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Abstract—The security and confidentiality of sensitive infor-
mation processed by quantum computers are of paramount
importance, especially given quantum computers’ potential to
efficiently solve classically-hard optimization problems. At the
heart of many transport optimization tasks lies the Vehicle
Routing Problem (VRP), a complex combinatorial optimization
problem classified as NP-hard. However, a promising avenue
for approximating solutions to VRP is found in the Quan-
tum Approximate Optimization Algorithm (QAOA). This paper
demonstrates how leaking and learning simple parameters from
QAOA quantum circuit structures, enables attackers to learn
about the problem being solved. In routing optimization scenarios
used by the military, for example, the attacker can learn location
or connection of military bases. By exploiting information leakage
during the QAOA execution, attackers can potentially breach
security and retrieve sensitive VRP details, posing profound
implications for civilian and national security.

Index Terms—quantum computing, optimization algorithms,
information leaks, security

I. INTRODUCTION

Quantum computers promise to deliver exponential

speedups over their classical counterparts for certain classes of

computational problems [9], [19], [21], [32]. Among the most

notable examples are eigenvalue and optimization problems,

which have key applications in finance, machine learning, and

simulations of quantum chemistry [4], [10], [24], [25], [31].

Moreover, certain NP-hard combinatorial problems like the

Vehicle Routing Problem (VRP) can be encoded into Ising

Hamiltonians, allowing for solutions via eigenvalue optimiza-

tion [2], [12]. VRP generalizes the well-known Travelling

Salesman Problem (TSP) as it allows for multiple vehicles,

as opposed to just one salesman. The goal of VRP is to

find optimal routes for multiple vehicles visiting a set of

locations. The “vehicles” could be not just cars, or trucks, but

the problem can be applied to airplanes or ships. The VRP can

in particular help in solving logistics and routing problems for

the army, air force, or other branches of the military. As one

example, during a mission, army has need to optimize routing

between bases or airports to deliver cargo, ammunition, etc. If

the location of the bases or airports can be discovered from

the computation, then the secrecy of the mission and national

security are compromised – this is what this work aims to

bring light to.

This work was supported in part by National Science Foundation
grant 2312754.

One means of leveraging quantum computers is to help

solve the VRP. Most current physical quantum computers

are still small-scale machines and largely prone to errors

and decoherence beyond the fault-tolerance threshold. These

so-called Noisy Intermediate-Scale Quantum (NISQ) devices

operate with fewer than 100 qubits and shallow quantum

circuit depths [5], limiting the size and scope of quantum

algorithms that can be implemented on them [27]. Despite

these hardware limitations, the advent of NISQ-era quantum

computing has spurred research into short-depth quantum cir-

cuits and hybrid quantum-classical algorithms that make use of

quantum computers in conjunction with classical optimization

techniques. Such hybrid quantum-classical algorithms allow

for the possibility of performing useful computational tasks,

even with NISQ devices. A crucial milestone in this direction

was the invention of the Quantum Approximate Optimization

Algorithm (QAOA), proposed by Farhi et al. [11]. as a general

quantum algorithm that provides approximate solutions for

combinatorial optimization problems, including VRPs.

While QAOA efficiently approximates VRPs, its deploy-

ment introduces novel security threats, especially those ex-

ploiting quantum circuit structures. Previously, various attacks

leveraging quantum-specific features, such as reset attacks,

fingerprinting tomography, and side-channel attacks, have been

identified, raising concerns about information leakage beyond

classical computing paradigms, e.g., [8], [23].

In this research, we investigate how information leaks which

can reveal quantum circuit structures can lead to learning

secrets from VRPs executed on quantum computers using

QAOA. On a quantum computer, the VRP routing problem

is represented as a graph, such as graph of the army bases or

airports. The edges can represent the capacity of the links

between the nodes in the graph. The graph being used in

VRP is typically a subgraph of some larger, so-called mother

graph. For example, the army bases or airports used in a

mission are a subset of all the army bases or airports. The

objective of this work is to show that if attacker is able to learn

some information about QAOA structure from side-channels

on a quantum computer, then he or she can reverse-engineer

parameters of VRP, and finally that can lead to leakage of

mission-critical information.

This work improves on existing work [7] where authors

have made stronger assumptions on the ability of attackers to



retrieve information from the quantum circuits. Here, we relax

these assumptions, and show that even if they are afforded

limited insights into the quantum circuits structure, such as

only qubit counts learned through circuit connectivity, the

attackers can still infer nontrivial information about the VRPs

being optimized by the victim. As VRP optimization directly

impacts civilian lives and military security, our work addresses

crucial security concerns in the quantum computing landscape.

A. Contributions

The main contributions of this work are listed as follows:

1) Security assessment under few assumptions:

• We evaluate the threat posed by attackers with

very limited insights into the quantum circuit. In

particular, we only grant attackers with knowledge

of qubit counts from circuit connectivity, rendering

the attack more realistic for near-future machines,

compared to existing work [7].

2) Success probability analysis with two measures:

• We investigate the success probability of attackers

based on the size of the mother graph, evaluating

their performance based on both the overall match-

ing success rate and node recovery proportionality.

In particular, we find that the attacker can stably

recover > 60% of the nodes at relatively large

graph sizes.

3) Impact of subgraph size on matching success:

• We explore the relationship between subgraph

size and matching success rate. We observe that,

both the matching success rate and node recovery

proportionality increase with subgraph sizes, top-

ping at 1.00 for subgraphs the same size as the

mother graph.

II. BACKGROUND

A. Vehicle Routing Problem (VRP)

The Vehicle Routing Problem represents a fundamental

challenge in logistics and optimization, seeking to efficiently

plan the routes of a fleet of vehicles to service a set of ge-

ographically dispersed locations. This NP-hard combinatorial

optimization problem has pervasive applications in transporta-

tion, distribution, and supply chain management. Traditionally

formulated as a graph theory problem, where nodes represent

delivery points and edges denote feasible routes, VRP aims to

minimize overall transportation costs or time while satisfying

constraints such as vehicle capacity and delivery time windows

[3], [14], [34]. Moreover, the versatility of VRP extends

beyond its graph-based representation; it can be expressed

in terms of Ising Hamiltonians, a formalism originating from

quantum mechanics. The VRP can be encoded into an Ising

model, allowing for a quantum-inspired approach to opti-

mization [2]. This unique representation provides a bridge

between classical and quantum optimization methodologies,

offering new perspectives and potential solutions for tackling

the complexities inherent in the VRP.
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Fig. 1: The circuit representation of a sample variational ansatz for
QAOA with p = 1. In the circuit, five qubits are used; two-qubit
gates consist of RZZ rotational gates and single-qubit gates consist
of Rx rotational gates.

B. VRP Instance Representation

In this paper, we will represent a problem instance of VRP

using (n, k), where n is the number of locations and k is the

number of vehicles. For simplicity, we consider the existence

of a single depot D. We impose two minimum constraints:

each location is visited exactly once, and all vehicles begin

from and return to the depot D. Here D can represent

mission headquarters, and the locations are the army bases

or airports. The vehicles can be airplanes delivering mission-

cortical cargo.

In Fig. 2, we present the graph representation of a VRP

problem constructed using a real-world dataset from Kag-

gle [13]. For the efficient execution of sufficiently many

experiments, we generate our VRP instances randomly obey-

ing basic real-world principles. In particular, for some fully-

connected graphs, we choose the depot randomly from all the

nodes and sample the edge weights uniformly from (0,∞)
using a pseudorandom number generator. Moreover, we note

that the resulting graphs representing VRPs are not directed.

Finally, since the edge weights can only be obtained from

gates in the quantum circuits, we perform all arithmitics with

reduction mod 2Ã.

C. Quantum Approximate Optimization Algorithm

In recent years, the rise of quantum computation has intro-

duced a quantum solution to VRPs, exemplified by the Quan-

tum Approximate Optimization Algorithm. First proposed by

Farhi et al. [11], QAOA stands as a general quantum algo-

rithm offering optimal or near-optimal solutions for various

combinatorial optimization problems [6], [17], [18], [20], [37],

including VRPs [2].

Notably, QAOA leverages variational ansatzes, which rep-

resent the combinatorial problem under consideration. More

specifically, the problem is encoded into a cost Hamiltonian

Hc in QAOA. Besides Hc, the Ising Hamiltonian for QAOA

also contains a heuristic mixer Hm for each optimization layer.

By convention, the mixer Hamiltonian Hm is chosen as:

Hm = −
∑

i

Ãx
i , (1)

where Ãx (Ãz) is the Pauli X (Z) operator. Generally, a

complete variational ansatz for a VRP instance of (n, k) takes

the form:
∣

∣

∣

⃗́, µ⃗
〉

=
∏

i≤p

e−iHmβie−iHcγi |+ð
⊗n(n−1)

, (2)



(a) The satellite map for the U.S. mainland, pinned with real locations of the airports used
in the study. Made with Google Maps [15]. The pin for JFK (depot) is orange, and blue
pins are used for the remaining airports.

(b) The graph representation for Fig. 2a,
omitting all edges between pairs of air-
ports excluding JFK. All edge weights, not
shown, correspond to the cost of trans-
portation and manifest as distances be-
tween nodes.

Fig. 2: The real-world map with airport locations and its graph representation constructed from the real-world dataset sourced from Kaggle,
specifically the “USA Airport Dataset” [13].

where p represents the total optimization layers of the quantum

circuit, and ´i, µi are variational parameters for the layer i.

They act as overall scaling factors for all the rotational angles

in Hc, Hm in the layer i. A circuit representation of a sample

variational ansatz with p = 1 is given in Fig. 1.

As can be seen from the variational ansatz, QAOA involves

multiple steps, each comprising the application of a layer of

parametrized gates, followed by the evolution of the quantum

state. The optimization task is embedded in the minimization

of the eigenvalue for the cost Hamiltonian Hc associated with

the specific combinatorial problem at hand.

As a hybrid quantum-classical variational algorithm,

QAOA’s time complexity is intricately tied to both its quantum

optimization circuit and classical components, especially the

initialization of variational parameters in the quantum circuit.

Despite this intricacy, studies have demonstrated the acqui-

sition of quasi-optimal solutions in O(poly(p)) time, where

p represents the optimization level of the quantum circuit

[37]. Additionally, adaptive variants of QAOA exhibit note-

worthy performance improvements [16], [33], [38]. Continual

advancements highlight QAOA’s potential in efficiently solv-

ing real-world optimization problems compared to classical

algorithms, positioning it as a leading candidate for achieving

quantum advantage in practical applications.

III. THREAT MODEL

In this paper, we address the threat posed by a potent

attacker possessing sufficient knowledge of a mother graph,

denoted as G, and targeting victims engaged in optimizing a

VRP defined on some subgraph Gs, where Gs ¦ G. Assuming

the attacker possesses ample computing resources, they can

precompute and obtain all relevant parameters pertaining to

any Gs ¦ G. Armed with these precomputed parameters, the
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Fig. 3: Relationship between the circuit output, the RZZ gate count,
and number of qubits in variational ansatzes for VRP. For simplicity,
we have set the rotational angles of all Rx gates to be 0 and those of
all RZZ gates to be π. The output fidelity decreases with the number
of qubits, while the number of RZZ gates increases.

attacker endeavors to deduce the specific subgraph Gs the

victim is optimizing, leveraging information extracted from

the variational quantum circuits under. We assume the attacker

uses some form of side-channel in the quantum computer to

learn the information, recent works have demonstrated numer-

ous side-channels on quantum computer controllers which can

leak information about types of gates being executed [36],

for example.

Under our assumption, the attacker is afforded very limited

insights into the victim’s circuit structures, namely only the

qubit count. The determination of the qubit count is facilitated

through the examination of circuit connectivity, or the number

of two-qubit RZZ gates to be more precise.

As shown in Fig. 1, the only two-qubit gate used in the
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Fig. 4: Relationship between the circuit output, the RZZ gate count,
and number of qubits in variational ansatzes for VRP. For simplicity,
we have set the rotational angles of all Rx gates to be 0 and those of
all RZZ gates to be π. The output fidelity decreases with the number
of qubits, while the number of RZZ gates increases.

standard variational ansatz of QAOA is the two-qubit RZZ

gate. From the experimental findings of Fig. 3, it is obvious

that variations in the number of RZZ gates exert a discernible

impact on the circuit output. Furthermore, from Fig. 4, an

established correlation exists between the number of RZZ

gates and the qubit count in a QAOA ansatz. In general, an

ansatz of m qubits can have at most m(m − 1) RZZ gates

in a single optimization layer. Therefore, we are afforded at

least two ways to infer the number of qubits in the VRP

quantum ansatz.

First, through crosstalk and other methods of circuit to-

mography [8], an attacker can try to learn number of RZZ

gates directly, leading to the discovery of the structure of VRP

and enabling recovery of information about the VRP problem,

such as which airports or bases are being used. These could

be learned through recently demonstrated quantum computer

controller side channels [36], or through crosstalk among

qubits [8].

Secondly, one may take advantage of the reset leakage [23,

35] to probe the output state fidelity, which in turns informs

the attacker of the number of RZZ gates in the circuit, along

with the qubit counts.

IV. ATTACKER ROUTINE

A. Cost Hamiltonian and Weight Function

Following the convention used in [2], the quantum cost

Hamiltonian for a VRP can be encoded as

Hc = −
∑

i,j<i

JijÃ
z
i Ã

z
j +

∑

i

hiÃ
z
i + d, (3)

where the parameters Jij , hi, d are determined uniquely from

each VRP. In the quantum circuit, the parameter d is pro-

portional to an identity gate and drops out. The parameter of

interest to us is hi, which contains the weight for each edge

in the VRP graph. By the standard mapping,

hi =
wi

2
+ C, (4)
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Fig. 5: Experimental findings of the matching success rate and node
recovery proportionality for a weak attacker. Both their performance
on random subgraphs and subgraphs of fixed sizes is evaluated. In
the experiment of random subgraphs, we evaluate the performance
of the attacker for all subgraphs with size ≥ 2 and ≤ the size of the
mother graph. In the experiment of fixed subgraphs, we consider a
mother graph |G| = 11.

where wi is the weight function for the i-th edge in the graph

for a VRP and C is a constant independent of the weight

function of the VRP instance (n, k) under consideration. More

specifically, C depends on only n and k. Thus, the attacker

can treat C as a constant offset with the knowledge of n and k.

B. General Scheme

A general routine adopted by the attacker can be summa-

rized as follows:

1) Given a mother graph G, precompute the set of sub-

graphs Gs, where Gs ¦ G.

2) Deduce (n, k) given the information available. In partic-

ular, n may be determined by the experiments described

in Section III.

3) Select some subgraph Gs from the precomputed set with

the same qubit number and deem it as the subgraph

under consideration by the victim.

For clarity, we note that the knowledge of k is not relevant

for the weak attacker under consideration, since the effect of k

only manifests itself in the weight of the VRP graphs, which

is not accessible for the weak attacker under consideration.

V. RESULTS AND DISCUSSIONS

In this section, we present our experimental evaluations for

the performance of the attacker. Mainly two types of exper-

imennts are conducted: matching subgraphs of random and



matching subgraphs of fixed sizes under uniform noise. Note

that in all the experiments for matching random subgraphs, we

have ignored subgraphs of sizes f 2. For any VRP graph, there

exists at least one node as the depot. Therefore, a subgraph of

size 2 represents a VRP of one extra location other than the

depot. This makes the optimization trivial and unnecessary to

consider in realistic settings.

In all experiments, we consider both the matching suc-

cess/error rate and the node recovery proportionality. Here,

the matching success/error rate refers to the success/error rate

for an attacker to find the complete subgraph that the victim

is trying to optimize. However, although an attacker cannot

retrieve the complete subgraph sometimes, it is meaningful

to consider the portion of the subgraph that the attacker can

recover. In this sense, it is useful to consider and evaluate the

proportionality of node in a subgraph optimized by the victim

recoverable by the attacker.

But this does not mean that the matching success/error rate

is less useful alone in realistic settings. As we will show in

Section V-A, even for a weak attacker, the node recovery

proportionality is highly non-negligible for subgraphs of large

sizes. This is because the node recovery proportionality is

subject to combinatorial effects. In this sense, the matching

success/error rate shows more intrinsically how good the

performance can be for an attacker, independent of those

combinatorial effects.

A. Weak Attacker Results

In Fig. 5, we present the experimental findings on the match-

ing success rate and node recovery proportionality for the weak

attacker. Both the case of matching subgraphs of random sizes

> 2 and the case of matching subgraphs of fixed sizes are

considered. For subgraphs of random sizes, it is obvious that

both the success rate and the recovery proportionality drops

rapidly with increasing size of the mother graphs, rendering

the threat from the weak attacker negligible in face of large

optimization problems.

However, if we consider subgraphs of fixed sizes, the weak

attacker regains good performance at large subgraph sizes.

This is a combinatorial effect of graph matching – the larger

the subgraph size is, the fewer possible subgraphs of that size

exist. Therefore, the error probability drops correspondingly.

On a side note, compared to the experiments conducted

in [7], we have ignored imperfect resolution and other noise

for the weak attacker considered in this paper. This is because

the imperfect resolution and noise themselves on the match-

ing results through the rotational angles and edge weights.

However, a weak attacker is oblivious to those, since they are

not provided with any information on the rotational angles.

Therefore, it is unnecessary to test them for a weak attacker.

VI. SECURING VRP

Based on our findings, attackers with access to information

about QAOA executing on a quantum computer can recover

secrets from the VRP instance. This can compromise secrecy

and national security when VRP instances is used in context

of routing between army bases or airports. Our work brings

particular attention to the need for better understanding, and

prevention, of side channels in quantum computers. As we

demonstrate, even the weak attacker who can only obtain

information about count of qubits used and the number of two-

qubit gates in the QAOA, such attacker already can recover

information about the VRP instance. As a result, future work

needs to explore prevention of side channels, as well as

protection of VRP itself.

VII. RELATED WORK

There is recently, increasingly growing body of research on

security of quantum computers. For superconducting quantum

computers, recent work [1] shows that the crosstalk errors

could be used in fault injection attacks. It also showed how

an adversary can launch a denial of service attack on the

victim circuit using crosstalk errors, similar to our evaluation.

In addition, due to the difference of eigenstates, qubit-sensing

employs malicious circuits to sense qubits of victim circuits

based on already known statistical information [28]. Among

side channel attacks, recent work proposed power side channel

attacks that can help recover the control pulses of the quantum

computers [36], leading to recovery gates being executed

on the quantum computer. Researchers have also proposed

different methods to fingerprint quantum computer hardware

by characterizing error patterns unique to each device or

qubit [22], [26]. In trapped-ion quantum computers, repeated

shuttle operations can elevate the ion-chain’s energy, which

can damage the fidelity of victim circuits [29], [30].

This work is a direct continuation on [7], where attackers

are assumed to be more powerful in retrieving information

from quantum circuits. The strong attackers described in [7],

in addition to the qubit count, is provided information on

gates executed in the quantum circuit and rotational angles

associated with each gate, albeit with limited resolution. This

additional information access empowers the attacker to infer

about the weights between pairs of nodes in the VRP graph.

Consequently, the attacker is equipped with better capacity to

exploit vulnerabilities therein.

VIII. CONCLUSION

This paper focused on an unexplored domain: examining

the potential compromise of transportation logistics, including

civilian airports and military bases, through an analysis of

quantum circuit structures. The examination of quantum circuit

structures allows for the inference of underlying algorithms.

The paper sheds light on vulnerabilities introduced by quantum

circuits, exposing potential leaks of information that could

lead to the recovery of VRP under optimization. The research

underscores the urgency in developing robust techniques to

safeguard sensitive information, especially in the face of

rapid advancements in quantum computing. In particular, it

highlights that attackers pose a nontrivial security threat with

little insights into the quantum circuits, emphasizing the need

for enhanced attention and the formulation of effective defense

mechanisms to counteract potential risks.
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various np-hard problems using exponentially fewer qubits on a quantum
computer, 2023.

[7] Jessie Chen and Jakub Szefer. Stealing vrp secrets from quantum circuit
structures. In International Symposium on Hardware Oriented Security

and Trust, HOST, May 2024.
[8] Sanjay Deshpande, Chuanqi Xu, Theodoros Trochatos, Hanrui Wang,

Ferhat Erata, Song Han, Yongshan Ding, and Jakub Szefer. Design
of quantum computer antivirus. In Proceedings of the International

Symposium on Hardware Oriented Security and Trust, HOST, May 2023.
[9] David Deutsch and Richard Jozsa. Rapid solution of problems by quan-

tum computation. Proceedings: Mathematical and Physical Sciences,
439(1907):553–558, 1992.

[10] Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S Humble,
and Joel Gottlieb. Financial portfolio management using D-wave
quantum optimizer: The case of Abu Dhabi securities exchange, 2017.

[11] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm, 2014.

[12] Sebastian Feld, Christoph Roch, Thomas Gabor, Christian Seidel, Flo-
rian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-
Popien. A hybrid solution method for the capacitated vehicle routing
problem using a quantum annealer. Frontiers in ICT, 6, June 2019.

[13] FlashGordon. Usa airport dataset. https://www.kaggle.com/datasets/
flashgordon/usa-airport-dataset, 2000-2009. Accessed: 2023-11-10.

[14] Bruce Golden, Saahitya Raghavan, and Edward Wasil. The Vehicle

Routing Problem: Latest Advances and New Challenges, volume 43.
01 2008.

[15] Google Maps. Google map of airport locations, 2023. Accessed: 2023-
12-22.

[16] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and
Nicholas J. Mayhall. An adaptive variational algorithm for exact
molecular simulations on a quantum computer. Nature Communications,
10(1), July 2019.

[17] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor Rieffel, Davide
Venturelli, and Rupak Biswas. From the quantum approximate optimiza-
tion algorithm to a quantum alternating operator ansatz. Algorithms,
12(2):34, February 2019.

[18] Matthew P. Harrigan, Kevin J. Sung, Matthew Neeley, Kevin J.
Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C. Bardin,
Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley,
David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun
Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura,
Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen, Craig
Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Alan Ho, Sabrina
Hong, Trent Huang, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang
Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly,
Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa,
David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Orion
Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony
Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh
Mutus, Ofer Naaman, Charles Neill, Florian Neukart, Murphy Yuezhen
Niu, Thomas E. O’Brien, Bryan O’Gorman, Eric Ostby, Andre Petukhov,

Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael
Streif, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao,
Ping Yeh, Adam Zalcman, Leo Zhou, Hartmut Neven, Dave Bacon,
Erik Lucero, Edward Farhi, and Ryan Babbush. Quantum approximate
optimization of non-planar graph problems on a planar superconducting
processor. Nature Physics, 17(3):332–336, February 2021.

[19] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103(15), October 2009.

[20] Itay Hen and Federico M. Spedalieri. Quantum annealing for constrained
optimization. Physical Review Applied, 5(3), March 2016.

[21] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer
problem, 1995.

[22] Allen Mi, Shuwen Deng, and Jakub Szefer. Short paper: Device- and
locality-specific fingerprinting of shared nisq quantum computers. In
Proceedings of the Workshop on Hardware and Architectural Support

for Security and Privacy, HASP, October 2021.

[23] Allen Mi, Shuwen Deng, and Jakub Szefer. Securing reset operations in
nisq quantum computers. In Proceedings of the Conference on Computer

and Communications Security, CCS, November 2022.

[24] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow,
Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M
Gambetta, Marc Ganzhorn, et al. Quantum optimization using varia-
tional algorithms on near-term quantum devices. Quantum Science and

Technology, 3(3):030503, 2018.

[25] Roman Orus, Samuel Mugel, and Enrique Lizaso. Quantum computing
for finance: overview and prospects. Reviews in Physics, 4:100028,
2019.

[26] Koustubh Phalak, Abdullah Ash Saki, Mahabubul Alam, Rasit Onur
Topaloglu, and Swaroop Ghosh. Quantum puf for security and trust in
quantum computing. IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, 11(2):333–342, 2021.

[27] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, August 2018.

[28] Abdullah Ash Saki and Swaroop Ghosh. Qubit sensing: A new attack
model for multi-programming quantum computing, 2021.

[29] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Muzzle
the shuttle: Efficient compilation for multi-trap trapped-ion quantum
computers, 2021.

[30] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Shuttle-
exploiting attacks and their defenses in trapped-ion quantum computers.
IEEE Access, 10:2686–2699, 2022.

[31] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduc-
tion to quantum machine learning. Contemporary Physics, 56(2):172–
185, 2015.

[32] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on

Computing, 26(5):1484–1509, October 1997.

[33] Ho Lun Tang, V.O. Shkolnikov, George S. Barron, Harper R. Grimsley,
Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. Qubit-
adapt-vqe: An adaptive algorithm for constructing hardware-efficient
ansätze on a quantum processor. PRX Quantum, 2(2), April 2021.

[34] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. Society
for Industrial and Applied Mathematics, 2002.

[35] Chuanqi Xu, Jessie Chen, Allen Mi, and Jakub Szefer. Securing nisq
quantum computer reset operations against higher energy state attacks.
CCS ’23, page 594–607, New York, NY, USA, 2023. Association for
Computing Machinery.

[36] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. Exploration of power side-
channel vulnerabilities in quantum computer controllers. In Proceedings

of the Conference on Computer and Communications Security, CCS,
November 2023.

[37] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and
Mikhail D. Lukin. Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-term devices.
Phys. Rev. X, 10:021067, Jun 2020.

[38] Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas,
Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. Adaptive
quantum approximate optimization algorithm for solving combinatorial
problems on a quantum computer. Phys. Rev. Res., 4:033029, Jul 2022.


	Introduction
	Contributions

	Background
	Vehicle Routing Problem (VRP)
	VRP Instance Representation
	Quantum Approximate Optimization Algorithm

	Threat Model
	Attacker Routine
	Cost Hamiltonian and Weight Function
	General Scheme

	Results and Discussions
	Weak Attacker Results

	Securing VRP
	Related Work
	Conclusion
	References

