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Abstract—The security and confidentiality of sensitive infor-
mation processed by quantum computers are of paramount
concerns, especially given quantum computers’ potential to effi-
ciently solve classically-hard optimization problems. At the heart
of many transport optimization tasks lies the Vehicle Routing
Problem (VRP), a complex combinatorial optimization issue
classified as NP-hard. However, a promising avenue for approxi-
mating solutions to VRP is found in the Quantum Approximate
Optimization Algorithm (QAOA). This paper demonstrates that
analyzing the QAOA quantum circuit structure enables inference
of the problem being solved, such as the location or connection
of military bases in routing optimization scenarios. By exploiting
information leakage, say from side channels, during the QAOA
execution, attackers can potentially breach security and retrieve
sensitive VRP details, posing profound implications for civilian
and national security. This study underscores the need to address
and mitigate side-channel vulnerabilities in quantum computing
systems to safeguard sensitive information.

I. INTRODUCTION

Quantum computers promise to deliver exponential
speedups over their classical counterparts for certain classes of
computational problems. Among the most notable examples
are eigenvalue and optimization problems, which have key
applications in finance, machine learning, and simulations
of quantum chemistry [5], [13], [19]. Moreover, certain NP-
hard combinatorial problems like the Vehicle Routing Problem
(VRP) can be encoded into Ising Hamiltonians, allowing for
solutions via eigenvalue optimization [2], [7]. VRP generalizes
the well-known Travelling Salesman Problem (TSP) as there
can be multiple vehicles. This makes VRP a popular candidate
for optimizing logistics both in civilian and military transporta-
tion. Therefore, if one can deduce properties of the problem
solved by the VRP, then the confidentiality logistics both in
civilian and military transportation could be compromised. Our
work aims to elucidate the extent to which this confidentiality
may be compromised in the context of quantum computers.

Most current physical quantum computers are so-called
Noisy Intermediate-Scale Quantum (NISQ) devices which op-
erate with fewer than 100 qubits and shallow quantum circuit
depths [3, 15]. Despite these hardware limitations, the advent
of NISQ-era quantum computing has spurred research into
short-depth quantum circuits and hybrid quantum-classical
algorithms that make use of quantum computers in conjunction
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with classical optimization techniques. Such hybrid quantum-
classical algorithms allow for the possibility of performing
useful computational tasks, even with NISQ devices. A crucial
milestone in this direction was the invention of the Quantum
Approximate Optimization Algorithm (QAOA), proposed by
Farhi et al. [6], as a general quantum algorithm that provides
approximate solutions for combinatorial optimization prob-
lems, including VRPs.

While QAOA efficiently approximates VRPs, its deploy-
ment introduces novel security threats, especially those ex-
ploiting quantum circuit structures. Previously, various attacks
leveraging quantum-specific features, such as reset attacks,
fingerprinting tomography, and side-channel attacks, have been
identified, raising concerns about information leakage in quan-
tum computing systems, e.g., [4], [12].

In this research, we investigate how security threats from
quantum circuit structures can compromise VRPs optimized
on quantum computers using QAOA. The routing problem
is represented as a graph, such as that of an army base or
an airport. The edges can represent transportation capacity of
among different bases or airports. The graph being used in
VRP is typically a subgraph of some larger, so-called mother
graph. For example, the army bases or airports used in a
mission are a subset of all the army bases or airports.

In this work we focus on how given a knowledge of
the mother graph, and some side channel information from
the execution of the QAOA, an attacker can recover the
subgraph used in VRP, evaluating their performance across
varied graph sizes and noise models pertaining to the side
channel information. Our analysis identifies critical security
vulnerabilities, emphasizing the importance of preventing at-
tackers from obtaining rotational angles parametrizing gates
in quantum circuits. As VRP optimization directly impacts
civilian lives and military security, our work addresses crucial
security concerns in the quantum computing landscape.

II. BACKGROUND

A. VRP Instance Representation

In this paper, we will represent a problem instance of VRP
using (n, k), where n is the number of locations and k is the
number of vehicles. For simplicity, we consider the existence
of a single depot D. We impose two minimum constraints:
each location is visited exactly once, and all vehicles begin
from and return to the depot D. Here D can represent
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Fig. 1: The circuit representation of a sample variational ansatz for
QAOA with p = 1. In the circuit, five qubits are used; two-qubit
gates consist of RZZ rotational gates and single-qubit gates consist
of Rx rotational gates.

mission headquarters, and the locations are the army bases
or airports. The vehicles can be airplanes delivering mission-
cortical cargo.

B. Quantum Approximate Optimization Algorithm

The advent of quantum computing has ushered in Quantum
Approximate Optimization Algorithm as a quantum solution to
VRPs. QAOA, introduced by Farhi et al. [6], offers optimal or
near-optimal solutions for various combinatorial optimization
problems, including VRPs [10], [23]. Employing variational
ansatzes, QAOA encodes the combinatorial problem into a cost
Hamiltonian Hc and a heuristic mixer Hamiltonian Hm, which
is chosen as Hm = −

∑
i σ

x
i by convention. Here σx (σz) is

the Pauli X (Z) operator. Generally, a complete variational
ansatz for a VRP instance of (n, k) takes the form:∣∣∣β⃗, γ⃗〉 =

∏
i≤p

e−iHmβie−iHcγi |+⟩⊗n(n−1)
, (1)

where p represents the total optimization layers of the quantum
circuit, and βi, γi are variational parameters for the layer i.
They act as overall scaling factors for all the rotational angles
in Hc, Hm in the layer i. A circuit representation of a sample
variational ansatz with p = 1 is given in Fig. 1.

The optimization task revolves around minimizing the
eigenvalue for Hc. Despite its intricacy, studies demon-
strate QAOA’s ability to acquire quasi-optimal solutions in
O(poly(p)) time [23], with adaptive variants showcasing per-
formance improvements [9], [20], [24]. These advancements
underscore QAOA’s potential in efficiently solving real-world
optimization problems, positioning it as a frontrunner for
achieving quantum advantage in practical applications.

C. Constructing VRPs

This paper examines VRPs using real-world datasets
sourced from Kaggle, specifically the “USA Airport
Dataset” [8], encompassing over 3.5 million domestic flights
within the United States from 1990 to 2009. This dataset is
a direct extraction from the OpenFlights website and includes
detailed information such as the origin and destination air-
ports, passenger counts, flight distances, and dates for each
recorded flight.

Focusing on data from 2000 to 2009 and using John F.
Kennedy International Airport (JFK) as the depot, we identify
airports with nontrivial communication patterns with JFK over
the course of nine years and add them as locations in the

VRP. Edge weights between airports are determined based on
flight distances, passenger counts, and total days elapsed. The
resulting VRP graphs are undirected, and edge weights are
computed modulo 2π due to their role as rotational angles in
quantum circuit gates.

III. THREAT MODEL

In this paper, we address the threat posed by an attacker
who possesses sufficient knowledge of a mother graph G and
targets victims optimizing a VRP defined on some subgraph
Gs ⊆ G. Assuming ample computing resources, the attacker
can precompute all relevant parameters for all Gs subgraphs.
Leveraging information extractable from the variational quan-
tum circuits and precomputed parameters, the attacker aims to
deduce the specific Gs being optimized.

Under our assumption, the attacker is provided information
on the qubit count, gates executed in the quantum circuit and
the rotational angles associated with each gate. Although no
published techniques exist to achieve this level of granularity,
ongoing research endeavors are exploring the utilization of
quantum side-channels and crosstalks to achieve similar ob-
jectives [4]. Assessing this security threat is prudent and useful
given the sensitive nature of the problem.

To alleviate the requirement of acquiring precise rotational
angles and incorporate both classical and quantum noise, we
introduce imperfect resolution in the rotational angles obtained
by the attacker. This imperfect resolution translates into errors
and uncertainties in entries of the adjacency matrices repre-
senting the VRP graph. We explore various noise distributions
within a defined imperfect resolution, including uniform, bi-
modal, and Gaussian distributions. These distributions will be
detailed in subsequent sections.

IV. ATTACKER ROUTINE

A. Cost Hamiltonian and Weight Function

Following the convention used in [2], the quantum cost
Hamiltonian for a VRP can be encoded as

Hc = −
∑
i,j<i

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i + d, (2)

where the parameters Jij , hi, d are determined uniquely from
each VRP. In the quantum circuit, the parameter d is pro-
portional to an identity gate and drops out. The parameter of
interest to us is hi, which contains the weight for each edge
in the VRP graph. By the standard mapping,

hi =
wi

2
+ C, (3)

where wi is the weight function for the i-th edge in the graph
for a VRP and C is a constant independent of the weight
function of the VRP instance (n, k) under consideration. More
specifically, C depends on only n and k. Thus, the attacker
can treat C as a constant offset with the knowledge of n and k.



B. Adding Noise

We introduce noise as imperfect resolution in the rotational
angles obtained by the attacker for relevant gates. Taking both
noise and variational parameter γ into account, for some fixed
optimization layer, the rotational angle γhi associated with hi

can be written as

γhi ± |δhi| = γ

(
wi

2
+ C +

δhi

γ

)
. (4)

Here, |δhi| is the uncertainty imposed by the noise, upper
bounded by the maximum noise magnitude (or maximum
imperfection in the resolution). Since the rotational angles fall
in the interval (0, 2π], the range of maximum noise magnitude
we consider is (0, 2π].

In our model, we do not assume that the attacker has any
information on the variational parameter γ. In this sense, the
variational parameter γ acts as an overall normalization factor.
Without losing useful information regarding the weight func-
tion while cancelling out the constant offset C, the attacker can
normalize each weight function entry wi in the following way:

wi =
(wi − wmax) +

2(δhi−δhmax)
γ

(wmin − wmax) +
2(δhmin−δhmax)

γ

. (5)

Here, wmax (wmin) is the maximum (minimum) entry in the
weight function and δhmax (δhmin) is the corresponding noise.
This quantity can be directly obtained both from the weight
function as prior knowledge and from empirically obtained
rotational angles. As prior knowledge, all noises are set to 0.
Thus, the attacker can compare the set of {wi} obtained from
the experiments with the precomputed ones to determine the
subgraph Gs considered by the victim.

As to the specifics of noise distributions, we consider three
distinct types: uniform, bimodal, and Gaussian distributions.
For each peak in the Gaussian distributions, we center the
peak at 0 and set the variance such that > 99.99% of the noise
values fall within the maximum noise magnitude. The bimodal
distributuions are constructed from the Gaussian distributions,
with each peak positioned equidistantly from each other and
the noise magnitude boundaries.

C. General Scheme

A general routine adopted by the attacker can be summa-
rized as follows:

1) For each subgraph Gs ⊆ G, precompute the set of
normalized weights {wi}s.

2) Obtain information on (n, k) and possibly rotational
angles from a side-channel attack.

3) Compute a set of {w̃i} based on the information ob-
tained from the side-channel attack.

4) Compare {w̃i} with all the precomputed sets of
{wi}s and compute the mean squared error (MSE) for
each pair.

5) Pick the Gs corresponding to the minimum MSE as the
Gs optimized by the victim.

V. RESULTS AND DISCUSSIONS

In this section, we present our experimental evaluations.
Mainly three types of experiments are conducted: matching
subgraphs of random sizes under uniform noise, matching
subgraphs of fixed sizes under uniform noise, and matching
subgraphs of random sizes under different noise types. Note
that in all the experiments for matching random subgraphs,
we have ignored subgraphs of sizes ≤ 2, as such subgraphs
make the optimization trivial and unnecessary to consider in
realistic settings.

In all experiments, we consider both the matching suc-
cess/error rate and the node recovery proportionality. Here,
the matching success/error rate refers to the success/error rate
for an attacker to find the complete subgraph that the victim
is trying to optimize. However, although an attacker cannot
retrieve the complete subgraph sometimes, it is meaningful
to consider the portion of the subgraph that the attacker can
recover. In this sense, it is useful to consider and evaluate the
proportionality of node in a subgraph optimized by the victim
recoverable by the attacker.

In Fig. [2, 3, 4], we present the evaluation for the JFK-VRP,
a VRP based on the JFK data set described earlier. Due to lim-
ited space, we highlight here only results from Fig. [4], where
the attacker performs significantly better under Gaussian noise
than bimodal and uniform noise. Moreover, the attacker ex-
hibits similar performance under bimodal and uniform noises.
To understand this, observe that in the calculation of {wi}s,
differences between the noises are taken. Since Gaussian noise
centers around one peak, the magnitude of this difference is
greatly reduced given the small amount of variance under our
consideration. We also clarify that except for explicit testing of
noise distributions, all the noise distributions adopted in other
experiments are of the uniform type.

Below, we list some important observations with concrete
statistics based on our experimental results:

• For random subgraphs with size > 2, an attacker can
stably recover 95% of the nodes and match the entire
subgraph correctly with probability > 0.975 up to a noise
resolution of π/2.

• For subgraphs of fixed sizes, the larger the subgraph size
is, the higher the matching success rate and node recovery
proportionality, with both topping at 1.00 for subgraphs
the same size as the mother graph.

• The matching performs better with gaussian noise dis-
tributions than bimodal and uniform noise distributions.
The advantage grows with noise magnitude, coming to
> 2 times at large noise.

VI. SECURING VRP

Based on our findings, attackers with access to information
about QAOA executing on a quantum computer can recover
secrets from the VRP instance. This can compromise secrecy
and national security when VRP instances is used in context
of routing between army bases or airports. Our work brings
particular attention to the need for better understanding, and



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise Magnitude in Radian [ ]

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.87 0.86 0.85

Matching Random Subgraphs for JFK-VRP
Matching Success Rate
Node Recovery Proportionality

Fig. 2: Experimental evaluations for a strong attacker on matching random subgraphs for JFK-VRP under uniform noise. Both the matching
success rate and node recovery proportionality are considered. Maximum noise magnitudes in (0, 2π] are evaluated.
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Fig. 3: Experimental evaluations for a strong attacker on matching subgraphs of fixed sizes for JFK-VRP under uniform noise. Both the
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prevention, of side channels in quantum computers. As we
demonstrate, even imperfect side-channel information cor-
rupted by noise can be leveraged by the attacker. For example,
within a noise resolution of π/2, attackers can stably recover
95% of the nodes and correctly matches the entire subgraph
with a probability exceeding 0.85. As a result, future work
needs to explore prevention of side channels, as well as
protection of VRP itself.

VII. RELATED WORK

There is recently, increasingly growing body of research on
security of quantum computers. For superconducting quantum
computers, recent work [1] shows that the crosstalk errors
could be used in fault injection attacks. It also showed how
an adversary can launch a denial of service attack on the
victim circuit using crosstalk errors, similar to our evaluation.
In addition, due to the difference of eigenstates, qubit-sensing
employs malicious circuits to sense qubits of victim circuits
based on already known statistical information [16]. Among
side channel attacks, recent work proposed power side channel
attacks that can help recover the control pulses of the quantum

computers [22], leading to recovery gates being executed
on the quantum computer. Researchers have also proposed
different methods to fingerprint quantum computer hardware
by characterizing error patterns unique to each device or
qubit [11], [14]. In trapped-ion quantum computers, repeated
shuttle operations can elevate the ion-chain’s energy, which
can damage the fidelity of victim circuits [17], [18].

VIII. CONCLUSION

This paper focused on an unexplored security domain
considering quantum computers: examining the potential com-
promise of transportation logistics, including civilian airports
and military bases, through an analysis of quantum circuit
structures. The paper sheds light on how side-channel leaks
of information, such as rotational angles, could lead to the
recovery of VRP being optimization on a quantum computer.
Such breaches carry significant implications for both civilian
and national security. The research underscores the urgency in
developing robust techniques to safeguard sensitive informa-
tion, especially in the face of rapid advancements in quantum
computing. In particular, it highlights that strong attackers
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able to perform side-channel attacks on quantum computing
systems pose a nontrivial security threat, emphasizing the need
for formulation of effective defense mechanisms to counteract
such potential risks.

REFERENCES

[1] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Analysis of
crosstalk in nisq devices and security implications in multi-programming
regime. In Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, ISLPED ’20, page 25–30, New
York, NY, USA, 2020. Association for Computing Machinery.

[2] Utkarsh Azad, Bikash K. Behera, Emad A. Ahmed, Prasanta K. Pan-
igrahi, and Ahmed Farouk. Solving vehicle routing problem using
quantum approximate optimization algorithm. IEEE Transactions on
Intelligent Transportation Systems, 24(7):7564–7573, July 2023.

[3] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage
with shallow circuits. Science, 362(6412):308–311, October 2018.

[4] Sanjay Deshpande, Chuanqi Xu, Theodoros Trochatos, Hanrui Wang,
Ferhat Erata, Song Han, Yongshan Ding, and Jakub Szefer. Design
of quantum computer antivirus. In Proceedings of the International
Symposium on Hardware Oriented Security and Trust, HOST, May 2023.

[5] Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S Humble,
and Joel Gottlieb. Financial portfolio management using D-wave
quantum optimizer: The case of Abu Dhabi securities exchange, 2017.

[6] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm, 2014.

[7] Sebastian Feld, Christoph Roch, Thomas Gabor, Christian Seidel, Flo-
rian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-
Popien. A hybrid solution method for the capacitated vehicle routing
problem using a quantum annealer. Frontiers in ICT, 6, June 2019.

[8] FlashGordon. Usa airport dataset. https://www.kaggle.com/datasets/
flashgordon/usa-airport-dataset, 2000-2009. Accessed: 2023-11-10.

[9] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and
Nicholas J. Mayhall. An adaptive variational algorithm for exact
molecular simulations on a quantum computer. Nature Communications,
10(1), July 2019.

[10] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor Rieffel, Davide
Venturelli, and Rupak Biswas. From the quantum approximate optimiza-
tion algorithm to a quantum alternating operator ansatz. Algorithms,
12(2):34, February 2019.

[11] Allen Mi, Shuwen Deng, and Jakub Szefer. Short paper: Device- and
locality-specific fingerprinting of shared nisq quantum computers. In

Proceedings of the Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, October 2021.

[12] Allen Mi, Shuwen Deng, and Jakub Szefer. Securing reset operations in
nisq quantum computers. In Proceedings of the Conference on Computer
and Communications Security, CCS, November 2022.

[13] Roman Orus, Samuel Mugel, and Enrique Lizaso. Quantum computing
for finance: overview and prospects. Reviews in Physics, 4:100028,
2019.

[14] Koustubh Phalak, Abdullah Ash Saki, Mahabubul Alam, Rasit Onur
Topaloglu, and Swaroop Ghosh. Quantum puf for security and trust in
quantum computing. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 11(2):333–342, 2021.

[15] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, August 2018.

[16] Abdullah Ash Saki and Swaroop Ghosh. Qubit sensing: A new attack
model for multi-programming quantum computing, 2021.

[17] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Muzzle
the shuttle: Efficient compilation for multi-trap trapped-ion quantum
computers, 2021.

[18] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Shuttle-
exploiting attacks and their defenses in trapped-ion quantum computers.
IEEE Access, 10:2686–2699, 2022.

[19] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduc-
tion to quantum machine learning. Contemporary Physics, 56(2):172–
185, 2015.

[20] Ho Lun Tang, V.O. Shkolnikov, George S. Barron, Harper R. Grimsley,
Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. Qubit-
adapt-vqe: An adaptive algorithm for constructing hardware-efficient
ansätze on a quantum processor. PRX Quantum, 2(2), April 2021.

[21] Wikipedia contributors. All your base are belong to us — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=All your
base are belong to us&oldid=1189968088, 2023. [Online; accessed
27-December-2023].

[22] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. Exploration of power side-
channel vulnerabilities in quantum computer controllers. In Proceedings
of the Conference on Computer and Communications Security, CCS,
November 2023.

[23] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and
Mikhail D. Lukin. Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-term devices.
Phys. Rev. X, 10:021067, Jun 2020.

[24] Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas,
Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. Adaptive
quantum approximate optimization algorithm for solving combinatorial
problems on a quantum computer. Phys. Rev. Res., 4:033029, Jul 2022.

https://www.kaggle.com/datasets/flashgordon/usa-airport-dataset
https://www.kaggle.com/datasets/flashgordon/usa-airport-dataset
https://en.wikipedia.org/w/index.php?title=All_your_base_are_belong_to_us&oldid=1189968088
https://en.wikipedia.org/w/index.php?title=All_your_base_are_belong_to_us&oldid=1189968088

	Introduction
	Background
	VRP Instance Representation
	Quantum Approximate Optimization Algorithm
	Constructing VRPs

	Threat Model
	Attacker Routine
	Cost Hamiltonian and Weight Function
	Adding Noise
	General Scheme

	Results and Discussions
	Securing VRP
	Related Work
	Conclusion
	References

