufficient
to consider only one cache block.

3.2 States of the Three-StepModel

When modeling the attacks, we propose that there are 17
possible states for a cache block. Table 1 lists all the 17
possible states of the cache block for each step in our three-
step model and their formal definitions. Figure 1 graphically
shows for each possible state how the memory location
maps to the cache block.

Table 1 The 17 possible states for a single cache block in our three-step model

State Description

Vu A memory location u belonging to the victim is accessed and is placed in the cache block by the victim (V). Attacker does
not know u, but u is from a set x of memory locations, a set which is known to the attacker. It may have the same index as a

or aalias , and thus conflict with them in the cache block. The goal of the attacker is to learn the index of the address u. The
attacker does not know the address u, hence there is no Au in the model.

Aa or Va The cache block contains a specific memory location a. The memory location is placed in the cache block due to a memory
access by the attacker, Aa , or the victim, Va . The attacker knows the address a, independent of whether the access was by the
victim or the attacker themselves. The address a is within the range of sensitive locations x. The address a is known to the
attacker.

Aaalias or Vaalias The cache block contains a memory address aalias . The memory location is placed in the cache block due to a memory access
by the attacker, Aaalias , or the victim, Vaalias . The address aalias is within the range x and not the same as a, but it has the same
address index and maps to the same cache block, i.e. it “aliases” to the same block. The address aalias is known to the attacker.

Ad or Vd The cache block contains a memory address d. The memory address is placed in the cache block due to a memory access by
the attacker, Ad , or the victim, Vd . The address d is not within the range x. The address d is known to the attacker.

Ainv or V inv The cache block is now invalid. The data and its address are “removed” from the cache block by the attacker, Ainv , or the
victim, V inv , as a result of cache block being invalidated, e.g., this is a cache flush of the whole cache.

Ainv
a or V inv

a The cache block state can be anything except a in this cache block now. The data and its address are “removed” from the
cache block by the attacker, Ainv

a , or the victim, V inv
a . E.g., by using a flush instruction such as clf lush that can flush specific

address, or by causing certain cache coherence protocol events that force a to be removed from the cache block. The address
a is known to the attacker.

Ainv
aalias or V inv

aalias The cache block state can be anything except aalias in this cache block now. The data and its address are “removed” from
the cache block by the attacker, Ainv

aalias , or the victim, V inv
aalias . E.g., by using a flush instruction such as clf lush that can flush

specific address, or by causing certain cache coherence protocol events that force aalias to be removed from the cache block.
The address aalias is known to the attacker.

Ainv
d or V inv

d The cache block state can be anything except d in this cache block now. The data and its address are “removed” from the
cache block by the attacker Ainv

d or the victim V inv
d . E.g., by using a flush instruction such as clf lush that can flush specific

address, or by causing certain cache coherence protocol events that force d to be removed from the cache block. The address
d is known to the attacker.

V inv
u The cache block state can be anything except u in the cache block. The data and its address are “removed” from the cache

block by the victim V inv
u as a result of cache block being invalidated, e.g., by using a flush instruction such as clf lush, or

by certain cache coherence protocol events that force u to be removed from the cache block. The attacker does not know u.
Therefore, the attacker is not able to trigger this invalidation and Ainv

u does not exist in the model.

� Any data, or no data, can be in the cache block. The attacker has no knowledge of the memory address in this cache block.
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Fig. 1 The 17 possible states for a single cache block in our three-step model: a Vu; b Aa/Va/Aaalias /Vaalias /Ad/Vd ; c Ainv/V inv ; d
Ainv

a /V inv
a /Ainv

aalias /V inv
aalias /A

inv
d /V inv

d ; e V inv
u ; f �)

In each sub-figure of Fig. 1, the left-most part shows the
possible state being described in the sub-figure. The middle
part shows the possible situation of the cache state affected
by each. For all sub-figures, the middle cache block (shown
in bold) is the targeted cache block. Right-most part shows
the memory region in relation to the cache block. Recall,
the addresses a and aalias are within the sensitive set of
addresses x, while d is outside the set of sensitive addresses
(for simplicity the set is shown as a contiguous region, but
it can be any set). Also recall, A represents the operations
performed by the attacker and V represents the victim’s
operations.

Figure 1a shows the description of the possible state Vu,
where address u is within sensitive set and unknown to the
attacker. Therefore, it can possibly map to any cache block
including the target cache block shown in the middle. Since
its position in the cache and specific address is unknown,

we show Vu in dashed lines. Meanwhile, Fig. 1e shows the
description of the possible state V inv

u , which is result of
the victim invalidating data at the sensitive address u and
possibly invalidating some address within sensitive region.
Further, Fig. 1f shows the description of the possible state
∗, which represents null knowledge of the address for the
attacker to this corresponding cache block. Therefore, it can
possibly refers to any address in the memory, or no valid
address at all.

Figure 1b shows the description of the possible state
Aa/Va/Aaalias /Vaalias /Ad/Vd . Their addresses are all known
to the attacker and map to the same targeted cache block.
Both a and aalias are within the sensitive set of addresses
x and aalias , as its name indicates, is a different address
than a but still within set x and maps to the same cache
block as a. Address d is outside of the set x. Meanwhile,
Figure 1d shows the description of the possible state

J Hardw Syst Secur (2019) 3:397–425 401



Ainv
a /V inv

a /Ainv
aalias /V inv

aalias /A
inv
d /V inv

d , which correspond
to invalidation of the address shown in the subscript of
the state. Some additional possible invalidation states,
Ainv/V inv , are shown in Figure 1c. These states indicate no
valid address is in the cache block. Therefore, all the possi-
ble addresses that mapped to this cache block, e.g., a, aalias ,
d , and u (if it mapped to this block), before the invalidation
step Ainv/V inv will be flushed back to the memory.

3.3 Derivation of All Cache Timing–Based
Vulnerabilities

With the 17 candidate states shown in Table 1 for each
step, there are in total 17 ∗ 17 ∗ 17 = 4913 combinations
of three steps. We developed a cache three-step simulator
and a set of reduction rules to process all the three-
step combinations and decide which ones can indicate a
real attack. As is shown in Fig. 2, the exhaustive list of
the 4913 combinations will first be input to the cache
three-step simulator, where the preliminary classification
of vulnerabilities is derived. The effective vulnerabilities
will then be sent as the input to the reduction rules to
remove the redundant three steps and obtain final list of
vulnerabilities.

3.3.1 Cache Three-Step Simulator

We developed a cache three-step simulator that simulates
the state of one cache block and derives the attacker’s
observations in the last step of the three-step patterns that it
analyzes, for different possible u. Since u is in secure range
x, the possible candidates of u for a cache block are a, aalias

and NIB (Not-In-Block). Here, NIB indicates the case that
u does not have same index as a or aalias and thus does not
map to this cache block.

The cache three-step simulator is implemented in
Python script and its pesudo implementation is shown in
Algorithm 1. Simulator’s inputs are 17 possible states for
each of the step. Outputs are all the vulnerabilities that
belong to the Strong or the Weak type or the Ineffective type.
The simulator uses a nested for loop to check all possible
combinations (4913) of the three step pattern. For each step

Exhaustive List

of all possible 

three-step

combinations

Cache 

Three-Step 

Simulator

Preliminary Strong 
Vulnerability

Preliminary Weak
Vulnerability

Ineffective Three-Step

Reduction 

Rules

Strong
Vulnerability

Weak
Vulnerability

Classification 
Step

Reduction 
Step

Vulnerability Types
Vulnerability Types

4913

132

572

4209

72

64

Fig. 2 Procedure to derive the effective types of three-step timing-
based vulnerabilities. Ovals refer to the number of vulnerabilities
in each category

of each pattern, if it is Vu, this step will be extended to be
one of three candidates: Va , Vaalias and VNIB . If it is V inv

u ,
this step will be extended to be one of three candidates:
V inv

a , V inv
aalias and V inv

NIB . We wrote a function output timing
that takes three known memory access steps as input and
output whether fast or slow timing will be observed for
the last step. In this case, for each of the u-related step’s
candidate, we can derive a timing observation. Using these
timing observation, function judge type decides whether a
three-step pattern is a potential vulnerability by analyzing
whether the attacker is able to observe different and
unambiguous timing for different values of u.

The simulator categorizes all the three-step patterns
into three categories, as listed below. Figure 3 shows
two examples for the Strong Vulnerability (a, b), Weak
Vulnerability (c, d), and Ineffective Three-Step (e, f),
categories respectively.

1. Strong Vulnerability: When a fast or slow timing is
observed by the attacker, he or she is able to uniquely
distinguish the value of u (either it maps to some
known address or has the same index with some known
address). In this case, the vulnerability has strong
information leakage (i.e., attacker can directly obtain
the value of u based on the observed timing). We
categorize these vulnerabilities to be strong. E.g., for
Vd � Vu � Aa vulnerability shown in Fig. 3a,
if u maps to a, the attacker will always derive fast
timing. If u is aalias or NIB, slow timing will be
observed. This indicates that the attacker is able to
unambiguously infer the victim’s behavior (u) from the
timing observation.

2. Weak Vulnerability: When fast or slow timing is
observed by the attacker, he or she knows it corresponds
to more than one possible value of u (e.g., a or aalias).
For these vulnerabilities, timing variation can still be
observed due to different victim’s behavior. However,
the attacker cannot learn the value of the index of
the address u unambiguously. For example, for type
� � Vu � Ainv

a shown in Fig. 3c, when fast timing
is observed, u possibly maps to aalias or NIB (the
reason for the possibility of u mapping to NIB to derive
fast timing is that due to the � in Step 1, the cache
could have a hit and then Aa would result in a cache
hit). On the other hand, when slow timing is observed,
u possibly maps to a or NIB. This pattern leads to
uncertain u guess about value of u based on timing
observation.

3. Ineffective Three-Step: The remaining types are treated
to be ineffective. For example, for type Aa � Vu � Ad

shown in Fig. 3f, no matter what the value of u is,
attacker’s observation is always slow timing.
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Pseudo-code for the cache three-step simulator algorithm.

Input: : a list containing 17 possible states for each of the step

Output: : a list containing all the vulnerabilities that belong to the Strong type

: a list containing all the vulnerabilities that belong to the Weak type

: a list containing all the ineffective typs

1: for 1 do
2: for 2 do
3: for 3 do
4: 1 2 3

5: // array to store all possible candidate combinations of this three-step pattern

6: // array to store all possible timing observation regading different candidate combinations for this

three-step pattern

7: if 0 or 1 or 2 then
8: for 3 // ’s candidates are , and ; ’s candidates are ,

and . Both candidate’s number is 3. do
9: . 0

1 2

10: end for
11: for 3 do
12: .

13: end for
14: if then
15: strong.append(steps)

16: else
17: if then
18: .

19: else
20: .

21: end if
22: end if
23: else
24: .

25: continue
26: end if
27: end for
28: end for
29: end for

Algorithm 1

After computing the type of all the three-step patterns,
the cache three-step simulator will output effective (Strong
Vulnerability or Weak Vulnerability) three-step patterns.
Due to the space limit, we only list and analyze the Strong
vulnerabilities in this paper. Weak vulnerabilities are left for
future work when channels with smaller channel capacities
are desired to be analyzed.

3.3.2 Reduction Rules

We also have developed rules that can further reduce the
output list of all the effective three steps from the cache

three-step simulator. Figure 2 shows how the output of the
simulator is filtered through the reduction rules to get the
final list of vulnerabilities. Reduction’s goal is to remove
vulnerabilities of repeating or redundant types from the lists
to form effective Strong Vulnerability or Weak Vulnerability
output. A script was developed that automatically applies
below reduction rules to the output of the simulator to get
the final list of vulnerabilities. A three-step combination
will be eliminated if it satisfies one of the below rules:

1. Three-step patterns with two adjacent steps which are
repeating, or which are both known to the attacker, can
be eliminated, e.g., Ad � Aa � Vu can be reduced
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Behavior (u)
a

aalias

Observation

NIB
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Vd Vu Aa
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a
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NIB
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* Vu Aa
inv

Behavior (u)
a

aalias

Observation

NIB
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slow

Vd Vu
inv Vd

(a)

(c)

(e)

Behavior (u)
a

aalias

Observation

NIB
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slow

Vu Ad Vu
inv

Behavior (u)
a

aalias

Observation

NIB

fast

slow

Aaalias
inv Vu

inv Va

Behavior (u)
a

aalias

Observation

NIB

fast

slow

Aa Vu Ad

(b)

(d)

(f)

E.g.: E.g.:

E.g.: E.g.:

E.g.: E.g.:

Fig. 3 Examples of relations between victim’s behavior (u) and
attacker’s observation for each vulnerability type: a, b Strong
Vulnerability; c, d Weak Vulnerability; e, f Ineffective Three-Step

to Aa � Vu, which is equivalent to � � Aa � Vu.
Therefore, Ad � Aa � Vu is a repeat type of � �
Aa � Vu and can be eliminated.

2. Three-step patterns with a step involving a known
address a and an alias to that address aalias gives
the same information. Thus, three step combinations
which only differ in use of a or aalias cannot represent
different attacks, and only one combination needs to
be considered. For example, Vu � Aaalias � Vu is a
repeat type of Vu � Aa � Vu, and we will eliminate
the first pattern.

3. Three-step patterns with steps Vu and V inv
u in adjacent

consecutive steps with each other will only keep the
latter step and eliminate the first step. For example,
Aa � Vu � V inv

u can be reduced to Aa � V inv
u and

further equivalent to � � Aa � V inv
u . So Aa � Vu �

V inv
u can be eliminated.

3.3.3 Categorization of StrongVulnerabilities

As is shown in Fig. 2, after applying the reduction rules,
there are 72 types of Strong vulnerabilities remaining. In
Appendix B, we analyze the soundness of the three-step
model to demonstrate that the three-step model can cover all
possible cache timing–based side-channel vulnerabilities.
And if there is a vulnerability, it can always be reduced to
a model that requires only three steps. Table 2 lists all the

vulnerability types of which the last step is a memory access
and Table 3 shows all the vulnerability types of which the
last step is an invalidation-related operation. To ease the
understanding of all the vulnerability types, we group the
vulnerabilities based on attack strategies (left-most column
in Tables 2 and 3), these strategies correspond to well-
known names for the attacks, if such exist, otherwise we
provide a new name. In Appendix A, we provide description
for each attack strategy to show the main idea behind them.
We use existing names for attack strategies where such
existed before, even if similar attacks, e.g., attacks differing
in only one step, have been given different names before. We
use these established names to avoid confusion, but detail
some of the similarities in Appendix A as a clarification.

The list of vulnerability types can be further collected
into four simple macro types which cover one or more
vulnerability types: internal interference miss-based (IM),
internal interference hit-based (IH), external interference
miss-based (EM), external interference hit-based (EH), as
labeled in the Macro Type column of Tables 2 and 3. All
the types of vulnerabilities that only involve the victim’s
behavior, V , in the states in Step 2 and Step 3 are called
internal interference vulnerabilities (I). The remaining ones
are called external interference (E). Some vulnerabilities
allow the attacker to learn that the address of the victim
accesses map to the set the attacker is attacking by observing
slow timing due to a cache miss or f ast timing due to
invalidation of data not in the cache2. We call these miss-
based vulnerabilities (M). The remaining ones leverage
observation of f ast timing due to a cache hit or slow timing
due to an invalidation of an address that is currently valid in
the cache, and are called hit-based vulnerabilities (H).

Many vulnerability types have been explored before. For
example, the Cache Collision attack [5] is effectively based
on the Internal Collision, and it maps to types labeled (2)
in the Attack column in Tables 2 and 3. The types labeled
new correspond to new attack not previously discussed
in literature. We believe these 43 are new attacks not
previously analyzed nor known.

4 Secure Caches

Having explained the three-step model, we now explore
the various secure caches which have been presented in
literature to date [7, 10, 12, 22, 23, 25, 27, 29, 30, 38, 48–
53, 56, 57]. Later, in Section 5, we will apply the three-step
model to check if the secure caches can defend some or all
of the vulnerabilities in our model.

2Invalidation is fast when the corresponding address which is to be
invalidated does not exist in the cache since no operation is needed for
the invalidation.
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Table 2 The table shows all the cache timing-based cache vulnerabilities where the last step is a memory access related operation. The Attack
Strategy column gives a common name for each set of one or more specific vulnerabilities that would be exploited in an attack in a similar manner.
The Vulnerability Type column gives the three steps that define each vulnerability. For Step 3, fast indicates a cache hit must be observed to
derive sensitive address information, while slow indicates a cache miss must be observed. The Macro Type column proposes the categorization
the vulnerability belongs to. “E” is for external interference vulnerabilities. “I” is for internal interference vulnerabilities. “M” is for miss-based
vulnerabilities. “H” is for hit-based vulnerabilities. The Attack column shows if a type of vulnerability has been previously presented in literature

Attack Strategy Vulnerability Type Macro Type Attack

Step 1 Step 2 Step 3

Cache Internal Collision Ainv Vu Va (fast) IH (2)

V inv Vu Va (fast) IH (2)

Ad Vu Va (fast) IH (2)

Vd Vu Va (fast) IH (2)

Aaalias Vu Va (fast) IH (2)

Vaalias Vu Va (fast) IH (2)

Ainv
a Vu Va (fast) IH (2)

V inv
a Vu Va (fast) IH (2)

Flush + Reload Ainv
a Vu Aa (fast) EH (5)

V inv
a Vu Aa (fast) EH (5)

Ainv Vu Aa (fast) EH (5)

V inv Vu Aa (fast) EH (5)

Ad Vu Aa (fast) EH (5)

Vd Vu Aa (fast) EH (5)

Aaalias Vu Aa (fast) EH (5)

Vaalias Vu Aa (fast) EH (5)

Reload + Time V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

Flush + Probe Aa V inv
u Aa (slow) EM (6)

Aa V inv
u Va (slow) IM new

Va V inv
u Aa (slow) EM new

Va V inv
u Va (slow) IM new

Evict + Time Vu Ad Vu (slow) EM (1)

Vu Aa Vu (slow) EM (1)

Prime + Probe Ad Vu Ad (slow) EM (4)

Aa Vu Aa (slow) EM (4)

Bernstein’s Attack Vu Va Vu (slow) IM (3)

Vu Vd Vu (slow) IM (3)

Vd Vu Vd (slow) IM (3)

Va Vu Va (slow) IM (3)

Evict + Probe Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

Prime + Time Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

Flush + Time Vu Ainv
a Vu (slow) EM new

Vu V inv
a Vu (slow) IM new

(1) Evict + Time attack [34]; (2) Cache Internal Collision attack [5]; (3) Bernstein’s attack [3]; (4) Prime + Probe attack [34, 36], Alias-driven
attack [18]; (5) Flush + Reload attack [54, 55], Evict + Reload attack [17]; (6) SpectrePrime, MeltdownPrime attack [46]
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Table 3 The table shows the second part of the timing-based cache side-channel vulnerabilities where the last step is an invalidation related
operation. For Step 3, fast indicates no corresponding address of the data is invalidated, while slow indicates invalidation operation makes some
data invalid, causing longer processing time

Attack Vulnerability Type Macro Attack

Step 1 Step 2 Step 3

Strategy Type

Cache Internal Collision Invalidation Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

Aaalias Vu V inv
a (slow) IH new

Vaalias Vu V inv
a (slow) IH new

Flush + Flush Ainv
a Vu V inv

a (slow) IH (1)

V inv
a Vu V inv

a (slow) IH (1)

Ainv
a Vu Ainv

a (slow) EH (1)

V inv
a Vu Ainv

a (slow) EH (1)

Flush + Reload Invalidation Ainv Vu Ainv
a (slow) EH new

V inv Vu Ainv
a (slow) EH new

Ad Vu Ainv
a (slow) EH new

Vd Vu Ainv
a (slow) EH new

Aaalias Vu Ainv
a (slow) EH new

Vaalias Vu Ainv
a (slow) EH new

Reload + Time Invalidation V inv
u Aa V inv

u (slow) EH new

V inv
u Va V inv

u (slow) IH new

Flush + Probe Invalidation Aa V inv
u Ainv

a (fast) EM new

Aa V inv
u V inv

a (fast) IM new

Va V inv
u Ainv

a (fast) EM new

Va V inv
u V inv

a (fast) IM new

Evict + Time Invalidation Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

Prime + Probe Invalidation Ad Vu Ainv
d (fast) EM new

Aa Vu Ainv
a (fast) EM new

Bernstein’s Invalidation Attack Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d (fast) IM new

Va Vu V inv
a (fast) IM new

Evict + Probe Invalidation Vd Vu Ainv
d (fast) EM new

Va Vu Ainv
a (fast) EM new

Prime + Time Invalidation Ad Vu V inv
d (fast) IM new

Aa Vu V inv
a (fast) IM new

Flush + Time Invalidation Vu Ainv
a V inv

u (fast) EM new

Vu V inv
a V inv

u (fast) IM new

(1) Flush + Flush attack [16]
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This section gives brief overview of the 18 secure cache
designs that have been presented in academic literature
in the last 15 years. To the best of our knowledge, these
cover all the secure cache designs proposed to date. Most
of the designs have been realized in functional simulation,
e.g., [23, 48]. Some have been realized in FPGA, e.g., [7],
and a few have been realized in real ASIC hardware,
e.g., [31]. No specific secure caches have been implemented
in commercial processors to the best of our knowledge;
however, CATalyst [29] leverages Intel’s CAT (Cache
Allocation Technology) technology available today in Intel
Xeon E5 2618L v3 processors, and could be deployed today.

When the secure cache description in the cited papers
did not mention the issue of using flush or cache coherence,
we assume the victim or the attacker cannot invalidate
each other’s cache blocks by using clf lush instructions or
through cache coherence protocol operations; but they can
flush or use cache coherence to invalidate their own cache
lines. The victim and the attacker also cannot invalidate
protected or locked data. Further, if the authors specified any
specific assumptions (mainly about the software), we list the
assumption as part of the description of the cache. What’s
more, when the level of cache hierarchy was unspecified,
we assume the secure caches’ features can be applied
to all levels of caches, including L1 cache, L2 cache,
and Last Level Cache (LLC). If the inclusivity of the
caches was not specified, we assume they target inclusive
caches. Following the below descriptions of each secure
cache design, the analysis of the secure caches is given in
Section 5.

SP∗ Cache [20, 27]3 uses partitioning techniques to
statically partition the cache ways into High and Low
partition for the victim and the attacker according to their
different process IDs. The victim typically belongs to High
security and attacker belongs to Low security. Victim’s
memory accesses cannot modify Low partition (assigned to
processes such as the attacker), while the attacker’s memory
accesses cannot modify High partition (assigned to the
victim). However, the memory accesses of both the victim
and the attacker can result in a hit in either Low or High
partition if the data is in the cache.

SecVerilog Cache [56, 57] statically partitions cache
blocks between security levels L (Low) and H (High).
Each instruction in the source code for programs using
SecVerilog cache needs to include a t iming label which
effectively represents whether the data being accessed by

3Two existing papers give slightly different definitions for an “SP”
cache; thus, we selected to define a new cache, the SP∗ cache,
that combines secure cache features of the Secret-Protecting cache
from [27] with secure cache features of the Static-Partitioned cache
from [20].

that instruction is Low or High based on the code and
this t iming label can be similar to a process ID that
differentiates attacker’s (Low) instructions from victim’s
(High) instructions. The cache is designed such that
operations in the High partition cannot affect timing of
operations in the Low partition. For a cache miss due to Low
instructions, when the data is in the High partition, it will
behave as a cache miss, and the data will be moved from the
High to the Low partition to preserve consistency. However,
High instructions are able to result in a cache hit in both
High and Low partitions, if the data is already in the cache.

SecDCPCache [48] builds on the SecVerilog cache and uses
partitioning idea from the original SecVerilog cache, but the
partitioning is dynamic. It can support at least two security
classes H (High) and L (Low), and configurations with more
security classes are possible. They use the percentage of
cache misses for L instructions that was reduced (increased)
when L’s partition size was increased (reduced) by one
cache way to adjust the number of ways of the cache
assigned to the Low partition. When adjusting number of
ways in the cache dedicated to each partition, if L’s partition
size decreases, the process ID is checked and L blocks
are flushed before the way is reallocated to H. On the
other hand, if L’s partition size increases, H blocks in the
adjusted cache way remain unmodified so as to not add
more performance overhead, and they will eventually be
evicted by L’s memory accesses. However, the feature of
not flushing High partition data during way adjustment may
leak timing information to the attacker.

NoMo Cache [12] dynamically partitions the cache ways
among the currently “active” simultaneous multithreading
(SMT) threads. Each thread is exclusively reserved Y blocks
in each cache set, where Y is within the range of [0, � N

M
�],

where N is the number of ways, and M is the number of
SMT threads. NoMo-0 equals to traditional set associative
cache while NoMo-� N

M
� partitions cache evenly for the

different threads and there are no non-reserved ways. The
number of Y assigned to each thread is adjusted based on
its activeness. When adjusting number of blocks assigned to
a thread, Y blocks are invalidated for cache sets to protect
timing leakage. Eviction is not allowed within each thread’s
own reserved ways while it is possible for the shared ways.
Therefore, to avoid eviction caused by the unreserved ways,
we assume NoMo-� N

M
� is used to fully partition the cache.

When the attacker and the victim share the same library,
there will be a cache hit if accessing the shared data, and
the normal cache hit policy holds to guarantee the cache
coherence.

SHARP Cache [53] uses both partitioning and randomiza-
tion techniques to prevent victim’s data from being evicted
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or flushed by other malicious processes and it targets on the
inclusive caches. Each cache block is augmented with the
core valid bits (CVB) to indicate which private cache (pro-
cess) it belongs to (similar to the Process ID), where CVB
stores a bitmap and ith bit in the bitmap is set if the line
is present in ith core’s private cache. Cache hit is allowed
among different processes’ data. When there is cache miss
and data needs to be evicted, data not belonging to any cur-
rent processes will be evicted first. If there is no such data,
data belonging to the same process will be evicted. If there
is no existing data in the cache that is in the same process,
a random data in the cache set will be evicted. This random
eviction will generate an interrupt to the OS to notify it of
a suspicious activity. For pages that are read-only or exe-
cutable, SHARP cache disallows flushing using clf lush in
user mode. However, invalidating victim’s blocks by using
cache coherence protocol is still possible.

Sanctum Cache [10] focuses on isolation of enclaves
(equivalent to Trusted Software Module in other designs)
from each other and the operating system (OS). In terms of
caches, they implement security features for L1 cache, TLB,
and LLC. Cache isolation of LLC is achieved by assigning
each enclave or OS to different DRAM address regions.
It uses page-coloring-based cache partitioning scheme [24,
44] and a software security monitor that ensures per-
core isolation between OS and enclaves. For L1 cache
and TLB, when there is a transition between enclave and
non-enclave mode, the security monitor will flush the
core-private caches to achieve isolation. Normal flushes
triggered by the enclave or the OS can only be done within
enclave or not within enclave code. Also, timing-based side-
channel attacks exploiting cache coherence are explicitly
not prevented; thus, behavior on cache coherence operations
is not defined. This cache listed extra software assumptions
as follows:

Assumption 1. Software security monitor guarantees that
victim and attacker process cannot share the same cache
blocks. It uses page coloring [24, 44] to ensure that victim
and attacker’s memory is never mapped to the same cache
blocks for the LLC.
Assumption 2. The software runs on a system with a
single processor core where victim and attacker alternate
execution, but can never run truly in parallel. Moreover,
security critical data is always flushed by the security
monitor when program execution switches away from the
victim program for the L1 cache and the TLB.

MI6 Cache [7] is part of the memory hierarchy of the
MI6 processor, which combines Sanctum [10] cache’s
security feature with disabling speculation during the
speculative execution of memory-related operations. During

normal processor execution, for L1 caches and TLB, the
corresponding states will be flushed across context switches
between software threads. For the LLC, set partitioning is
used to divide DRAM into contiguous regions. And cache
sets are guaranteed to be strictly partitioned (two DRAM
regions cannot map to the same cache set). Each enclave
is only able to access its own partition. Speculation is
simply disabled when enclave interacts with the outside
world because of small performance influence based on the
rare cases of speculation. This cache listed extra software
assumptions as follows:

Assumption 1. Software security monitor guarantees that
the victim and the attacker process cannot share the same
cache blocks. It uses page coloring [24, 44] to ensure that
victim’s and attacker’s memory are never mapped to the
same cache blocks for the LLC.
Assumption 2. The software runs on a system with a
single processor core where victim and attacker alternate
execution, but can never run truly in parallel. Moreover,
security critical data is always flushed by the security
monitor when program execution switches away from the
victim program for the L1 cache and the TLB.
Assumption 3. When an enclave is interacting with the
outside environment, the corresponding speculation is
disabled by the software.

InvisiSpec Cache [52] is able to make speculation invisible
in the data cache hierarchy. Before a visibility point
shows up, when all of its prior control flow instructions
resolve, unsafe speculative loads (USL) will be put into
a speculative buffer (SB) without modifying any cache
states. When reaching the visibility point, there are two
cases. In one case, the USL and successive instructions
will be possibly squashed because of mismatch of data
in the SB and the up-to-date values in the cache. In
another case, the core receives possible invalidation from
the OS before checking of memory consistency model
and no comparison is needed. When speculative execution
happens, the hardware puts the data into SB, as to identify
visibility point for dealing with final state transition of the
speculative execution. InvisiSpec cache targets on Spectre-
like attacks and futuristic attacks. However, InvisiSpec
cache is vulnerable to all non-speculative side channels.

CATalyst Cache [29] uses partitioning, especially Cache
Allocation Technology (CAT) [21] available in the LLC
of some Intel processors. CAT allocates up to 4 different
Classes of Services (CoS) for separate cache ways so
that replacement of cache blocks is only allowed within
a certain CoS. CATalyst first uses CAT mechanism to
partition caches into secure and non-secure parts (non-
secure parts may map to 3 CoS while secure parts map
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to 1 CoS). Secure pages are assigned to virtual machines
(VMs) at a granularity of a page, and not shared by more
than one VM. Here, attacker and victim reside in different
VMs. Combined with CAT technology and pseudo-locking
mechanism which pins certain page frames managed by
software, CATalyst guarantees that malicious code cannot
evict secure pages. CATalyst implicitly performs preloading
by remapping security-critical code or data to secure pages.
Flushes can only be done within each VM. And cache
coherence is achieved by assigning secure pages to only one
processor and not sharing pages among VMs. This cache
listed extra software assumptions as follows:

Assumption 1. Security critical data is always preloaded
into the cache at the beginning of the whole program
execution.
Assumption 2. Security critical data is always able to fit
within the secure partition of the cache. That is, all data
in the range x can fit in the secure partition.
Assumption 3. The victim and the attacker process cannot
share the same memory space.
Assumption 4. Use pseudo-locking mechanism by soft-
ware to make sure that victim and attacker process cannot
share the same cache blocks.
Assumption 5. Secure pages are reloaded immediately
after the flush, which is done by the virtual machine
monitor (VMM) to make sure all the secure pages are still
pinned in the secure partition.

DAWG Cache [25] (Dynamically Allocated Way Guard)
partitions the cache by cache ways and provides full
isolation for hits, misses, and metadata updates across
different protection domains (between the attacker and the
victim). DAWG cache is partitioned for the attacker and the
victim and each of them keep their own different domain id
(which is similar to process ID used in general caches). Each
domain id has its own bit fields, one is called policy fillmap,
for masking fills and selecting the victim to replace, another
is called policy hitmap, for masking hit ways. Only both
the tag and the domain id are the same will a cache hit
happen. Therefore, DAWG allows read-only cache lines to
be replicated across ways for different protection domain.
For a cache miss, the victim can only be chosen within
the ways belonging to the same domain id, recorded by
the policy fillmap. Consistently, the replacement policy is
updated with the victim selection and the metadata derived
from the policy fillmap for different domains is updated
as well. The paper also proposes the idea to dynamically
partitions the cache ways following the system’s workload
changes but does not actually implement it.

RIC Cache [22] (Relaxed Inclusion Caches) proposes a low-
complexity cache to defend against eviction-based timing-
based side-channel attacks on the LLC. Normally for an

inclusive cache, if the data R is in the LLC, it is also in
the higher level cache, and eviction of the R in the LLC
will cause the same data in the higher level cache, e.g., L1
cache to be invalidated, making eviction-based attacks in
the higher level cache possible (e.g., attacker is able to evict
victim’s security critical cache line). For RIC, each cache
line is extended with a single bit to set the relaxed inclusion.
Once the relaxed inclusion is set for that cache line, the
corresponding LLC line eviction will not cause the same
line in the higher-level cache to be invalidated. Two kinds of
data will be set relaxed inclusion bit: read only data and
thread private data when they are loaded into the cache.
These two kinds of data are claimed by the paper to cover all
the critical data for ciphers. Therefore, RIC will not prevent
writable in-private critical data, which is currently not found
in any ciphers. Apart from that, RIC requires flushing for the
corresponding cache lines in the cases that the RIC bits are
modified or for thread migration events to avoid the timing
leakage during transition time.

PL Cache [49] provides isolation by partitioning the cache
based on cache blocks. It extends each cache block with a
process ID and a lock status bit. The process ID and the
lock status bits are controlled by the extended load and store
instructions (ld .lock/ld .unlock and st .lock/st .unlock)
which allow the programmer and compiler to set or reset the
lock bit through use of the right load or store instruction.
In terms of cache replacement policy, for a cache hit, PL
cache will perform the normal cache hit handling procedure
and the instructions with locking or unlocking capability can
update the process ID and the lock status bits while the hit is
processed. When there is a cache miss, locked data cannot
be evicted by data that is not locked and locked data among
different processes cannot be evicted by each other. In this
case, the new data will be either loaded or stored without
caching. In other cases, data eviction is possible. This cache
listed extra software assumption as follows:

Assumption 1. Security critical data is always preloaded
into the cache at the beginning of the whole program
execution.

RP Cache [49] uses randomization to de-correlate the
memory address accessing and timing of the cache. For
each block of RP cache, there is a process ID and one
protection bit P set to indicate if this cache block needs to be
protected or not. A permutation table (PT) stores each cache
set’s pre-computed permuted set number and the number
of tables depends on number of protected processes. For
memory access operations, cache hits need both process ID
and address to be the same. When a cache miss happens
to data D of a cache set S, if the to-be-evicted data and
to-be-brought-in data belong to the same process but have
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different protection bit, arbitrary data of a random cache set
S′ will be evicted and D will be accessed without caching.
If they belong to different processes, D will be stored in an
evicted cache block of S′ and mapping of S and S′ will be
swapped as well. Otherwise, the normal replacement policy
is executed.

Newcache Cache [31, 50] dynamically randomizes
memory-to-cache mapping. It introduced a ReMapping
Table (RMT), and the mapping between memory addresses
and this RMT is as in a direct mapped cache, while the
mapping between the RMT and actual cache is fully asso-
ciative. The index bits of memory address are used to look
up entries in the RMT to find the cache block that should
be accessed. It stores the most useful cache lines rather than
hold a fixed set of cache lines. This index stored in RMT
combined with the process ID is used to look up the actual
cache where each cache line is associated with its real index
and process ID. Each cache block is also associated with
a protection bit (P) to indicate if it is security critical. For
cache replacement policy, it is very similar to RP cache.
Cache hit needs both process ID and address to be the same.
When cache miss happens to data D, arbitrary data will
be evicted and D will be accessed without caching if they
belong to the same process but either one of their protec-
tion bit is set. If the evicted data and brought-in data have
different process IDs, D will randomly replace a cache line
since it is fully associative in the actual cache. Otherwise,
the normal replacement policy for direct mapped cache is
executed.

Random Fill Cache [30] de-correlates cache fills with
the memory access using random filling technique. New
instructions used by applications in Random Fill cache
can control if the requested data belongs to a normal
request or a random fill request. Cache hits are processed
as in normal cache. For the security critical data accesses
of the victim, a Nof ill request is executed and the
requested data access will be performed without caching.
Meanwhile, on a Random Fill request , arbitrary data,
from the range of addresses, will be brought into the cache.
In the paper [30], the authors show that random fill of
spatially near data does not hurt performance. For other
processes’ memory accesses and normal victim’s memory
accesses, Normal request will be used to achieve normal
replacement policy. Victim and attacker are able to remove
victim’s own security critical data including using clf lush

instructions or cache coherence protocol since the flush will
not influence timing-based side-channel attack prevention
(the random filling technique is used for this).

CEASER Cache [38] is able to mitigate conflict-based
LLC timing–based side-channel attacks using address

encryption and dynamic remapping. CEASER cache does
not differentiate whom the address belongs to and whether
the address is security critical. When memory access tries
to modify the cache state, the address will first be encrypted
using Low-Latency BlockCipher (LLBC) [6], which not
only randomizes the cache set it maps, but also scatters the
original, possibly ordered, and location-intensive addresses
to different cache sets, decreasing the probability of conflict
misses. The encryption and decryption can be done within
two cycles using LLBC. Furthermore, the encryption key
will be periodically changed to avoid key reconstruction.
The periodic re-keying will cause the address remapping to
dynamically change.

SCATTER Cache [51] uses cache set randomization to
prevent timing-based attacks. It builds upon two ideas. First,
a mapping function is used to translate memory address
and process information to cache set indices, the mapping
is different for each program or security domain. Second,
the mapping function also calculates a different index for
each cache way, in a similar way to the skewed associative
caches [41]. The mapping function can be keyed hash or
keyed permutation derivation function—a different key is
used for different application or security domain resulting
in a different mapping from address to cache sets for each.
Software (e.g., the operating system) is responsible for
managing the security domains and process IDs which are
used to differentiate the different software and assign it
different keys for the mapping. For the hardware extension,
a cryptographic primitive such as hashing and an index
decoder for each scattered cache way is added. SCATTER
cache also stores the index bits of the physical address
to efficiently perform lookups and writebacks. There is
also one bit per page-table entry added to allow the kernel
to communicate with the user space for security domain
identification.

Non Deterministic Cache [23] uses cache access delay to
randomize the relation between cache block access and
cache access timing. There is no differentiation of data
caching between different process ID or whether the data
is secure or not. A per-cache-block counter records the
interval of its data activeness, and is increased on each
global counter clock tick when the data is untouched. When
the counter reaches a predefined value, the corresponding
cache line will be invalidated. Non Deterministic Cache
randomly sets the local counters’ initial value that is less
than the maximum value of the global counter. In this
case, the cache delay is changed to be randomized. Cache
delay interval controlled by this non-deterministic execution
can lead to different cache hit and miss statistics because
the invalidation is determined by the randomized counter
of each cache line, and therefore de-correlates any cache
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access time from the address being accessed. However, the
performance degradation is tremendous.

5 Analysis of the Secure Caches

In this section, we manually evaluate the effectiveness of
the 18 secure caches [7, 10, 12, 22, 23, 25, 27, 29, 30, 38,
48–53, 56, 57]. We analyze how well the different caches
can protect against the 72 types of vulnerabilities defined
in Tables 2 and 3, which cover all the possible Strong
(according to the definition in Section 3) cache timing–
based vulnerabilities. Following the analysis, discuss what
types of secure caches and features are best suited for
defending different types of timing-based attacks.

5.1 Effectiveness of the Secure Caches Against
Timing-Based Attacks

Tables 4 and 5 list the result of our analysis of which
caches can prevent which types of attacks. Some caches
are able to prevent certain vulnerabilities, denoted by a
checkmark, �, and green color in the table. For example,
SP∗ cache can defend against Vu � Ad � Vu (slow)
(one type of Evict + Time [34]) vulnerability. For some
other caches and vulnerabilities, the cache is not able to
prevent the vulnerabilities and it is indicated by × and red
color. For example, SecDCP cache cannot defend against
Vu � Va � Vu (slow) (one type of Bernstein’s Attack [3])
vulnerability.

Each cache is analyzed for each type of vulnerability
listed in Tables 2 and 3. A cache is judged to be able to
prevent a type of cache timing–based vulnerability in three
cases:

1. A cache can prevent a timing attack if the timing of
the last step in a vulnerability is always constant and
the attacker can never observe fast and slow timing
difference for the given set of three steps. For instance,
in a regular set-associative cache, the Vd � Vu � Aa

(fast) (one type of Flush + Reload [55]) vulnerability
will allow the attacker to know that address a maps
to secret u when the attacker observes fast timing,
compared with observing slow timing in the other cases.
However, in case of the RP cache [49] will make the
timing of the last step to be always slow because RP
cache does not allow data of different processes to
derive cache hit between each other.

2. A cache can prevent a timing attack if the timing
of last step is randomized and cannot have original
corresponding relation between victim’s behavior and
attacker’s observation. For instance, Ad � Vu �
Ainv

d (fast) (one type of Prime + Probe Invalidation)

vulnerability when executed on a normal set-associative
cache will allow the attacker to know that the address
d has the same index with secret u when observing fast
timing, compared with slow timing in the other cases.
However, when executing this attacks on the Random
Fill cache [30], for example a slow timing will not
determine that u and d have the same index as the
secret, since in Random Fill cache u would be accessed
without caching and another random data would be
cached instead.

3. A cache can prevent a timing attack if it disallows
certain steps from the three-step model to be executed,
thus prevents the corresponding vulnerability. For
instance, when PL cache [49] preloads and locks the
security critical data in the cache, vulnerabilities such
as Ad � Vu � V inv

d (slow) (one type of Prime + Time
Invalidation) will not be possible since a preloaded
locked security critical data will not allow Ad in Step 1
to replace it. In this case, Ad cannot be in the cache, so
this vulnerability cannot be triggered in PL cache.

From the security perspective, the entries of the secure
cache in Tables 4 and 5 should have as many green colored
cells as possible. If a cache design has any red cells, then
it cannot defend against that type of vulnerability—attacker
using the timing-based vulnerability that corresponds to the
red cell can attack the system.

The third column in Tables 4 and 5 shows a normal
set associative cache, which cannot defend against any
type of timing-based vulnerabilities. Meanwhile, the last
column of Tables 4 and 5 shows the situation where the
cache is fully disabled. As is expected, the timing-based
vulnerabilities are eliminated and timing-based attacks will
not succeed. Disabling caches, however, has tremendous
performance penalty. Similarly, second-to-last column
shows Nondeterministic Cache, which totally randomizes
cache access time. It can defend all the attacks, but again
will have a tremendous cost to security when the application
is complex.

For each of the entry that shows the effectiveness
of a secure cache against a vulnerability, there are two
results listed. Left one is for normal execution, and the
right one is for speculative execution. Some secure caches
such as InvisiSpec cache target timing-based channels in
speculative execution. For most of the caches that do not
differentiate speculative execution and normal execution,
the two sub-columns for each cache are the same.

6 Secure Cache Techniques

Among the secure cache designs presented in the prior
section, there are three main techniques that the caches
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utilize: differentiating sensitive data, partitioning, and
randomization.

Differentiating Sensitive Data (columns for CATalyst cache
to columns for Random Fill cache in Tables 4 and 5) allows
the victim or attacker software or management software to
explicitly label a certain range of the data of victim which
they think is sensitive. The victim process or management
software is able to use cache-specific instructions to protect
the data and limit internal interference between victim’s
own data. For example, it is possible to disable victim’s
own flushing of victim’s labeled data, and therefore prevent
vulnerabilities that leverage flushing. This technique allows
the designer to have stronger control over security critical
data, rather than forcing the system to assume all of victim’s
data is sensitive. However, how to identify sensitive data
and whether this identification process is reliable are open
research questions for caches that support differentiation of
sensitive data.

This technique is independent of whether a cache uses
partitioning or randomization techniques to eliminate side
channels between the attacker and the victim. Caches that
are able to label and identify sensitive data have the
advantage in preventing internal interference since they are
able to differentiate sensitive data from the normal data
and can make use of special instructions to give more
privileges to sensitive data. However, it requires careful use
when identifying the actual sensitive data and implementing
corresponding security features on the cache.

Comparing PL cache with SP∗ cache, although both
of them use partitioning, flush is able to be implemented
to be disabled for victim’s sensitive data in PL cache,
where Vu � V inv

a � Vu (slow) (one type of Flush +
Time) is prevented. Newcache is able to prevent Vu �
Va � Vu (slow) (one type of Bernstein’s Attack [3])
while most of the caches without ability to differentiate
sensitive data cannot because Newcache disallows replacing
data as long as either data to be evicted or data to be
cached is identified to be sensitive. However, permitting
differentiation of sensitive data can potentially backfire on
the cache itself. For example, Random Fill cache cannot
prevent Vu � Ad � Vu (slow) (one type of Evict +
Time [34]) which most of the other caches can prevent or
avoid, because the random fill technique loses its intended
random behavior when the security critical data is initially
loaded into the cache in Step 1.

Partitioning-Based Caches usually limit the victim and the
attacker to be able to only access a limited set of cache
block (columns for SP∗ cache to column for PL cache
in Tables 4 and 5). For example, either there is static
or dynamic partitioning of caches which allocates some
blocks to High victim and Low attacker. The partitioning

can be based not just on whether the memory access is
victim’s or attacker’s, but also on where the access is to
(e.g., High partition is determined by the data address). For
speculative execution, attacker’s code can be the part of
speculation or out-of-order load or store, which is able to be
partitioned (e.g., using speculative load buffer) from other
normal operations. The partitioning granularity can be cache
sets, cache lines, or cache ways. Partitioning-based secure
caches are usually able to prevent external interference by
partitioning but are weak at preventing internal interference.
When partitioning is used, interference between the attacker
and the victim, or data belonging to different security
levels, should not be possible and attacks based on external
interference between the victim and the attacker will fail.
However, the internal interference of victim’s own data
is hard to be prevented by the partitioning-based caches.
What’s more, partitioning is recognized to be wasteful
in terms of cache space and inherently degrades system
performance [49]. Dynamic partitioning can help limit the
negative performance and space impacts, but it could be at
a cost of revealing some information when adjusting the
partitioning size for each part. It also does not help with
internal interference prevention.

In terms of the three-step model, the partitioning-based
caches excel at making use of partitioning techniques to
disallow the attacker to set initial states (Step 0) of victim
partition by use of flushing or eviction, and therefore bring
uncertainty to the final timing observation made by the
attacker.

SP∗ cache can prevent external miss-based interference,
but it still allows the victim and the attacker to get
cache hits due to each other’s data, which makes hit-
based vulnerabilities happen, e.g., Vd � Vu � Va (fast)
(one type of Cache Internal Collision [5]) vulnerability
is one of the examples that SP∗ cache cannot prevent.
SecVerilog cache is similar to SP∗ cache but prevents the
attacker from directly getting cache hit due to victim’s data
for confidentiality and therefore prevents vulnerabilities
such as Ainv

a � Vu � Aa (fast) (one type of Flush
+ Reload [55]). SHARP cache mainly uses partitioning
combined with random eviction to minimize the probability
of evicting victim’s data and prevent external miss-based
vulnerabilities. It is vulnerable to hit-based or internal
interference vulnerabilities such as Vu � Va � Vu (slow)
(one type of Bernstein’s Attack [3]) vulnerability. DAWG
cache will only allow the data to get a cache hit if both
its address and the process ID are the same. Therefore,
compared with normal partitioning cache such as SP∗ cache,
it is able to prevent vulnerabilities such as Vd � Vu � Ainv

d

(fast) (one type of Prime + Flush).
SecDCP and NoMo cache both leverage dynamic

partitioning to improve performance. Compared with
SecVerilog cache, SecDCP cache introduces certain side
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channels which manifest themselves when the number of
ways assigned to the victim and attacker changes, e.g.,
Vu � Ainv

a � Vu (slow) (one type of Flush + Time)
vulnerability. NoMo cache behaves more carefully when
changing the number of ways during dynamic partitioning;
however, it requires victim’s sensitive data to fit into
the assigned partitions, otherwise it will be put into the
unreserved way and allow eviction by the attacker. SecDCP
does not have unreserved way. All the space in the cache
will be either belongs to High or Low partition.

Sanctum cache and CATalyst cache are both controlled
by a powerful software monitor and they disallow secure
page sharing between victim and attacker to prevent
vulnerabilities such as Ad � Vu � Aa (fast) (one
type of Flush + Reload [55]). Sanctum cache does not
consider internal interference while CATalyst cache is
more carefully designed to prevent different vulnerabilities
with the implemented software system, so far supporting
preventing all of the vulnerabilities, but only works for
LLC and with high software implementation complexity
and some assumptions that might be hard to achieve
in other scenarios, e.g., assuming the secure partition is
big enough to fit all the secure data. MI6 cache is the
combination of Sanctum and disabling speculation when
interacting with the outside world. Therefore, in normal
execution, it behaves the same as Sanctum. For speculative
execution, because it will simply disable all the speculation
when involving the outside world, the external interference
vulnerability such as Vd � Vu � Ad (slow) (one type of
Evict + Probe) vulnerability will be prevented.

InvisiSpec cache does not modify the original cache
state but places the data in a speculative buffer partition
during the speculation or out-of-order load or store. Since
during speculation cache state is not actually updated, the
speculative execution cannot trigger any of the steps in
the three-step model. RIC cache focuses on eviction based
attack and therefore are good at preventing even some
internal miss-based vulnerability such as Vu � Va � Vu

(slow) (one type of Bernstein’s Attack [3]) but are bad at
all hit-based vulnerabilities. PL cache is line-partitioned
and uses locking techniques for victim’s security critical
data. It can prevent many vulnerabilities because preloading
and locking secure data disallow the attacker or non-secure
victim data to set initial states (Step 0) for victim partition,
and therefore brings uncertainty to the final observation by
the attacker, e.g., Ad � Vu � Va (fast) (one type of Cache
Internal Collision [5]) vulnerability is prevented.

Randomization-Based Caches (columns for SHARP cache,
and columns for RP cache to columns for Non Deterministic
cache in Tables 4 and 5) inherently de-correlate the
relationship between information of victim’s security
critical data’s address and observed timing from cache

hit or miss, or between the address and observed timing
of flush or cache coherence operations. For speculative
execution, they also de-correlate the relationship between
the address of the data being accessed during speculative
execution or out-of-order load or store and the observed
timing from a cache hit or miss. Randomization can be
used when bringing data into the cache, evicting data, or
both. Some designs randomize the address to cache set
mapping. As a result of the randomization, the mutual
information from the observed timing, due to having or
not having data in the cache, could be reduced to 0, if
randomization is done on every memory access. Some
secure caches use randomization to avoid many of the miss-
based internal interference vulnerabilities. However, they
may still suffer from hit-based vulnerabilities, especially
when the vulnerabilities are related to internal interference.
However, randomization is also likewise recognized to
increase performance overheads [23]. It also requires a
fast and secure random number generator. Most of the
randomization is cache-line-based and can be combined
with differentiation of sensitive data to be more efficient.

RP cache allows eviction between different sensitive
data, which leaves vulnerabilities such as Vu � Va � Vu

(slow) (one type of Bernstein’s Attack [3]) still possible,
while Newcache prevents this. Both of the RP cache
and Newcache are not able to prevent hit-based internal-
interference vulnerabilities such as Ainv

a � Vu � Va

(fast) (one type of Cache Internal Collision [5]). Random
Fill cache is able to use total de-correlation of memory
access and cache access of victim’s security critical data
to prevent most of the internal and external interference.
However, when security critical data is initially directly
loaded into the cache block for Step 1, Random Fill cache
will not randomly load security critical data and allows
vulnerabilities such as Vu � V inv

a � Vu (slow) (one type
of Flush + Time) vulnerability to exist. CEASER cache uses
encryption scheme plus dynamic remapping to randomize
mapping from memory addresses to cache sets. However,
this targets eviction-based attacks and cannot prevent hit-
based vulnerabilities such as Va � V inv

u � V inv
a (fast)

(one type of Flush + Probe Invalidation). SCATTER cache
encrypts both the cache address and process ID when
mapping into different cache index to further prevent more
hit-based vulnerabilities for shared and read only memory.
Non Deterministic Cache totally randomizes timing of
cache accesses by adding delays and can prevent all attacks
(but at tremendous performance cost).

6.1 Estimated Performance and Security Tradeoffs

Table 6 shows the implementation and performance
results of the secure caches, as listed by the designers
in the different papers. At the extreme end, there is
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the Non Deterministic cache: with random delay, the
secure cache can prevent all the cache timing–based
vulnerabilities in some degree—while their paper reports
only 7% degradation in performance, we expect it to
be much more for more complex application than AES
algorithm. Disabling caches eliminates the attacks, but at
a huge performance cost. Normally, a secure cache needs
to sacrifice some performance in order to de-correlate
memory access with the timing. The secure caches that
tend to be able to prevent more vulnerabilities usually
have weaker performance compared with other secure
caches. For example, more security seems to imply less
performance.

6.2 Towards Ideal Secure Cache

Based on the above analysis, a good secure cache should
consider all the 72 types of Strong vulnerabilities, e.g.,
external and internal interference, and hit-based and miss-
based vulnerabilities. Considering all factors and based
on Tables 4 and 5, we have several suggestions and
observations for a secure cache design which can defend
timing-based attacks:

• Internal interference is important for caches to prevent
timing-based attacks and is the weak point of most of
the secure caches. To prevent this, the following three
subpoints should be considered:

– Miss-based internal interference can be solved
by randomly evicting data to de-correlate
memory access with timing information when
either data to be evicted or data to be cached
is sensitive, e.g., Newcache prevents Vu �
Va � Vu (slow) (one type of Bernstein’s
Attack [3]) vulnerability.

– Hit-based internal interference can be solved
by randomly bringing data into the cache, e.g.,
Random Fill cache prevents Ad � Vu � Va

(fast) (Cache Internal Collision) vulnerability.
– To limit internal interference at lower perfor-

mance cost, rather than simply assume all of
victim’s data is sensitive, it is better to differ-
entiate real sensitive data from other data in the
victim code. However, identification of sen-
sitive information needs to be carefully used,
e.g., Random Fill cache is vulnerable to Vu �
Ad � Vu (fast) (one type of Evict + Time [34])
vulnerability which most of the secure caches
are able to prevent.

• Direct partitioning between the victim and the attacker,
although may hurt cache space utilization or perfor-
mance, is good at disallowing attacker to set known

initial state to victim’s partition and therefore pre-
vents external interference. Alternatively, careful use of
randomization can also prevent external interference.

It should be noted that some cache designs only focus
on certain levels, e.g., CATalyst cache only works at the
last level cache. In order to fully protect the whole cache
system from timing-based attacks, all levels of caches in the
hierarchy should be protected with related security features.
For example, Sanctum is able to prevent all levels of caches
from L1 to last-level cache. Consequently, secure cache
design needs to be realizable at all levels of the cache
hierarchy.

7 RelatedWork

There are a lot of existing attacks exploring timing-
based cache channels, e.g., [1, 3, 5, 16–19, 34, 36, 54,
55]. Furthermore, our recent paper [11] has summarized
cache timing–based side-channel vulnerabilities using a
three-step model, and inspired this work on checking
which vulnerability types are truly defeated by the secure
caches in context of timing-based attacks. In other work,
Zhang and Lee [59] used finite-state machine to model
cache architectures and leveraged mutual information to
measure potential side-channel leakage of the modeled
cache architectures. Meanwhile, He and Lee [20] modeled
interference using probabilistic information flow graph, and
used attacker’s success probability to estimate different
caches’ ability to defend against some cache timing–based
side-channel attacks. However, they did not explore all
possible vulnerabilities due to cache timing–based channels.

There is also some other work focusing on cache
side-channel verification [13, 14, 47]. Among these,
CacheAudit [14] efficiently computes possible side-channel
observations using abstractions in a modular way. Bit-
level and arithmetic reasoning is used in [13] for memory
accesses in the presence of dynamic memory allocation.
CacheD [47] detects potential cache differences at each
program point leveraging symbolic execution and constraint
solving.

Hardware transactional memory has also been lever-
aged to prevent timing-based cache side-channel attacks [8,
15]. Hardware transactional memory (HTM) is available
on modern commercial processors, such as Intel’s Transac-
tional Synchronization Extensions (TSX). Its main feature
is to abort the transaction and roll back the modifications
whenever a cache block contained in the read set or write
set is evicted out of the cache. In [15], HTM was com-
bined with preloading strategy for code and data to prevent
Flush + Reload attacks in the local setting, and Prime and
Probe attacks in the cloud setting. In [8], the software-level
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solution targets system calls, page faults, code refactoring,
and abort reasoning to eliminate not only Prime + Probe,
Flush + Reload, but also Evict + time and Cache Collision
attacks.

8 Conclusion

This paper first proposed a new three-step model in order
to model all possible cache timing vulnerabilities. It further
provided a cache three-step simulator and reduction rules
to derive effective vulnerabilities, allowing us to find ones
that have not been exploited in literature. With exhaustive
effective vulnerability types listed, this paper presented
analysis of 18 secure processor cache designs with respect
to how well they can defend against these timing-based
vulnerabilities. Our work showed that vulnerabilities based
on internal interference of the victim application are
difficult to protect against and many secure cache designs
fail in this. We also provided a summary of secure processor
cache features that could be integrated to make an ideal
secure cache that is able to defend timing-based attacks.
Overall, implementing a secure cache in a processor can be a
viable alternative to defend timing-based attacks. However,
it requires design of an ideal secure cache, or correction of
existing secure cache designs to eliminate the few attacks
that they do not protect against.
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1651945 and 1813797; and through Semiconductor Research Corpo-
ration (SRC) under GRC Task 2844.001.

Appendix A: Attack Strategies Descriptions

This appendix gives overview of the attack strategies, shown
in Tables 2 and 3 in Section 3. For each attack strategy, an
overview of the three steps of the strategy is given. Some of
the strategies are similar, and some may not be precise, but
we keep and use the original names as they were assigned
in prior work. One advantage of our three-step model is
that it gives precise definition of each attack. Nevertheless,
the attack strategy names used before (and added by us for
strategies which did not have such names) may be useful to
recall the attacks’ high-level operation.

Cache Internal Collision In Step 1, cache block’s data is
invalidated by flushing or eviction done by either the
attacker or the victim. Then, the victim accesses secret data
in Step 2. Finally, the victim accesses data at a known
address in Step 3, if there is a cache hit, then it reveals that
there is an internal collision and leaks value of u.

Flush + Reload In Step 1, either the attacker or the victim
invalidates the cache block’s data by flushing or eviction.
Then, the victim access secret data in Step 2. Finally, the
attacker tries to access some data in Step 2 using a known
address. If a cache hit is observed, then addresses from last
two steps are the same, and the attacker learns the secret
address. This strategy has similar Step 1 and Step 2 as
Cache Internal Collision vulnerability, but for Step 3, it is
the attacker who does the reload access.

Reload + Time (New Name Assigned in this Paper) In Step

1, secret data is invalidated by the victim. Then, the attacker
does some known data access in Step 2 that could possibly
bring back the invalidated the victim’s secret data in Step

1. In Step 3, if the victim reloads the secret data, a cache
hit is observed and the attacker can derive the secret data’s
address.

Flush + Probe (New Name Assigned in this Paper) In Step

1, the victim or the attacker access some known address.
In Step 2, the victim invalidates secret data. In Step 3,
reloading of Step 1’s data and observation of a cache miss
will help the attacker learn that the secret data maps to the
known address from Step 1.

Evict + Time In Step 1, some victim’s secret data is put into
the cache by the victim itself. In Step 2, the attacker evicts a
specific cache set by performing a memory related operation
that is not a flush. In Step 3, the victim reloads secret data,
and if a cache miss is observed, the will learn the secret
data’s cache set information. This attack has similar Step 1
and Step 3 as Flush + Time vulnerability, but for Step 2, in
Evict + Time, the attacker invalidates some known address
allowing it to find the full address of the secret data, instead
of evicting a cache set to only find the secret data’s cache
index as in the Flush + Time attack.

Prime + Probe In Step 1, the attacker primes the cache set
using data at address known to the attacker. In Step 2, the
victim accesses the secret data, which possibly evicts data
from Step 1. In Step 3, the attacker probes each cache set
and if a cache miss is observed, the attacker knowns the
secret data maps to the cache set he or she primed.

Bernstein’s Attack This attack strategy leverages the vic-
tim’s internal interference to trigger the miss-based attack.
For one case, the victim does the same secret data access in
Step 1 and Step 3 while in Step 2, the victim tries to evict
one whole cache set’s data by known data accesses. If cache
miss is observed in Step 3, that will tell the attacker the
cache set is the one secret data maps to. For another case,
the victim primes and probe a cache set in Step 1 and Step

3 driven by the attacker while in Step 2, the victim tries to
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access the secret data. Similar to the first case, observing
cache miss in Step 3 tells the attacker the cache set is the
one secret data maps to.

Evict + Probe (NewName Assigned in this Paper) In Step 1,
victim evict the cache set using the access to a data at an
address known to the attacker. In Step 2, the victim accesses
secret data, which possibly evicts data from Step 1. In Step

3, the attacker probes each cache set using the same data as
in Step 1, if a cache miss is observed the attacker knowns
the secret data maps to the cache set he or she primed. This
attack strategy has similar Step 2 and Step 3 as Prime +
Probe attack, but for Step 1, it is the victim that does the
eviction accesses.

Prime + Time (NewName Assigned in this Paper) In Step 1,
the attacker primes the cache set using access to data at an
address known to the attacker. In Step 2, the victim accesses
secret data, which possibly evicts data from Step 1. In Step

3, the victim probes each cache set using the same data Step

1, if a cache miss is observed the attacker knowns the secret
data maps to the cache set he or she primed in Step 1. This
attack strategy has similar Step 1 and Step 2 as Prime +
Probe attack, but for Step 3, it is the victim that does the
probing accesses.

Flush + Time (NewNameAssigned in this Paper) The victim
accesses the same secret data in Step 1 and Step 3; while
in Step 2, the attacker tries to invalidate data at a known
address. If cache miss is observed in Step 3, that will tell
the attacker the data address he or she invalidated in Step 2
maps to the secret data.

Invalidation related (new names assigned in this paper):
Vulnerabilities that have names ending with “invalidation”
in Table 3 correspond to the vulnerabilities that have
the same name (except for the “invalidation” part) in
Table 2. The difference between each set of corresponding
vulnerabilities is that the vulnerabilities ending with
“invalidation” use invalidation related operation in the last
step to derive the timing information, rather than the normal
memory access related operations.

Appendix B: Soundness Analysis
of the Three-StepModel

In this section, we analyze the soundness of the three-step
model to demonstrate that the three-step model can cover
all possible timing-based cache vulnerabilities in normal
caches. If there is a vulnerability that is represented using
more than three steps, the steps can be reduced to only three

steps, or a three-step sub-pattern can be found in the longer
representation.

In the below analysis, we use β to denote the number
of memory-related operations, i.e., steps, in a representation
of a vulnerability. We show that β = 1 is not sufficient to
represent a vulnerability, β = 2 covers some vulnerabilities
but not all, β = 3 represents all the vulnerabilities, and
β > 3 can be reduced to only three steps, or a three-step sub-
pattern can be found in the longer representation. Known
addresses refer to all the cache states that interference
with the data a, aalias and d Unknown address refers
u. An access to a known memory address is denoted as
known access operation, and an invalidation of a known
memory address is denoted as known inv operation.
The known access operation and known inv operation

together make up not u operations. An unknown memory
related operation (containing u) is denoted as u operation.

B.1 Patterns with β = 1

When β = 1, there is only one memory-related
operation, and it is not possible to create interference
between memory-related operations since two memory-
related operations are the minimum requirement for an
interference. Furthermore, β = 1 corresponds to the three-
step pattern with both Step 1 and Step 2 being �, since the
cache state � gives no information, and Step 3 being the
one operation. These types of patterns are all examined by
the cache three-step simulator and none of these types are
found to be effective. Consequently, a vulnerability cannot
exit when β = 1.

B.2 Patterns with β = 2

When β = 2, it satisfies the minimum requirement
of an interference for memory related operations and
corresponds to the three-step cases where Step 1 is �,
and Step 2 and Step 3 are the two operations. These
types are all examined by the cache three-step simulator
and some of them belong to Weak Vulnerabilities, like
{� � Aa � Vu}. Therefore, three-step cases where Step

1 is � have corresponding effective vulnerabilities shown
in Table 2. Consequently, β = 2 can represent some
weak vulnerabilities, but not all vulnerabilities as there exist
some that are represented with three steps, as discussed
next.

B.3 Patterns with β = 3

When β = 3, we have tested all possible combinations of
three-step memory related operations in Section 3.3 using
our cache simulator for the three-step model. We found
that there are in total 72 types of Strong Vulnerabilities
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and 64 types of Weak Vulnerabilities that are represented
by patterns with β = 3 steps. Consequently, β = 3
can represent all the vulnerabilities (including some weak
ones where Step 1 is �). Using more steps to represent
vulnerabilities is not necessary, as discussed next.

B.4 Patterns with β > 3

When β > 3, the pattern of memory-related operations for
a vulnerability can be reduced using the following rules:

B.4.1 Subdivision Rules

First, a set of subdivision rules is used to divide the long
pattern into shorter patterns, following the below rules.
Each subdivision rule should be applied recursively before
applying the next rule.

Subdivision Rule 1: If the longer pattern contains a sub-
pattern such as {... � � � ...}, the longer pattern can
be divided into two separate patterns, where � is assigned
as Step 1 of the second pattern. This is because � gives
no timing information, and the attacker loses track of the
cache state after �. This rule should be recursively applied
until there are no sub-patterns left with a � in the middle
or as last step (� in the last step will be deleted) in the
longer pattern.

Subdivision Rule 2: Next, if a pattern (derived after
recursive application of the Rule 1 contains a sub-pattern
such as {... � Ainv/Vinv � ...}, the longer pattern can
be divided into two separate patterns, where Ainv/Vinv is
assigned as Step 1 of the second pattern. This is because
Ainv/Vinv will flush all the timing information of the
current block and it can be used as the flushing step for
Step 1, e.g., vulnerability {Ainv � Vu � Aa(f ast)}
shown in Table 2. Ainv/Vinv cannot be a candidate for
middle steps or the last step because it will flush all
timing information, making the attacker unable to deduce
the final timing with victim’s sensitive address translation
information. This rule should be recursively applied until
there are no sub-patterns left with a Ainv/Vinv in the
middle or the last step (Ainv/Vinv in the last step will be
deleted).

B.4.2 Simplification Rules

For each of the patterns resulting from the subdivision
of the original pattern, we define Commute Rules, Union
Rules, and Reduction Rules for a each set of two adjacent
steps in these remaining patterns. In Table 7, we show
all the possible cases of the rule applying conditions for

each adjacent two steps, regardless of the attacker’s access
(A) or the victim’s access (V ). The table shows whether
the corresponding two steps can be commuted, reduced or
unioned (and the reduced or the unioned result if the rules
can be applied).

B.4.2.1 Commute Rules

Suppose there are two adjacent steps M and N for a memory
sequences {... � M � N � ...}. If commuting M and
N lead to the same observation result, i.e., {... � M �
N � ...} and {... � N � M � ...} will have the
same timing observation information in the final step for the
attacker, we can freely exchange the place of M and N in
this pattern. In this case, we have more chance to Reduce
and Union the steps within the memory sequence by the
following Rules. In the possible commuting process, we will
try every possible combinations to commute different pairs
of two steps that are able to apply the Commute Rules and
then further apply Reduce Rules and Union Rules to see
whether the commute is effective, i.e., there can be steps
reduced or unioned after the proper commuting process. The
following two adjacent memory-related operations can be
commuted:

– Commute Rule 1: For two adjacent steps, if one step
is a known access operation and another step is a
known inv operation. and the addresses they refer
to are different, these two steps can be commuted no
matter which position of the two steps they are in within
the whole memory sequence. It will show a “yes” for
the corresponding two-step pattern for the Commute
Rule 1 column if these two can be commuted in Table 7.

– Commute Rule 2: A superset of two-step patterns that
can apply Commute Rule 1 can be commuted if the
second step of these two adjacent steps is not the
last step in the whole memory sequence. There are
some two adjacent steps that can only be commuted
if the second step of these two adjacent steps is not
the last step in the whole memory sequence. There
will be a “yes” for the corresponding two-step pattern
for the Commute Rule 2 column and a “no” for the
corresponding two-step pattern for the Commute Rule 1
column in Table 7.

B.4.2.2 Reduction Rules

If the memory sequence after applying Commute Rules
have a sub-pattern that has two adjacent steps both related
to known addresses or both related to unknown address
(including repeating states), the two adjacent steps can be
reduced to only one following the reduction rules (if the
two-step pattern has “yes” for the Column “Union Rule or
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Reduce Rule” and has no Union result for the “Combined
Step” Column in Table 7.

– Reduction Rule 1: For two u operations, although u is
unknown, both of the accesses target on the same u so
can be reduced to only keep the second access in the
memory sequence.

– Reduction Rule 2: For two known adjacent memory
access–related operations (known access operation),
they always result in a deterministic state of the second
memory access–related cache block, so these two steps
can be reduced to only one step.

– Reduction Rule 3: For two adjacent steps, if one
step is known access operation and another one is
known inv operation, no matter what order they
have, and the address they refer to is the same, these two
can be reduced to one step, which is the second step.

B.4.2.3 Union Rules

Suppose there are two adjacent steps M and N for memory
sequences {... � M � N � ...}. If combining M and
N leads to the same timing observation result, i.e., {... �
M � N � ...} and {... � Union(M, N) � ...} will have
the same timing observation information in the final step for
the attacker, we can combine step M and N to be a joint one
step for this memory sequence, defined as Union(M, N).
Two adjacent steps that can be combined are discussed in
the following cases:

– Union Rule 1: Two invalidations to two known
different memory addresses can be applied Union
Rule 1. known inv operation are two operations both
invalidating some known address; therefore, they can
be combined to only one step. The Union Rule can be
continuously done to union all the adjacent invalidation
step that invalidates known different memory addresses.

B.4.2.4 Final Check Rules

Each long memory sequence will recursively apply these
three categorizations of the rules in the order: Com-
mute Rules first to put known access operations and
known inv operation that targets the same address as near
as possible, and u operations and not u operations are
putting together as much as possible. The Reduced Rules
are then checked and applied to the processed memory
sequence to reduce the steps. Then, the Union Rule is
applied to the processed memory sequence.

The recursion at each application to these three
categorizations of the rules should be always applied and
reduce at least one step until the resulting sequence matches
one of the two possible cases:

• the long (β > 3) memory sequence with u operation

and not u operation is further reduced to a sequence
where there are at most three steps in the following
patterns, or less:

– u operation � not u operation �
u operation

– not u operation � u operation �
not u operation

There might be possible extra � or Ainv/V inv before
these three-step pattern, where:

• An extra � in the first step will not influence
the result and can be directly removed.

• If an extra Ainv/V inv in the first step:

– If followed by known access ope-
ration, Ainv/V inv can be removed
due to the actual state further put into
the cache block.

– If followed by known inv opera-
t ion or V inv

u , Ainv/V inv can also be
removed since the memory location
is repeatedly flushed by the two steps.

– If followed by Vu, worst case will be
Ainv/V inv � Vu �
not u operation � u operation,
which is either an effective vul-
nerability according to Table 2
and reduction rules shown in
Section 3.3 or Ainv/V inv � Vu �
Ainv

d /V inv
d � u operation, where

Vu � Ainv
d /V inv

d can further be
applied Commute Rule 2 to reduce
and be within three steps.

In this case, the steps are finally within three steps and
the checking is done.

• There exist two adjacent steps that cannot be applied
any Rules above and requires the Rest Checking.

The only left two adjacent steps that cannot be applied
by any of the three categorizations of the Rules are the
following:

– {... � Aa/Va/Aaalias /Vaalias /Ad/Vd/Ainv
a /V inv

a /

Ainv
aalias /V inv

aalias � Vu � ...}
– {... � Aa/Va/Aaalias /Vaalias � V inv

u � ...}
– {... � Vu �� ...Aa/Va/Aaalias /Vaalias /Ad/Vd/

Ainv
a /V inv

a /Ainv
aalias /V inv

aalias }
– {... � V inv

u � Aa/Va/Aaalias /Vaalias � ...}
We manually checked all of the two adjacent step patterns

above and found that adding extra step before or after these
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Algorithm 2 -Step ( 3) pattern reduction.

Input: : number of steps of the pattern

: a two-dimensional dynamic-size array. [0] contains the states of each step of the original pattern in

order. [1], [2], ... are empty initially.

Output: : reduced effective vulnerability pattern(s) array. It will be an empty list if the original pattern does not

correspond to an effective vulnerability.

1: = Ø

2: while .contain( ) and .index not 0 do
3: = 1 ( )

4: end while
5: while ( .contain( ) and .index not 0) or ( .contain( ) and .index not 0) do
6: = 2 ( )

7: end while
8: while !( . .is ineffecitve or . .has interval effective three steps) do
9: = ( )

10: = ( )

11: = ( )

12: if !( . .is ineffecitve or . .has interval effective three steps) then
13: += ( )

14: end if
15: end while
16: return

two steps can either generate two adjacent step patterns that
be processed by the three Rules, where further step can be
reduced, or construct effective vulnerability according to
Table 2 and reduction rules shown in Section 3.3, where
the corresponding pattern can be treated effective and the
checking is done.

B.4.3 Algorithm for Reducing and CheckingMemory
Sequence

Algorithm 2 is used to (i) reduce a β-step (β > 3)
pattern to a three-step pattern, thus demonstrating that the
corresponding β > 3 step pattern actually is equivalent to
the output three-step pattern and represents a vulnerability
that is captured by an existing three-step pattern, or (ii)
demonstrate that the β-step pattern can be mapped to one or
more three-step vulnerabilities. It is not possible for a β-step
vulnerability pattern to not be either (i) or (ii) after doing the
Rule applications Key outcome of our analysis is that any
β-step pattern is not a vulnerability, or if it is a vulnerability
it maps to either outputs (i) or (ii) of the algorithm.

Inside the Algorithm 2, contain() represents a function to
check if a list contains a corresponding state, is ineffective()
represents a function that checks the corresponding memory
sequence does not contain any effective three-steps.
has interval effective three steps() represents a function
that check if the corresponding memory sequence can be
mapped to one or more three-step vulnerabilities.

B.4.4 Summary

In conclusion, the three-step model can model all possible
timing-based cache vulnerability in normal caches. Vulner-
abilities which are represented by more than three steps can
be always reduced to one (or more) vulnerabilities from our
three-step model, and thus, using more than three step is not
necessary.
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