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Abstract—Package-on-Package (PoP) is an intergraded circuit
packaging technique where multiple separate packages are
mounted vertically one on top of the other, allowing for more
compact system design and reduction in the distance between
modules. However, this can introduce security vulnerabilities.
In particular, this work shows that due to the close physical
proximity of a System-on-a-Chip (SoC) package and a PoP
DRAM that is on top of it, a thermal covert channel exists
between the SoC and the PoP DRAM. The thermal covert
channel can allow multiple cores in the SoC to communicate
by modulating the temperature of the PoP DRAM. Especially,
it is possible for one core in the SoC to generate heat patterns,
which encode data that is to be transmitted, and another
core to observe the transmitted pattern by measuring the
decay rate of DRAM cells. Further, a covert channel can
be established between a remote user and an SoC core by
modulating the PoP DRAM temperature that then affects
errors in PoP DRAM PUF fingerprints that are sent to the
remote user for device authentication. Following these ideas,
this paper introduces two new covert channels: first leveraging
the observation of the number of bit flips in the PoP DRAM
directly, and second through observation of bit flips induced
in PoP DRAM PUF fingerprints. This paper also evaluates
the DRAM cell decay rates in PoP DRAM, when heated by
execution of different instructions on the processor cores in
the SoC underneath the DRAM module. The evaluation was
performed on three Raspberry Pi B+ boards, which have PoP
DRAM. The evaluation was done both in office environment
and in a thermal chamber. To mitigate the new channels, a set
of defenses is discussed.

1. Introduction

A covert channel is an attack technique used to leak
data between different programs via a channel not orig-
inally designed for information communication [1]. The
covert channel is “not intended” for communication, which
makes exfiltration of information through a covert channel
difficult to detect and prevent as the entity trying to find
the leaks has to first guess what is the communication
channel, before being able to observe and prevent it. Over
the last two decades, a variety of covert channels have been
shown in computer systems. The channels can be based on

observation of execution time [2], [3], or on observation
of physical emanation, such as heat [4] or electromagnetic
(EM) field [5], for example. This work focuses on thermal
channels, and shows how the heat, or temperature, can
be measured without special measurement equipment or
physical access in commodity SoC devices. Especially, this
work focuses on an SoC DRAM Package-on-Package (PoP)
configuration [6] where two chips (SoC and DRAM) are
stacked on top of each other. The heat transfers between the
two can be observed by measuring decay rate of DRAM
cells, which is the basis for this work.

Previously, heat-based or thermal covert channels have
been demonstrated in data centers [7], or in multicore
processors [8], but these require dedicated thermal sensors
unlike our work. Also, it has been demonstrated that an
attacker can use thermal covert channel for data transmis-
sion between electrically and physically isolated circuits in
FPGAs [4], [9], but these require use of FPGAs where
custom circuits can be implement to measure the temper-
ature. Unlike the prior, we demonstrate covert channels in
SoC configuration with PoP DRAM, without any dedicated
thermal sensor nor need for reconfigurable FPGAs.

As it has been previously show [10], [11], [12], the
decay rates of DRAM cells are very sensitive to temperature
changes. In this work, we show that the temperature changes
due to SoC operation affect the decay rate of cells in PoP
DRAM, e.g., higher temperature results in faster decay.
When reading DRAM with refresh disabled, the decay rate
can be observed by counting the number of bit flips that
have occurred in a DRAM region. The DRAM decay rate
then contains some information about the amount of heat
generated depending on the program being executed on the
SoC. The system with an SoC and PoP DRAM used in this
work is shown in Figure 1.

This can be used as a covert channel: one processor
core can be the data sender, and depending on whether
zeros or ones are to be transmitted it can execute some
specific operation in a certain order to heat up DRAM
chip for predefined periods of time. For the data receiver,
the data can be decoded by evaluating the decay rate of
DRAM cells in the DRAM atop of the SoC. The decoding
can be done locally in the first covert channel, or remotely
by evaluating errors in PoP DRAM Physically Uncloneable
Function (PUF) fingerprints in the second covert channel.
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Figure 1. The architecture of an SoC with a PoP DRAM. The whole DRAM
chip can be heated up by performing different operations of the SoC.

1.1. Contributions

Our key contributions are as follows:
• Design of two novel covert channels leveraging Package-

on-Package DRAM:
– By measuring the number of bit flips of the PoP

DRAM while the DRAM refresh is disabled for a
specified amount of time, the first channel can be used
to enable cores located in separate areas of the SoC
to transmit data between each other even if they are
separated by logical isolation.

– By measuring the errors in PoP DRAM PUF finger-
prints, the second channel can be used to reveal secret
data to external systems that receive the fingerprint.

• Evaluation of the PoP DRAM decay rates under different
ambient temperatures with different DRAM decay times,
and while different programs execute on processor cores
in the SoC beneath the DRAM to find most suitable
configuration for the covert channels.

• Discussion of a set of defenses that can be used to mitigate
the new PoP covert channel vulnerabilities.

2. Background

This section provides a brief background on DRAMs,
DRAM cell decay, application of DRAM cell decay such as
PUFs, and the Package-on-Package packaging technique.

2.1. DRAM Decay and PUFs

DRAM is pervasively used in existing embedded sys-
tems. As shown in Figure 2, each DRAM cell consists of
a transistor and a capacitor, which is one bit of data. The
cells are arranged in a 2-dimensional array, where each row
of the array is connected to a word line. In each column,
cells are linked by a bit line. Amplifiers and equalizers
are used to help read the data and convert it to voltage
levels corresponding to logical ones or zeroes. In DRAM,
the capacitors leak charge over time (some of the leakage
paths are shown in Figure 2), which may cause the data to
flip if the capacitor goes from charged to discharged state.
Therefore, DRAM chips usually have a periodic self-refresh
controlled by the memory controller to ensure the cells are
refreshed before the bits can flip.

The rate at which the charge on each capacitor leaks
is dependent on manufacturing variations, temperature
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Figure 2. Layout of a typical DRAM array, arrows indicate the leakage
paths that may lead to DRAM decay.

changes, and voltage changes. Especially, some cells leak
faster than others. After a certain decay time, if enough
charge has leaked, the weak cells will flip their value if they
were previously in a charged state. But for the other strong
cells, the contents will stay stable. Due to the manufacturing
variation, DRAMs have been shown to be a good candidate
for use as PUFs [10], [13], [14].

2.2. PoP DRAM

In some devices (e.g., mobile phones and IoT devices), a
special integrated circuit packaging method called Package-
on-Package (PoP) is used to improve the component density.
For example, as shown in Figure 1, the DRAM chip can be
mounted on top of the SoC chip. Usually, the logic package
is on the bottom because it needs more connections to the
PCB board. Compared with the traditional isolated chip
packaging, PoP yields better PCB space savings and shorter
electrical connections between SoC and the memory chip
with better electrical performance.

However, this packaging method may become the target
of a security attack. Operation of the cores in the SoC affects
the DRAM on top through thermal changes, and this can be
used to leak information. This is a new threat, compared to
other systems designs where DRAM and SoC are separate
chips in different parts of PCB and one cannot easily affect
temperature of the other.

3. Covert Channel using Bit Flips in DRAM

Figure 3 describes the first covert channel presented in
this paper. The SoC chip on the RaspberryPi B+s contains
a CPU and a GPU. To demonstrate that the covert channel
can send information between distinct cores in the SoC, the
GPU is used by the sender (Alice), while the CPU is used
by the receiver (Bob).

The sender, Alice, is a program running on GPU and
the receiver, Bob, is a program running on the CPU. Both
are isolated logically, and cannot sent data undetected over
other channels. Especially, the programs running on the
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Figure 3. Block diagram of the covert channel based on the number of raw
bit flips in PoP DRAM.

two cores are only able to communicate via the mailboxes.
As the mailbox accesses and timing can be monitored, we
assume covert channels through mailboxes are not possible.
However, Alice can try to transmit data by modulating the
heating of the DRAM chip (the dotted arrow in Figure 3),
thus bypassing the system’s protections.

The transmission process consists of two basic parts. In
the data encoding process, Alice encodes the data into a se-
quence of functions to be executed on the GPU. Depending
on whether a zero or a one is to be transmitted, the GPU
performs different functions for predefined periods of time.
Especially, the GPU becomes a circuit that generate heat
according to the function that is executed. To heat up the
GPU, a loop of function calls is executed. Depending on the
functions that are executed, the GPU heats up in a different
manner. This heat transfers to the PoP DRAM.

Once the PoP DRAM is heated, the thermal transmission
can be detected by measuring the decay rate of the PoP
DRAM. Bob can initialize the DRAM with known data,
disable the refresh of the DRAM module, and allow the
memory to decay. Then, he can read out DRAM using
normal memory accesses (the solid arrow in Figure 3). After
reading the DRAM, Bob can compute the number of bit
flips. From the number of bit flips, and knowing type of
DRAM chip used, Bob can compute how much the DRAM
was heated up by Alice. Based on a threshold, Bob can
decide if a logical 1 or logical 0 was transmitted. To transfer
more bits, the process can be repeated for each bit.

Due to the fast heat spreading in SoC and DRAM, it is
not possible, based on our evaluation, to transfer more than
1 bit at a time. I.e., is is not possible to heat different regions
of the DRAM in a different manner. However, for the usual
case of trying to leak secrets such as cryptographic keys, it
is only necessary to repeat the process a small number of
times, typically corresponding to the secret key size.

Details of a covert channel transmission are shown in
Algorithm 1, where Alice tries to exfiltrate n-bit secret data
to Bob via the PoP DRAM covert channel. For i ∈ 1, · · · , n,
if ki = 0, Alice executes function A, else she executes
function B to transfer a 0 or a 1, respectively. Function
A and function B are different functions, which heat up
the DRAM in a distinguishable manner. The tsend should
be strictly bigger than the decay time T discussed below,

Algorithm 1: Covert channel protocol using raw
bit flips in PoP DRAM.
k: n-bit message to be sent by Alice
k′: n-bit message to be received by Bob
tsend: predefined time for transmission of 1 bit
T : decay time
ads, ade: start and end address of DRAM region used

by Bob
r: number of bit flips observed by Bob
ξ: threshold for differentiating logical 1 and 0
The sender Alice:
for i = 0; i < n; i = i+ 1 do

for an amount time tsend do
if ki = 0 then

do function A in a loop;
else

do function B in a loop;
end

end
end
The receiver Bob:
for i = 0; i < n; i = i+ 1 do

Initiate DRAM from ads to ade to a known value,
such as all 0s;

Disable the DRAM refresh;
for an amount time T do

nothing;
end
Enable the DRAM refresh;
Read DRAM from ads to ade and count the bit flips
r;

if r > ξ then
k′i = 1;

else
k′i = 0

end
end

so the receiver has time to measure the DRAM decay, and
deduce the temperature.

In the CPU, at the same time, Bob initializes the DRAM
region from start address ads to end address ade to all
zeros1. Then, the evaluation of DRAM decay is started by
disabling the DRAM refresh2. After a decay time T has
elapsed, the decay process ends and the DRAM refresh can
be re-enabled. Finally, Bob decodes the data according to
the number of bit flips r based on the threshold ξ: if r > ξ,
k′i = 1, else k′i = 0. Then Bob waits for the tsend to end,
and repeats his operations to read the next secret bit.

In this channel, Bob’s operation should be performed
in kernel or have the root privileges so Bob can control
DRAM refresh operations. If Bob is not able to directly
control DRAM refresh, he and Alice may still be able to

1. Other patterns are possible, but initial zeros have worked well in our
experiments, as they set at least half of DRAM cells into charged state.

2. If there is useful data in other parts of DRAM not used for the
measurements, the other DRAM regions should be manually refreshed
to prevent that data from decaying, and to maintain the operation of the
system. This can be done without any hardware changes, following prior
work [11].



try to create the covert channel by leveraging power saving
modes of the SoC where the SoC turns off the DRAM to
save power. If Bob can trigger or predict when low power
mode happens, and for how long, he can write the zeros
before DRAM is disabled and read data from DRAM when
it is re-enabled to observe the decay rate.

3.1. Choice of Encoding Functions

Different choices for function A and function B are
possible. In the basic case, Alice could modulate the GPU
between some operation and no operation. But this would
allow for a user or a system administrator to observe unusual
GPU patterns. For example, through power measurements
they can learn GPU is behaving in a special pattern of
operation and no operation, and thus detect the existence
of the covert channel.

Our work focuses on a more stealthy channel. For ex-
ample, a loop of addition operations vs. a loop of division
operations can be used to send either 1 or 0. Specifically,
each of these operations takes different amount of time to
execute, loop of additions is quicker, and causes GPU to
do overall more work per unit time, and heat up more.
Meanwhile divisions are slow, and cause GPU to do overall
less work per unit time, and heat up less. Our evaluation in
Section 5.4 shows there is 5% difference between heating
due to the loops of two types. Thus, Alice and Bob can
send information while always keeping the GPU busy, and
making it harder to spot that some transmission is going on.

3.2. Run-Time Detection of Decay Threshold

If the threshold ξ for decoding is not known prior to
the transmission previously, some fixed known data, e.g.,
0101010101 · · · , can be transformed from Alice to Bob.
Knowing this data is being transmitted, Bob can compute
the threshold of ξ by averaging the number of bit flips of
the known data. Thus, before receiving data, Bob has to
synchronize with Alice, and then pre-compute the threshold.
This is the setup overhead for setting up covert channel for
transmission each time. Also, if the temperature is varying
over time, Bob can receive all the data bits, then compute
the envelope [15] and decide which bits are logic 1 and
logic 0 depending if the decay rate is closer to the upper or
lower envelope. This does not require pre-sending a fixed
data pattern. Details are given in Section 5.

4. Covert Channel using Bit Flips in DRAM
PUF Fingerprints

DRAM PUFs can be used as the fingerprints of devices
for authentication. Usually, the PUF-based authentication
has two steps: an enrollment phase in a secure environment,
and an authentication phase when the device is used in
the field. Most PUFs exhibit an unreliability problem due
to aging and the inherent sensitivity to the environmental
conditions, such as temperature. As remedy to the relia-
bility issue, error-correction algorithms [16] or helper data
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Figure 4. Block diagram of the covert channel based on the fingerprints of
the PoP DRAM PUF.

algorithms [17] are used in practice. A helper data algorithm
generates and stores the helper data in the enrollment phase.
The generated helper data are used then for error correction
in the authentication phase. Our second covert channel de-
sign exploits errors that can be detected in the authentication
process, to stealthily send data to remove receiver under the
guise of sending the device’s fingerprint.

Figure 4 shows the second covert channel. In the en-
rollment process, Bob generates helper data h = GEN(r),
where GEN is the generation process of helper data algo-
rithm and r are the raw DRAM PUF fingerprint measure-
ments. As with any helper data, h can be stored publicly as it
should not leak any information about the fingerprint. In the
authentication process, Bob queries the DRAM PUF from
the target device and gets a measurement of the DRAM
PUF fingerprint r’. Using the helper data algorithm, Bob
can regenerate the fingerprints r = REGEN(r′, h), where
REGEN is the error correction process of helper data algo-
rithm, if the Hamming Distance of r and r’ is smaller than
the error-correcting capability of the help data algorithm.

For the second covert channel, Alice again executes code
on the GPU to heat the DRAM and transmit some secret data
to Bob, but now Bob is a remote user who has only access
to the DRAM PUF fingerprint authentication data sent form
the device where Alice is executing her code. Depending
on whether 0 or 1 are to be transmitted, Alice performs
different operations on the GPU for a predefined period of
time, tsend. She can heat up the SoC a lot (e.g., using loops
of additions) or heat it up less (e.g., using loops of divisions).
Each one will affect DRAM decay in a different manner, and
thus change the DRAM PUF fingerprint in a different way.

Then, during the authentication phase, Bob receives the
fingerprint data. But the data has been affected by this time
due to the decay rate change of the DRAM because of Al-
ice’s operations on the GPU. With the fingerprint data, Bob
can perform both the authentication (apply error correction
to recover the secret) and also compute the magnitude of the
error introduced due to heating. The magnitude will reveal
whether Alice was transmitting a 1 or a 0. This will always
work if the changes in the decay rate of DRAM due to
Alice’s actions cause less error than can be handled by the
error-correction function, otherwise the fingerprint will be
affected as well and the authentication will fail.



5. Implementation and Evaluation

The covert channels were evaluated on commodity off-
the-shelf Raspberry Pi B+ devices, without any hardware
modifications. Evaluation considers both ideal thermal con-
ditions (in a thermal chamber) and more realistic varying
thermal conditions (in an office room).

5.1. Implementation in Raspberry Pi B+

We implemented and tested our covert channels on three
Raspberry Pi B+ development boards, labeled Pi1, Pi2, and
Pi3. Raspberry Pi B+ uses a Broadcom BCM 2835 System-
on-Chip (SoC) module that includes multiple cores. The
CPU is a 700MHz ARM11 76JZF-S processor, while the
GPU is a VideoCore IV. The Raspberry Pi B+ also includes
512MB of DDR2 memory in the Package-on-Package con-
figuration atop the SoC.

In order to control the refresh rate, the firmware of
the Raspberry Pi B+ needs to be modified. We modified
the open source Raspberry Pi B+ firmware [18] in order
to allow for controlling the DRAM refresh from software.
On the Raspberry Pi B+, the refresh is controlled at the
granularity of the whole DRAM chip. It is not possible to
control the refresh of only part of the DRAM module. Thus,
the firmware must selectively refresh the memory range
which is used by the other applications. Similar to existing
work [10], [11], a software approach is used. A loop over
all memory address that need to be refreshed is used. In the
loop, reads are issued to the first word in every DRAM
row of the memory locations that need refresh. Recall,
that each DRAM read automatically refreshes the DRAM
cells. If a different SoC were used with multiple separate
DRAMs, or with features allowing control of refresh at a
finer granularity, the software loop would not be needed.

For both channels, Alice’s application runs on the GPU.
For the covert channel using PoP DRAM decay, Bob’s ap-
plication runs on the CPU. For the covert channel using PoP
DRAM PUF fingerprint, a local application runs on the CPU
to collect the PUF measurements, and Bob’s application runs
on the workstation.

5.2. Experimental Setup

Figure 5 presents schematic of the experimental setup
used to verify the feasibility and reliability of the covert
channels. This setup includes the following equipments. A
thermal chamber with an Ethernet interface. Inside the ther-
mal chamber, three Raspberry Pi B+ boards are placed for
experiments under controlled temperature. The Raspberry
Pi B+ boards communicate with the workstation via the
serial ports. The workstation further runs Python scripts for
controlling the thermal chamber and the Power Distribution
Unit (PDU). The server is used to allow for remote control
of the PDU to power on and off the boards for testing,
server accepts commands over SSH and controls the PDU
via a serial port.

1

Thermal Chamber

Workstation

Pi1 Pi2 Pi3

Power Distribution 

Unit (PDU)

Server
USB cable

Power Cable

Internet

Figure 5. The experiment setup. The workstation can control the remote
thermal chamber and the PDU which is attached to the server, and gather
data for the covert channels using PoP DRAM bit flips and PoP DRAM
PUF fingerprints.

We performed measurements using three different Rasp-
berry Pi B+ boards in the thermal chamber under different
temperatures and decay times. The thermal chamber can be
controlled remotely over the Ethernet, e.g., setting or reading
the temperature. The Raspberry Pi B+ boards were powered
by the PDU. The workstation running the python scripts
controlled the whole experimental setup. The measurements
were gathered following the automated process:

1) The workstation first sets the temperature of the thermal
chamber and starts to monitor the temperature inside.

2) When the temperature requirements are reached, the
workstation powers on the Raspberry Pi B+ boards by
turning on ports on the PDU.

3) The workstation sets the current test’s decay time (used
by Bob’s application) of the DRAM in Raspberry Pi B+
boards using the serial port.

4) Once the decay time expires, measurements of DRAM
decay are collected:
• For the evaluation of the covert channel based on the

bit flips in PoP DRAM, Bob’s application running on
the CPU reads the (decayed) DRAM data and sends
out the results to the workstation over the serial port
to inform the controller script of the observed number
of bit flips (and thus the secret data bit for the current
experiment).

• For the covert channel based on the PoP DRAM
PUF fingerprints, application on the CPU reads the
fingerprint from the DRAM PUF, and sends it out
via serial port to the workstation. In the workstation,
Bob’s application decodes and error corrects the data
based on the helper data system. It also recovers the
secret bit for the current experiment from the data
based on the amount of error observed.

5) Restart from step 1 for next set of parameters.

For the experiments in room setting, the thermal cham-
ber is not used, and the Raspberry Pi B+ boards are placed
on a desk in an office environment.
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Figure 6. Evaluation of number of bit flips when different functions are
running in a loop on the GPU under different decay times and at different
ambient temperatures (as controlled by the thermal chamber). The data are
shown for Pi1 (the first Raspberry Pi B+ board), since all three boards
show similar behavior. The difference between the two functions (addition
and division) is reliably about 5%.

5.3. Changes in PoP DRAM Bit Flips due to Op-
erations on the SoC

We measured the decay rate of DRAM cells on three
instances of Raspberry Pi B+ boards to understand how
they are affected by the different operations on the SoC.
Given the large amount of memory present, we measured
multiple DRAM rows, totaling 16MB on each device. The
rows were spread across the whole DRAM to get average
decay rate across whole DRAM chip. As shown in Fig-
ure 6, each DRAM was measured at seven temperatures
t = 20◦C, 25◦C, 30◦C, 35◦C, 40◦C, 50◦C, with five decay
times T = 20s, 30s, 40s, 50s, 60s, and two functions (a loop
of addition operations and a loop of division operations, both
performed on the GPU) with 20 measurements each.

As shown in Figure 6, although the temperature and the
decay time affect the number of bit flips significantly, they
do not change the relative bit flips due to the two functions
performed on the GPU. We observed that the number of bit
flips for addition is always larger (about 5%) than division.
This can be explained because addition is quick and can be
executed more times than division within a certain decay
time. Therefore, the SoC chip has more power consumption
and thermal emanation. Furthermore, we observed that the
whole chip was heated up with uniform regularity. This
enabled us to detect the behavior of SoC by evaluating the
decay feature of any part of DRAM in the whole DRAM
chip. This shows that executing operations on the GPU can
heat up the DRAM in a predictable manner.

5.4. Environmental Effects on PoP DRAM Bit Flips

The PoP covert channels can be used to transmit secret
data to other cores on same SoC, by evaluating the bit flips
of PoP DRAM, as well as to external devices by counting
the number of errors in PoP DRAM PUFs fingerprints.

(a) 128-bit data transmission

0

(b) Detail of the first 8 bits sent

Figure 7. The covert channel based on bit flips at 35◦C, with 60s decay
time.

(a) 128-bit data transmission

0

(b) Detail of the first 8 bits sent

Figure 8. The covert channel on bit flips at room temperature, with 60s
decay time.

Although the scenario of internal and external channels are
different, they are all based on the decay behavior of cells in
PoP DRAM. Therefore, by evaluating the PoP DRAM under
different test conditions, we can verify the feasibilities of our
covert channels.

In Figure 7, we test Pi1 at constant t = 35◦C controlled
by the thermal chamber, with T = 60s decay time. Here,
the GPU core runs different functions constantly in a loop
to transmit 128-bit data, by using different heating levels to
transmit a 1 and a 0. Each point in Figure 7(a) represents 1
bit of data, the value is evaluated by examining the number
of bit flips. To establish a threshold, a preamble of 14-bit
data (“10101010101010”) is first transmitted. The dotted
line is the average of the number of bit flips for the 14-bit
data, the data is not shown in the figure. The points above
the dotted line are judged to be a logical 1, while the others
are a logical 0. The gap between 1s and 0s is stable under
constant temperature. Figure 7 (b) shows the number of bit
flips in DRAM of each of the first 8 bits transmitted.

However, as shown in Figure 8, at an ambient room
temperature in an office setting, the absolute value of bit
flips changes under the influence of temperature changes.
The average value of the 14-bit data preamble cannot be
used as the threshold for the covert channel in this setting.
Fortunately, the relative value of bit flips corresponding to
logical 1s and 0s remain stable, because the chip temperature
does not experience abrupt thermal changes. Therefore, the
envelope [15] can help us separate logical 1s and logical 0s
more accurately. Specifically, the data has to be first gathered
for the whole message (while for stable temperature each
bit can be decoded right away when it is received and can
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Figure 9. The reliability of covert channel at different temperatures with same decay time: 60s.
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Figure 10. The covert channel at room temperature, 60s

be judged to be above or below the threshold). Once the
data are gathered, the envelope (shown by the solid line)
is computed. Then, the average of the upper and lower
envelope can be computed at each time point (shown by
the dotted line). Finally, bits above the varying average line
are computed to be logical 1s and below to be logical 0s.
Figure 8 (b) shows the number of bit flips in DRAM of each
of the first 8 bits transmitted.

5.5. Reliability Evaluation

To understand the reliability of the covert channels,
we evaluated the covert channels reliability using both the
thermal chamber and at ambient room temperature. The re-
liability evaluation was done using Formula 1 shown below,
where HD is the Hamming Distance.

reliability =
HD(k, k′)

n
× 100% (1)

Figure 9 shows the reliability of our covert chan-
nel with three Raspberry Pi B+ boards operating at
t = 20◦C, 25◦C, 30◦C, 35◦C, 40◦C, 50◦C and decay
time T from 20s to 240s. For the temperature t =
20◦C, 25◦C, 30◦C, it is shown that the reliability of our
covert channels is getting better as the temperature increases.
As shown in Figure 6, when the chip is working below
30◦C, the relative bit flips between two functions are too
small to recognize. As the temperature increases, the dif-
ferences of the decay rates gradually become larger. From
30◦C to 40◦C, the reliability of covert channel fluctuates,
especially for the Pi3. The chip is now working under the
environment temperatures that are close to the chip’s internal
temperature. And any excess heat will not be absorbed
by the environment, therefore, covert channel presents the
best test results under these experimental conditions. As
the temperature gets even higher, e.g., 50◦C, the reliability
gets worse. As shown in Figure 6, the slope of each line
increases as the temperature increase. That means even little
environment temperature fluctuations will lead to higher
decay rate changes, which may be bigger than the changes
due to operations executed on the SoC. Note, even in thermal
chamber, the temperature is not fully stable due to internal
heaters and fans that turn on and off to circulate air and to
stabilize the temperature.

The test results at room temperature are shown in Fig-
ure 10, despite ambient thermal noise, the reliability of



covert channels can reach 95%, with the decay time greater
than 60s. To further increase the reliability of the channel,
Alice and Bob can use extra error correction to compensate
for the errors (at cost of having to send extra data bits for
the error correction algorithm).

6. Defense Strategies

A natural defense to prevent our covert channels would
be to limit the thermal conduction between the SoC and the
DRAM. E.g., add more vertical space between the PoP chips
or add more thermal insulation between the PoP chips. This
would create higher thermal resistance and the heat would
not conduct from the SoC to the DRAM as easily.

Another defense strategy would be to heat and keep the
DRAM a certain temperature. For example, circuits such as
Ring Oscillators can be used as heaters [19] and could be
added to the DRAM chip. As long as SoC could not heat
the DRAM even higher, DRAM would not be affected by
the operations of the SoC.

A defense not requiring physical changes or sensors
would be to prevent deactivation of the self-refresh of
DRAM. For example, the control of self-refresh can be
disabled by forbidding access rights to the DRAM refresh
related register, even to users with root privileges. However,
this may prevent useful features such as DRAM PUFs that
rely on disabling the refresh. Further, DRAM refresh may
be disabled in power saving modes, so such modes would
have to be deactivated as well.

7. Conclusion

In this work, we presented new covert channels based
on the bit flips of PoP DRAM and fingerprints of PoP
DRAM PUF that can be implemented in commodity devices,
without any hardware changes. We evaluated possibilities
for data exfiltration based on how programs running on
the cores in SoC can heat up DRAM. The evaluation of
the PoP DRAM and covert channels showed their feasi-
bility and high reliability. Consequently, this work showed
that while PoP configuration saves space and makes de-
signs more compact, it introduces new security risks. The
code used in this work will be published open-source at
http://caslab.csl.yale.edu/code/popchannels/ and can be used
with any Raspberry Pi B+ for testing the PoP channels.
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