
Post-Quantum Cryptography on FPGAs: 
the Niederreiter Cryptosystem 

1. Project Overview 3. Contributions
We present a full cryptosystem with tunable
parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code.
Dedicated hardware implementations of:

§ Gaussian systemizer which works for any
large-sized matrix over any finite binary field.

§ Gao-Mateer Additve FFT for polynomial
evaluation.

§ Merge sort for obtaining uniformly distributed
permutations.

§ Constant-time Berlekamp-Massey decoding
algorithm.

We test the design using Sage reference code,
iVerilog simulation, and output from real FPGA runs.
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4. Hardware Design

(a): Key generation
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(b): Encryption (c): Decryption
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5. Evaluation Setup
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7. Security and Design Parameters  

Case
Cycles

Logic Mem. Reg. FmaxKeyGen. Dec.
area
bal.
time

11,121,214
3,062,936

966,400

34,492
22,768
17,055

53,447 (23%)
70,478 (30%)

121,806 (52%)

907 (35%)
915 (36%)
961 (38%)

118,243
146,648
223,232

245 MHz
251 MHz
248 MHz

Fully tunable design by use of code generation scripts.
All security parameters (m, t, n) can be freely chosen.
Performance parameters for controlling hardware parallelism:

§ Compact, low-area design for embedded systems, …
§ Large, high-performance design for server accelerator, …

Design
Cycles Logic Freq.

(MHz)
Mem. Time (ms) 

KeyGen. Dec. Enc. Gen. Dec. Enc.
m = 11, t = 50, n = 2048, Virtex 5 LX110 

[SWM10]
This design

14,670,000
1,503,927

210,300
5,864

81,500
1,498

14,537(84%)
6,660(38%)

163
180

75
68

90.00
8.35

1.29
0.03

0.50
0.01

m = 12, t = 66, n = 3307, Virtex 6 LX240 
[MBR15]

This design
—
—

28,887
10,228

—
—

3307
6571

162
267

15
23

—
—

0.18
0.04

—
—

m = 13, t = 128, n = 8192, Hawell vs. Stratix V
[Chou17]

This design
1,236,054,840

1,173,750
343,344

17,140
289,152

6,528
—

129,059(54%)
4,000

231
—

1,126
309.0

5.08
0.09
0.07

0.07
0.07

6. Performance  
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Once sufficiently large quantum computers are
built, Shor’s algorithm can solve the integer-
factorization problem and the discrete-logarithm
problem in polynomial time, which would allow
breaking cryptosystems built upon the hardness
assumptions of these problems, e.g., RSA, ECC,
and Diffie-Hellman. In addition, Grover’s
algorithm gives a square-root speedup on
search problems and improves brute-force
attacks that threatens, for example, symmetric
key ciphers like AES.
In our project, we present the first post-quantum
secure, constant-time, efficient, and tunable
FPGA-based implementation of the Niederreiter
cryptosystem using binary Goppa codes.

2. Background

Binary Goppa code
• degree-! Goppa polynomial " # ∈ %& 2( #
• code locator ) = α,,… , α/01 , " α2 ≠ 0, α2∈
%& 2(

• can be defined by a parity check matrix 5, e.g.,
6 = 7 57 = 0}

Niederreiter encrypt
• 9: error vector of weight !
• syndrome ; = 59
Niederreiter decrypt
• compute 9 given the syndrome S

post-quantum cryptography

lattice code hash multivariate isogenies

Fig.1: Dataflow diagrams of the full cryptosystem  Fig.2: Evaluation setup 

Table 1: Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V (5SGXEA7N) FPGA

Table 2: Comparison with related work.
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Figure 1 shows the hardware design dataflow for three main parts:
(a) key generation, (b) encryption, and (c) decryption of the full Niederreiter
cryptosystem by use of the dedicated hardware functional units we built.
Dark gray boxes represent block memories, while white boxes represent major
logic modules.

Figure 2 shows the testing setup. We implemented a serial IO interface for
communication between the host computer and the FPGA. The interface allows
us to send data and simple commands from the host to the FPGA and receive
data, e.g., public and private key, ciphertext, and plaintext, from the FPGA. We
verified the correct operation of our design by comparing the FPGA outputs with
our Sage reference implementation (using the same PRNG and random seeds).
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