
L3 Cache

L2

L1-I

Victim
1- Flush each line 
in the cache2- Victim accesses 

critical data
3- Reload critical 
data by running 
specific process 
(measure time)

Evicted Time

CPU1

ways

sets

L1-D

L2

L1-I

Attacker

L1-D

Shared L3

CPU2

RISC-V Secure Caches:
Demo on FPGA

1. Project Overview and Contributions

Shuwen Deng, Wenjie Xiong, and Jakub Szefer 
Computer Architecture and Security Laboratory, Yale University, USAcaslab.csl.yale.edu

3. Secure Partition Locked (PL) Cache

During past years, researchers have shown a plethora of timing-based side
channels, especially in processor caches. All of these attacks have demonstrated
that it is possible to extract sensitive information via the timing-based side channels,
and often the focus is on extracting cryptographic keys.

To address the threat of these cache timing side-channel attacks, researchers have
presented a number of secure processor cache designs. However, there is no
unified hardware platform to measure their performance and no comprehensive
method to illustrate their security. Our RISC-V based FPGA implementation of
secure caches is the first step towards a hardware platform that could be used to
evaluate different types of caches and even test full-system security.

• We present a demo showing RISC-V secure caches on the FPGA board, which
aim to mitigate timing-based cache side-channel attacks. This is a
microarchitecture level secure cache framework design based on RISC-V Rocket
Chip generator using Chisel hardware construction language.

• We present Partition Locked cache (PL cache) [1], which we realized in FPGA
hardware to show its security and performance.

Fig 1. An example of a Rocket Chip [2] instance.

2. Rocket Chip
Rocket Chip [2] is an open-source SoC design generator. It can generate
synthesizable RTL from Chisel hardware construction language. It is composed of
a library of sophisticated generators, including the ones for cores, caches, and
interconnects into an integrated SoC. An example of the instance is shown in
Figure 1. The 5-stage in-order RISC-V core generator supports page-based virtual
memory, data/instruction caches, and a front-end with branch prediction. It can be
configured for the different board (e.g. ZC706) and generate Verilog code and
corresponding booting binary used for the board.

PL cache [1] provides isolation by partitioning cache based on cache blocks. It
extends each cache block with a process ID and a lock status bit (L) (Figure 2).
The ID and L bits are controlled by the extended load and store instructions which
allow the programmer and compiler to set or reset the lock bit through the use of
the right load or store instruction. The cache replacement policy for the PL cache is
shown in Figure 3.

Fig 2. A cache line of the PL cache.

Fig 3. Access handling procedure 
for the PL cache.

PL Cache

Metric 32-set, 4-way 64-set, 2-way fully associative (128 way)
Slice LUTs 37056 36620 53967

Slice Registers 20382 20351 25991
Block RAM 26 17 6
DSP Usage 15 15 15

Total On-Chip Power (W) 2.082 2.059 2.098

Normal 
Cache

Metric 32-set, 4-way 64-set, 2-way fully associative (128 way)
Slice LUTs 36611 36400 53457

Slice Registers 20201 20179 24161
Block RAM 22 15 6
DSP Usage 15 15 15

Total On-Chip Power (W) 2.065 2.060 2.084

6. PL Cache vs. Normal Cache

(a) (b)
Fig 6. AES Flush+Reload Attack on Normal Cache (a) and PL Cache (b).

(a) (b)
Fig 5. AES Flush+Reload Attack when AES key is all 0 (a) and none-0 (b).

Evaluation Setup
The hardware setup for the demonstration includes Xilinx Zynq-7000 SoC ZC706
FPGA board, a Linux CPU (host computer) connected to a display, power supply for
FPGA, a USB JTAG cable, and a USB UART cable.

5. Security Evaluation

We performed the Flush+Reload cache timing side-channel attack on AES RISC-V
Rocket Chip on FPGA, with both the case of using normal cache and PL cache (The
correct way to use PL cache is to preload and lock the AES table first and unlock the
AES table at the end of the program).
AES 128 encryption requires a 16-byte input 𝑛 using a 16-byte key 𝑘 . In
“AddRoundKey”, each byte of 𝑛 is combined with a block of 𝑘 using bitwise XOR. In
“SubBytes”, each byte is replaced with another according to a lookup table.

[1]. Wang, Z., & Lee, R. B. (2007). New cache designs for thwarting software cache-based side channel attacks. ACM
SIGARCH Computer Architecture News, 35(2), 494-505.
[2] Asanovic, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C., ... & Karandikar, S. (2016). The rocket
chip generator. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17.
[3] Yarom, Y., & Falkner, K. (2014). FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack. In
23rd {USENIX} Security Symposium ({USENIX} Security 14) (pp. 719-732).

Targeted set: Set 34, 15th byte of the 𝑘 (𝑘[14]).
When 𝑘 is all 0 (Figure 5(a)): When 𝑘 is none-0 (Figure 5(b)):
Set 34 plaintext range:
3584~3599=(256*14+0)~(256*14+15)
𝑛0[14]: 0~15

Set 34 plaintext range:
3824~3839 =(256*14+240)~(256*14+255)
𝑛1[14]: 240~255

𝑘0[14]: 0×00 (known)
Time of AES Table Te’s look-up:
t Te 𝑛0[14]	XOR	𝑘0[14] = t Te 0 	short.
(higher 4 bit result of XOR)

𝑘1[14] (unknown)
Time of AES Table Te’s look-up:
t Te 𝑛1[14]	XOR	𝑘1[14] 	short.
Thus,		𝑘1[14] =
𝑛0[14]	XOR	𝑘0[14] XOR	𝑛1[14] = 0×𝑓𝑓

4. Timing Side-Channel Attacks
The attacker (in the same or separate
CPU as victim’s) can themselves access
the cache by making memory accesses,
or drive the victim to access the cache by
making memory accesses, e.g. request
victim to do some known computation or
both. The attacker usually knows what
code the victim is executing, e.g. type of
encryption algorithm, but does not know
the victim’s specific secrets. The attacker
aims to extract some secret information.
Figure 4 shows the example of
Flush+Reload [3] attack. Figure 4. Flush+Reload [3] attack. 

2-
Victim 
access

es 
critical 
data

Figure 6 shows that normal cache cannot prevent AES attacks like Flush+Reload,
while PL cache is able to hide the pattern related to the key value and protect it.

5. Security Evaluation (cont’d)

Shared Cache


