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Project Overview
We present a first-of-a-kind quantum computer trusted ex-
ecution environment [1]. The cloud-based environments in
which today’s and future quantum computers will operate,
raise concerns about the security and privacy of user’s intel-
lectual property. Quantum circuits submitted to cloud-based
quantum computer providers represent sensitive or proprietary
algorithms developed by users, and these circuits need protec-
tion. To help protect users’ circuits and data from possibly
malicious quantum computer cloud providers or insider at-
tackers, this work presents SoteriaQ, the first hardware ar-
chitecture for a trusted execution environment for quantum
computers. To protect the user’s circuits and data, the quan-
tum computer control pulses are obfuscated with decoy pulses.

Threat Model
Our work considers the threat model of an honest-but-curious
cloud provider. In the honest-but-curious scenario, the cloud
provider could outright aim to spy on users to learn their in-
tellectual property or data contained in the quantum circuits,
or, if the cloud provider as a whole may not be malicious, one
of the employees, the so called malicious insider, could try
to spy on the operation of the quantum computer, as shown
in Figure 1. In honest-but-curious the cloud providers are un-
trusted, they can spy on operation of the quantum computers,
but do not modify them.
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Figure 1: Schematic of a typical superconducting quantum computer,
showing a cloud provider attempting to spy on the control pulses.

Figure 3 shows the workflow of cloud-based quantum compu-
tation after SoteriaQ architecture is integrated into it. The
main principle of operation is to mix the control pulses, which
define the user’s input quantum circuit, with decoy pulses. In
parallel, an (encrypted) input bitmap is generated to identify
the location of the decoy control pulses within the transpiled
circuit sent for execution. The input bitmap is encrypted with
the public key of the backend, i.e. quantum computer, where
the circuit will execute. It is also digitally signed by the user.
The above steps are represented by the steps in Figure 3. A
simplified illustration of addition, and later attenuation, of the
decoy pulses in shown in Figure 2 (a) to (c) and an illustra-
tion example of the input bitmap is shown at the bottom of
Figure 2 (b).

(a) User’s circuit’s control pulses

q1

q2

q0

q1

q2

q0

q1

q2

q0

(b) User’s circuit’s control pulses with decoy 
pulses added and the resulting input bitmap

(c) Decoy pulses are attenuated 
before execution 

q0:  0    1    0    0    0    0    0    0
q1:  1    1    1    1    0    0    0    0
q2:  0    1    1    0    1    1    1    1
q3: 0    0    1    0    1    1    1    1

The input bitmap showing which are decoy pulses, i.e. pulses to 
attenuate before execution. There is one bit per sub-slot per qubit drive 
or control channel. Control channel pulses are not shown in this figure.
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Figure 2: Example illustration of how control pulses are obfuscated. (a) Control pulses correspond to the input circuit of the user. (b) Control
pulses with decoy pulses added, along with the input bitmap. (c) Original control pulses are executed after the attenuation of decoy pulses.
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Figure 3: Workflow of SoteriaQ steps followed during software and hardware.
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Figure 4: Block diagram of the complete SoteriaQ design.

Architecture of SoteriaQ
To realize SoteriaQ, a number of hardware components need
to be added to the internals of the dilution refrigerator. All
components are available today and use very low power and
area compared to existing quantum computer components.
A block diagram of the major components and their connec-
tions is shown in Figure 4. The memory is used to store the
decrypted input bitmap, which is later used to control the at-
tenuation of the pulses. First, a Decryption Engine is used
to decrypt the encrypted input bitmap and then store the
decrypted input bitmap in the Input Bitmap Memory. The
memory is used to store the decrypted input bitmap, which
is later used to control the attenuation of the pulses. The
hardware security engine is a hardware implementation of a
state machine that controls the attenuation switches. At-
tenuation Switches are used to attenuate the decoy control
pulses, which were added to confuse the potential attackers,
and are not actually used for computation. In most of the
cases, we are able to achieve more than 2256 combinations
required by the attacker to guess the circuit. We present the
security analysis of our design in Figure 5.
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Figure 5: Combinations required by the attacker to guess circuit versus
circuit duration increase factor, for each of the three obfuscation levels.
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