
Post-Quantum Cryptography on FPGAs:
the Niederreiter Cryptosystem

1. Project Overview 3. Contributions
We present a full cryptosystem with tunable
parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code.
Dedicated hardware implementations of:

§ Gaussian systemizer which works for any
large-sized matrix over any finite binary field.

§ Gao-Mateer Additve FFT for polynomial
evaluation.

§ Merge sort for obtaining uniformly distributed
permutations.

§ Constant-time Berlekamp-Massey decoding
algorithm.

We test the design using Sage reference code,
iVerilog simulation, and output from real FPGA runs.

H

R
R

Generator

PRNG

GF(2m)
Gaussian

Systemizer

g-portion

g(x)
Evaluation
(Additive FFT)

H
Generator

g_out

P
Generator

(Sort)

P

P_out

GF(2)
Gaussian

Systemizer

K_out

PRNG

Permutation Gen.

Goppa Polynomial Gen.

Public Key K Gen.

K-portion
C

D

P'

I

I

M

4. Hardware Design

(a): Key generation

g(x)
Evaluation
(Additive FFT)

C

D
Doubled

Syndrome

SK_g(x)

SK_P

 Berlekamp
 Massey

Error
Locator

Ciphertext Recovered Message

I I

M

(b): Encryption (c): Decryption

Real-time Display

Send Commands&Data

Returned Results

Verification

CPU

DISPLAY FPGA POWER SUPPLY

RS422 CABLE

USB

5. Evaluation Setup

FPGA Chip

workstation
(verification of results)

7. Security and Design Parameters

Case
Cycles

Logic Mem. Reg. FmaxKeyGen. Dec.
area
bal.
time

11,121,214
3,062,936

966,400

34,492
22,768
17,055

53,447 (23%)
70,478 (30%)

121,806 (52%)

907 (35%)
915 (36%)
961 (38%)

118,243
146,648
223,232

245 MHz
251 MHz
248 MHz

Fully tunable design by use of code generation scripts.
All security parameters (m, t, n) can be freely chosen.
Performance parameters for controlling hardware parallelism:

§ Compact, low-area design for embedded systems, …
§ Large, high-performance design for server accelerator, …

Design
Cycles Logic Freq.

(MHz)
Mem. Time (ms)

KeyGen. Dec. Enc. Gen. Dec. Enc.
m = 11, t = 50, n = 2048, Virtex 5 LX110

[SWM10]
This design

14,670,000
1,503,927

210,300
5,864

81,500
1,498

14,537(84%)
6,660(38%)

163
180

75
68

90.00
8.35

1.29
0.03

0.50
0.01

m = 12, t = 66, n = 3307, Virtex 6 LX240
[MBR15]

This design
—
—

28,887
10,228

—
—

3307
6571

162
267

15
23

—
—

0.18
0.04

—
—

m = 13, t = 128, n = 8192, Hawell vs. Stratix V
[Chou17]

This design
1,236,054,840

1,173,750
343,344

17,140
289,152

6,528
—

129,059(54%)
4,000

231
—

1,126
309.0

5.08
0.09
0.07

0.07
0.07

6. Performance

8. Acknowledgements

caslab.csl.yale.edu

Once sufficiently large quantum computers are
built, Shor’s algorithm can solve the integer-
factorization problem and the discrete-logarithm
problem in polynomial time, which would allow
breaking cryptosystems built upon the hardness
assumptions of these problems, e.g., RSA, ECC,
and Diffie-Hellman. In addition, Grover’s
algorithm gives a square-root speedup on
search problems and improves brute-force
attacks that threatens, for example, symmetric
key ciphers like AES.
In our project, we present the first post-quantum
secure, constant-time, efficient, and tunable
FPGA-based implementation of the Niederreiter
cryptosystem using binary Goppa codes.

2. Background

Binary Goppa code
• degree-! Goppa polynomial " # ∈ %& 2(#
• code locator) = α,,… , α/01 , " α2 ≠ 0, α2∈
%& 2(

• can be defined by a parity check matrix 5, e.g.,
6 = 7 57 = 0}

Niederreiter encrypt
• 9: error vector of weight !
• syndrome ; = 59
Niederreiter decrypt
• compute 9 given the syndrome S

post-quantum cryptography

lattice code hash multivariate isogenies

Fig.1: Dataflow diagrams of the full cryptosystem Fig.2: Evaluation setup

Table 1: Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V (5SGXEA7N) FPGA

Table 2: Comparison with related work.

This work was supported in part by United States’ National Science
Foundation grant 1716541.

[SWM10] Shoufan, Abdulhadi, et al. "A novel cryptoprocessor architecture for the McEliece public-key cryptosystem." IEEE Transactions on
Computers 59.11 (2010): 1533-1546.
[MBR15] Massolino, Pedro Maat C., Paulo SLM Barreto, and Wilson V. Ruggiero. "Optimized and scalable co-processor for McEliece with binary
Goppa codes." ACM Transactions on Embedded Computing Systems (TECS) 14.3 (2015): 45.
[Chou17] Chou, Tung. "McBits revisited." International Conference on Cryptographic Hardware and Embedded Systems. Springer, Cham, 2017.

9. Publications
• Wen Wang, Jakub Szefer, and Ruben Niederhagen, "FPGA-based

Niederreiter Cryptosystem using Binary Goppa Codes" in
Proceedings of International Conference on Post-Quantum
Cryptography (PQCrypto), April 2018.

• Wen Wang, Jakub Szefer, and Ruben Niederhagen, "FPGA-based
Key Generator for the Niederreiter Cryptosystem using Binary
Goppa Codes" in Proceedings of the Conference on Cryptographic
Hardware and Embedded Systems (CHES), September 2017.

• Wen Wang, Jakub Szefer, and Ruben Niederhagen, "Solving Large
Systems of Linear Equations over GF(2) on FPGAs" in Proceedings
of the International Conference on Reconfigurable Computing and
FPGAs (ReConFig), November 2016.

Wen Wang1, Jakub Szefer1, and Ruben Niederhagen2

1Computer Architecture and Security Laboratory, Yale University, USA
2Fraunhofer SIT, Darmstadt, Germany

Figure 1 shows the hardware design dataflow for three main parts:
(a) key generation, (b) encryption, and (c) decryption of the full Niederreiter
cryptosystem by use of the dedicated hardware functional units we built.
Dark gray boxes represent block memories, while white boxes represent major
logic modules.

Figure 2 shows the testing setup. We implemented a serial IO interface for
communication between the host computer and the FPGA. The interface allows
us to send data and simple commands from the host to the FPGA and receive
data, e.g., public and private key, ciphertext, and plaintext, from the FPGA. We
verified the correct operation of our design by comparing the FPGA outputs with
our Sage reference implementation (using the same PRNG and random seeds).

State
Machine

UART

Key
Generation

Encryption

Decryption

sit.fraunhofer.de/en

