
SystemWall: An Isolated Firewall using
Hardware-based Memory Introspection

Sebastian Biedermann1 and Jakub Szefer2

1 Security Engineering Group
Department of Computer Science
Technische Universität Darmstadt

biedermann@seceng.informatik.tu-darmstadt.de

2 Computer Architecture and Security Laboratory
Department of Electrical Engineering

Yale University
jakub.szefer@yale.edu

Abstract. Memory introspection can be a powerful tool for analyz-
ing contents of a system’s memory for any malicious code. Current ap-
proaches based on memory introspection have focused on Virtual Ma-
chines and using a privileged software entity, such as a hypervisor, to
perform the introspection. Such software-based introspection, however,
is susceptible to variety of attacks that may compromise the hypervi-
sor and the introspection code. Furthermore, a hypervisor setup is not
always wanted. In this work, we present a hardware-based approach to
memory introspection. Dedicated hardware is introduced to read and
analyze memory of the target system, independent of any hypervisor or
OSes running on the system. We apply the new hardware approach to
memory introspection to built-up an architecture that uses DMA and
fine-grained memory introspection techniques in order to match network
connections to the application-layer while being isolated and undetected
from the operating system or the hypervisor. We call the proposed archi-
tecture SystemWall since it can be a standalone physical device which
can be added as an expansion card to the mother board or a dedicated
external box. The architecture is transparent and cannot be manipulated
or deactivated by potential malware on the target system. We use the
SystemWall in the evaluation to analyze the target system for malicious
code and prevent unknown (malicious) applications from establishing
network connections which can be used to spread viruses, spam or mal-
ware and to leak sensitive information.

1 Introduction

Memory introspection is a powerful technique for analyzing code and data con-
tained in memory of a running system. Past approaches have focused on Virtual
Machine (VM) based introspection techniques. In this work, we present another
type of introspection, based on dedicated hardware components and software

that can perform the introspection independent of any software running on the
target system.

We apply the introspection techniques to build the SystemWall, a firewall-
like system that can analyze memory of the running target computer, detect
malicious or unknown applications and block their connections to the external
world. This can prevent spread of viruses, malware, spam or even leakage of
sensitive documents by malicious, unknown applications. SystemWall is logically
fully external to the target computer system: it can be implemented as a stand-
alone box that connects to target system or a dedicated extension card on the
motherboard.

1.1 Security through Firewalls

In general, firewalls are either an external device only connected to the network
or software-based and installed on a target computer. Firewalls control the in-
coming and outgoing network traffic depending on network events and predefined
rules. Firewalls can be simple packet filters blocking or allowing network packets
depending on their header information like the source and the destination. Other
firewalls can analyze the content of network packets (deep packet inspection),
for example with regular expressions [33], which allows the definition of more
sophisticated rules.

External firewalls, however, do not have insight into the contents of physical
memory of a target system and cannot make decisions based on what code is ac-
cessing or handling the network traffic on that system. Software-based firewalls,
on the other hand, monitor the network traffic as well as the application-layer
of a target computer system and control the incoming and outgoing traffic de-
pending on rules which refer to protocols and states of the involved applications.
Software-based firewalls are widely used as personal firewalls. However, software-
based firewalls are installed on a target system and can be the target of attacks
themselves. In particular, malware can successfully execute attacks against the
operating system and can manipulate deployed rules, disable or change the mode
of the installed software-based firewall’s operation. This way, the user does not
even notice the infiltration of the operating system and deems the system to be
secured by trusting the running firewall and assuming its correct operation.

External firewalls with added ability to analyze memory of the target, like
software-based firewalls, would combine best of both approaches – this is the
motivation for SystemWall design.

1.2 Leveraging DMA for Security

DMA (Direct Memory Access) is a specification that allows hardware devices
to bypass the Central Processing Unit (CPU) and access the system memory
directly. This brings the advantage that the CPU can perform other useful tasks
while DMA operations are in progress and it can also accelerate certain tasks.
A lot of hardware devices like graphic cards, disk controllers or network cards
use DMA.

Fig. 1. The SystemWall deployed as an external hardware device which can read the
memory of the target and regulate the target’s network traffic. Only one ethernet con-
nection is shown for the target in this figure, if target has multiple network interfaces,
such as two ethernet ports, SystemWall should regulate each ethernet connection.

DMA has been the focus of security researchers for some years, because it
allows to dump the memory of a system through certain external interfaces while
bypassing the operating system and any software-based security restrictions.
In particular, DMA can be exploited by an attacks on unattended, running
systems which provide DMA via an external buses like ExpressCard, FireWire
or Thunderbolt to create a dump of the memory. Afterwards, the memory dump
can be investigated using forensic techniques in order to retrieve passwords or
other sensitive information.

However, DMA can also be used to increase security of a computer system
and prevent numerous attacks. In particular, DMA can be used to transparently
read the memory contents via the hardware, contents which can later be analyzed
for malicious programs or network connections – as we do in SystemWall.

1.3 SystemWall Overview

In this work, we benefit from DMA to setup an isolated firewall-like system
which we call SystemWall, shown in Figure 1. The SystemWall can be deployed
between the system which it protects and the Internet, and intercept all packets
traveling from and to the target system. Placing SystemWall between the Inter-
net and the target system allows for it to, for example, delay network packets
going to or from the target while the target’s memory is analyzed to validate
the packets are related to a legitimate, non-malicious application. To perform
the analysis, SystemWall transparently uses DMA and fine-grained memory in-
trospection techniques to match detected initiations of new network connections
to applications running on the system. It can use application names, hashes

or even scan for shellcode to detect malicious applications and prevent them
from making network connections. The SystemWall remains undetected from
the operating system and is a combination of a personal software-based firewall
and hardware-based memory introspection. This way, the SystemWall cannot
be manipulated or disabled by potential malware which could infect the system.
Given its access to target’s memory, it can monitor the applications and control
network connections of these applications to prevent spread of malware, viruses
or potentially leakage of sensitive files. Figure 1 shows a block diagram of the
SystemWall architecture, fully described in Section 3.

1.4 Paper Organization

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 explains the architecture and details of the SystemWall imple-
mentation. Section 4 evaluates the proposed architecture and Section 5 discusses
limitations. Finally, Section 6 concludes.

2 Related Work

This section presents related work in the field of physical memory acquisition
with the help of hardware extensions, attacks based on this, countermeasures and
methods that use DMA for other purposes. Furthermore, we list some related
work in the field of tamper-resistant security architectures that can run isolated
from the target system and that are based on hardware extensions or a hypervisor
setup.

2.1 Physical Memory Acquisition

DMA has been previously exploited to execute attacks against a running system.
Attackers have used buses like USB, FireWire, Thunderbolt or PCMCIA cards
to transparently acquire the volatile memory of a running system without being
detected and without being the subject to software-based control mechanisms.
Afterwards, the memory dump can be analyzed for sensitive data like passwords.
However, attackers can also write to the memory pages of the running system and
this way modify the system’s properties or work-flow on-the-fly. For example, a
Windows 7 kernel can be directly manipulated in the memory in order to allow an
attacker to log-in using a blank password [2]. Nowadays, standard DMA attacks
and further procedures are even implemented in exploitation frameworks [7].

As a consequence of these attacks, several countermeasures have been sug-
gested and are of interest, e.g., [23] or [24]. In particular, hardware-based mem-
ory acquisition of specific memory regions can be prevented by modifying the
processor’s North Bridge’s memory map [22]. Also, malware that uses DMA to
infiltrate an operating system can be detected using techniques such as those
presented by [29] or [28].

Furthermore, memory acquisition can be also used for non-attacking pur-
poses, for example for the transparent acquisition and analysis of volatile mem-
ory of a compromised system [8]. Seger et al. [26] presented a memory sampling
mechanism based on DMA using a GPU coprocessor as an extension. Schwarz
et al. [25] presented an architecture that prevents virtual guest machines access-
ing memory regions of other virtual guest machines using DMA only by using
software and standard hardware. Balogh et al [4] proposed a memory acquisition
system which uses DMA based on a custom network interface protocol driver
and a network card that can directly send the memory over the network. Chen
et al. [9] developed a FPGA based data protection system called sAES which
uses DMA to improve throughput and latency of a data protection system.

In this work, we use physical acquisition of specific regions in the volatile
memory of a system in order to built an isolated firewall which transparently
matches the system’s running applications to the network traffic and is able to
detect connections from malicious or unknown applications.

2.2 Tamper-resistant Security Architectures

In order to avoid being manipulated by malware or intruders who successfully
execute an attack and gain access, some advanced security architectures use
tamper-resistant components. These architectures are somehow isolated from the
system which they actually protect and monitor, and they also run transparently
and unknown to the target.

Many tamper-resistant security architectures use hardware expansions like a
special trusted processor booting the micro kernel of the system [30] or particu-
lar co-processors only used for monitoring [20] or cryptography [1]. For example,
Yashiro et al. [32] propose to use a tamper-resistant chip which does the sensitive
operations in a access control scenario on a file system. The most popular archi-
tectures are based on a Trusted Platform Module (TPM) which is a dedicated
secure crypto-processor issued by the Trusted Computing Group3 and used for
encryption, attestation and sealing of data on a target system. However, tamper-
resistant architectures are also used in embedded devices [21].

In recent years, tamper-resistant security architectures which are based on a
hypervisor setup are in the center of interest. These architectures are software-
based and use a Virtual Machine Monitor (VMM) as a mechanism to guarantee
trustworthy isolation of components. Wang et al. [31] propose a combination of
both, a hardware-assisted monitor to verify the integrity of a hypervisor and its
isolation mechanisms.

Often, these architectures use Virtual Machine Introspection (VMI) in or-
der to analyze the memory of a user virtual machine from another isolated and
privileged virtual machine running co-residently on the same hardware [19]. Ba-
iardi et al. [3] proposed a tamper-resistant intrusion detection architecture that
merges target monitoring via VMI and network monitoring. Payne et al. [18]

3 http://www.trustedcomputinggroup.org/

proposed an architecture that allows popular security tools to do active mon-
itoring while being isolated in a trusted virtual machine. Srivastava et al. [27]
built an isolated firewall which correlates network packets to applications using
VMI in a hypervisor setup.

In this work, we secure a target system using an external hardware box or
expansion card that regulates the network traffic and additionally uses trans-
parent memory introspection via DMA to match network packets to running
applications.

2.3 Memory Introspection

Analysis of memory contents has been explored before in different contexts.
Most recently, Virtual Machine Introspection (VMI) was developed as a new
technique which uses virtualization and the privileged hypervisor software to
analyze memory of guest virtual machine (VM). The ability to analyze memory
has been leveraged to detect kernel rootkits [10] or detect malware inside the
guest VMs [6]. Such techniques are software-only and do not combine firewall
like networking protections with the memory introspection capabilities.

Among hardware-oriented proposals, new architectures have been proposed
which leverage extra hardware to perform the memory introspection. Multi-core
processors have been extended so that the measurement code can run in a spe-
cialized processor local memory [12], and thus not be affected by the malware
on the target. Other architectures, e.g. [13, 16], have proposed extra hardware
to directly monitor memory bus traffic. Outside of the main processor, [20] has
proposed a co-processor based solution where a co-processor performs the mon-
itoring. Also, a special piece of hardware that is connected to one of the DRAM
sockets has been proposed to be used to transparently analyze the memory con-
tents as the reads and writes happen [14].

Unfortunately, such hardware additions or modifications are not available to-
day, unlike PCI expansion cards such as FireWire or Thunderbolt available today
and used in our project. Moreover, most of the previous projects focus on kernel
integrity measurement, whereas SystemWall monitors networking applications.

3 Architecture

The SystemWall is a physical device which is connected to the network in-
between the target which it protects and the Internet. Additionally, the Sys-
temWall is connected to an interface of the target computer that allows DMA
to the system memory. Figure 1 illustrates the proposed architecture in which
the SystemWall is an external standalone device. However, it can be also an
internal device added into the target computer like for example a custom PCIe
expansion card having two Ethernet interfaces plugged into the target system.
When the SystemWall is deployed, it inspects the incoming and outgoing traffic
of the target system and matches the traffic to a program running on the system.
Currently, the SystemWall focuses on the TCP network protocol.

3.1 Threat Model

We assume a strong threat model where we want protect a computer system even
when its applications, OS or hypervisor software may have been compromised.
For example, SystemWall should work even when malware has successfully in-
fected the target system and tries to communicate with a malicious remote
party. The potential infection can be based on a drive-by exploit targeting an
unpatched browser vulnerability or the malware could be a botnet-client trying
to connect to the botnet. It could even be a malicious piece of monitoring soft-
ware performing a phishing attack and trying to send out sensitive information
about a user’s banking account.

We assume that the hardware-based memory introspection mechanism, such
as through a dedicated PCIe expansion card, cannot be compromised as it is
separate from the target system and no software on the target system can ma-
nipulate it. It is correctly manufactured and hardware itself is not malicious.
The firewall software runs on the dedicated external box (which is connected
to the hardware-based memory introspection card in the target), or could be
part of a custom expansion card in the target. Since the firewall software runs
separate from the target platform it cannot be compromised. We assume the
firewall software is correctly written.

If system wall is implemented (as in our prototype) on a separate computer,
Trusted Platform Module could be used to attest the SystemWall software on
startup. If SystemWall is implemented as a custom PCIe card, the firmware
will likely be small enough for formal verification, which would given even more
confidence in correctness of the SystemWall system.

In our threat model, we do not address physical attacks which means we do
not assume an attacker gaining physical access to the target system and being
able to remove the SystemWall, or modify the system’s hardware parameters,
such as the amount of installed memory (DRAM). SystemWall is not able to
protect against denial-of-service attacks.

3.2 Boot-up and SystemWall Initialization

SystemWall is independent of the target computer, although may share the same
power supply if it is implemented as a expansion card on the motherboard.
When the target system is offline, the SystemWall does not have to operate, and
thus can be off as well. When the target system boots up, there is no special
SystemWall operation. We only assume that at boot up time, SystemWall knows
the amount of physically installed memory (DRAM), and that the amount will
not change after runtime. The SystemWall can block network connections until
the memory acquisition is working, thus any potential malware will not be able
to use the network before SystemWall has chance to access memory and look for
the malware.

3.3 SystemWall Run-Time

Once the SystemWall can detect the initiation of a new outgoing network con-
nection (SYN sent), it starts the following procedures which are illustrated in
Figure 2.

Fig. 2. Once a new outgoing TCP connection initiation is detected (SYN packet), the
SystemWall delays the returning SYN/ACK packet while investigating the memory to
find the process associated with the connection on the target system.

First, it detects new network connection and delays the SYN/ACK packet
sent back from a remote system on the Internet. This way it delays the TCP
three-way-handshake completion and the establishment of a new connection.

Second, during the time when the reply is being delayed, the SystemWall
starts to transparently read specific memory regions on the target system by
exploiting DMA. The target memory regions depend on the installed operating
system and a corresponding template which is usually used for forensic inves-
tigations on a memory dump. By reading this data, the SystemWall retrieves
information about the currently running processes and their currently allocated
physical memory regions on the target system. With the help of this information,
it matches the new initiated connection to the corresponding running process
by matching the source port of the SYN network packet to the port used by the
process4.

Once the SystemWall is able to match the new connection to a process,
further checks can be initiated and the integrity of the process can be verified.
Finally, the SystemWall decides if the establishment of the new connection is
allowed because it is made by a process that is allowed to communicate or if
the connection establishment should be prevented because it was initiated by an
unknown process.

4 If the OS is compromised and, for example, there are duplicate data structures that
map network ports to applications, SystemWall can scan whole memory of the target
system to look for such duplicates and issue a warning.

For some applications, such as web servers, the response delay (while Sys-
temWall checks connection) may have impact on usability. For example, a study
[17] found that website users can tolerate around 2s delays in waiting for in-
formation retrieval. An alternative to design presented in Figure 2 would be to
throttle the responses, while the checking is performed. This way remote par-
ties start receiving information, albeit at a slower pace, while the checking is
performed. This, however, is less secure as the unknown process is allowed to
send back some information, and in the remainder of the paper we focus on the
design which delays the whole connection until all checking is done.

As SystemWall is a separate system and has its own network interface, Sys-
temWall is able to use the network connection to notify the administrator or
the target system of any security events. Such interface should be limited, so it
cannot be exploited by attackers to compromise SystemWall. In a simplest form,
SystemWall could send e-mail notifications to a fixed (administrator) e-mail ad-
dress without exposing complicated web interface that could be attacked.

SystemWall may also need an interface for updating the firewall software or
trusted program white lists. Secure software update is a broad research area with
many challenges [5], and secure update of SystemWall is outside of scope of this
paper.

3.4 Memory Acquisition

The key part of SystemWall is the memory acquisition which is done through
DMA and independent of any software running on the target system. The DMA
operations go directly from the SystemWall device (such as a FireWire card),
through I/O MMU (if present, such as if the system has Intel’s VT-d extensions
or AMD’s IOMMU technology), to DRAM memory. When target system’s OS
or hypervisor is non-malicious, then the DMA can proceed easily and verify the
integrity system.

If, however, the OS or a hypervisor manipulates the memory contents or the
I/O MMU configuration, the SystemWall’s access to some of the memory pages
can be denied, redirected or false memory content can be presented. SystemWall
deals with memory acquisition issues in number of ways and can always block
network connections to outside world. If any anomalies are encountered, first ac-
tion is to temporarily delay the network connections until the issue is resolved.
SystemWall can also measure the executable code of the OS or a hypervisor
in order to detect any malicious modifications or code. This could be tricked,
however, through a number of memory manipulation attacks which we discuss
in the following sections. To counter any possible memory manipulation attacks
by malicious OS or hypervisor, SystemWall can use a number of detection tech-
niques, for example time-based measurements to detect if an OS or hypervisor
is doing something malicious with memory mappings.

Memory Swapping Attacks The software of the target system or a hypervisor
may swap memory at some address to disk or another secondary storage and

16kbyte 32kbyte 64kbyte 128kbyte

memory 0.003 ± 0.001s 0.006 ± 0.001s 0.007 ± 0.001s 0.007 ± 0.001s

hard drive 0.015 ± 0.000s 0.027 ± 0.001s 0.036 ± 0.001s 0.038 ± 0.001s

Table 1. Measured time while reading data from the volatile memory or swapped out
data from the hard drive.

replace it with other memory. For example, when SystemWall is trying to scan
the system’s memory to determine application binary, the OS or hypervisor
may temporarily swap the actual (malicious) running application’s memory to
swap disk and replace it with some (benign) application’s memory. Thus, when
SystemWall uses DMA to the memory, it will read the benign application’s
memory and not detect any problem. This, however, requires precise timing on
the part of the malicious OS or hypervisor. Nevertheless, it may be possible. If a
malicious OS or hypervisor tries to swap memory, it has to execute three steps:

1. Delay the access request of the SystemWall to a memory region through
manipulation of the I/O MMU remapping tables, e.g., deny access to the
memory region.

2. Swap current memory contents for (benign) memory content from disk (or
another storage device).

3. Allow the SystemWall to proceed and to access the target memory region
by re-allowing memory access to the memory region.

SystemWall can detect this memory swapping attack by observing memory
access errors and access time delay. If access is denied and re-gained after a
period of time, SystemWall can detect the time period when memory was not
accessible and issue warning that something malicious is going on. Depending
on the design of the underlying hardware of the system, a denied DMA access
request can result in returning 0s, which can also be detected as an anomaly
by the SystemWall. Furthermore, if access is delayed, SystemWall can simply
detect the longer access times and this way reveal the memory swapping attack.

In several test-runs we measured time while the system reads small chunks of
data from the volatile memory or swapped out data from the hard drive. Clear
and constant differences in the measured time can be seen (Table 1) which can
be reliably used for anomaly detection.

A more complicated memory swapping attack could be performed using mem-
ory in the GPU or other device that is connected to higher speed bus, such as
PCI Express, rather than to disk. Nevertheless, even with PCI Express 2.0, the
maximum bandwidth is 8GB/s (16 lanes)5 whereas main memory can have band-
width over 16GB/s (DDR3)6. Including other overheads, memory accesses are
at least over 2x faster than going to devices and time differences can be used for
anomaly detection.

5 https://en.wikipedia.org/wiki/PCI_Express, accessed Aug. 8, 2014.
6 https://en.wikipedia.org/wiki/DDR3_SDRAM, accessed Aug. 8, 2014.

In-Memory Redirection Attacks Malicious software or a hypervisor could
also swap two memory regions in the system’s memory (e.g. swap address A1
with A2) or redirect DMA requests of the SystemWall from A1 to other memory
pages by remapping the adresses in the I/O MMU. Then, SystemWall would
think it is accessing machine address A1, whereas it would actually access A2.
In Figure 3, the SystemWall tries to read the physical address 0x04, but is
redirected by malicious software to read 0x15. This way, the malicious software
can hide data under the address 0x04. The SystemWall cannot detect the in-
memory redirection attack based on deviations in access time, like in the previous
section. However, from the perspective of the SystemWall, there are now two
regions in the memory which store exactly the same data, namely 0x04 and
0x15. This means the SystemWall can search for duplicates.

Fig. 3. Example of remapping of requests of the SystemWall to other memory regions
by malicious software. The SystemWall reads the same data at 0x04 and 0x15, and can
detect duplicates.

In this context, we assume malicious software modified the executable code
of a process and stores the original content somewhere else in memory. If the
SystemWall wants to read the process’s executable code, it is redirected to the
original content. In order to detect this attack, the SystemWall uses integrity
measurements on the executable code. We assume a SHA1 hash over the original
executable code is known. As a potential detection mechanism, the SystemWall
executes the following procedures:

– It computes a hash over the process’s executable code by reading the target
physical addresses via DMA.

– If the hash is valid, the SystemWall subsequently scans the whole memory
in chunks of the same size each time computing a hash over the data as well.

– If the same hash occurs in another memory region, a remapping attack was
executed which leads to immediate blocking of the process’s communication.

At regular time intervals, the SystemWall can execute these procedures and
try to detect a potential redirection attack. Scanning for duplicates on a sys-
tem with 4GB of memory can be performed in our setup in 67.2 ± 2.8 seconds

for 512KB of data. This kind of attack detection procedure requires some time,
however, it can be halted and continued once the SystemWall needs to perform
other operations. The SystemWall continuously tries to detect memory redirec-
tion attacks in the background. If other operations need to be performed, the
memory redirection attack detection procedure can be halted.

A special case of duplicate code may involve code that is replicated in mul-
tiple programs, e.g. statically linked libraries. We assume that in such cases,
SystemWall will have sufficient information about the target binaries to be able
to count the expected number of code repetitions and detect when there are
more than the expected number of code copies when scanning the memory.

Memory Blocking Attacks Usually, some memory regions are “reserved” and
used by devices, thus not accessible. A malicious OS or hypervisor could modify
the memory map and pretend that there is some device at address [addr1, addr2]
range. It could then hide some memory contents there so when SystemWall
accessed address A1 it would find some benign code or data, while the actual
running code or data would be inside [addr1, addr2] range.

However, since SystemWall knows the total amount of memory installed, it
can analyze memory to try to find any memory region it cannot access. Next, it
can use that information and compare with the correct memory configuration of
the target system. If the correct or expected memory configuration differs from
the one detected, e.g., there is one too many reserved memory regions, then
SystemWall can calculate that some malicious action has been taken to create
this fake reserved memory region (which could hide some code).

4 Evaluation

In this section, we evaluate a prototype implementation of the SystemWall and
discuss the results.

4.1 Prototype Implementation

In an evaluation, we used a system with a Intel Core 2 Duo 2.33 GHz and
3 Gb of memory as the target system for protection. The SystemWall was a
second computer system, running Ubuntu Linux 12.04 (64-bit). Both computers
were connected via FireWire PCIe cards (LSI FireStorm FW643e2) [15]. Other
interfaces like for example Thunderbolt or PCMCIA could be used as well. The
components of the SystemWall are programmed in Python and use forensic13947

library and the Volatility framework8 for forensic investigations. The SystemWall
also uses Linux iptables with a netfilter script to dynamically delay (and block
if needed) network packets.

7 https://github.com/wertarbyte/forensic1394
8 https://code.google.com/p/volatility/

1 2 3 4 5
1.5

2.0

2.5

3.0

3.5

4.0

4.5

number of unknown applications which are checked

tim
e

[s
ec

on
ds

]

one application maintains an unknown connection
each application maintains an unknown connection

Fig. 4. Time required to decide if a new initiated connection can be allowed or should
be blocked based on timely memory investigations (DMA connection overhead, if using
FireWire card for example, is not included).

4.2 New Connection Detection and Decision

We investigated the times required for the SystemWall to make a decision if the
new initiated connection can be allowed or should be blocked. This is actually
also the time for how long the establishment of every new outgoing network
connection needs to be delayed. The time required to make a decision should be
small, since in this case the usability plays a major role. To accelerate the pro-
cedures, the SystemWall can maintain a white-list of known processes belonging
to the target’s OS’s standard installation (e.g. Ubuntu Linux in our case) and
which are allowed to communicate. The white-list can be deployed from the be-
ginning, or it can be created stepwise by the SystemWall through an enrollment
phase, such as on-line evaluation of the programs and building a white list as
the target runs. Figure 4 shows the time of different test-runs (10 test-runs in
each configuration) and the corresponding standard deviation.

In the first test-runs (continuous line), a new connection was initiated and
the SystemWall matched it to 1 of 5 unknown running processes on the target by
investigating the memory via DMA. In the seconds test-runs (dashed line), a new
connection was initiated and each of the 5 unknown processes already maintains
another connection which needs to be matched as well. In the performed test-
runs, the maximum required time was around 4 seconds which is feasibly in our
scenario and provides an acceptable level of usability.

1 2 3 4 5
0

50

100

150

200

number of unknown applications which are checked

re
ad

 d
at

a
[k

by
te

]

one application maintains an unknown connection
each application maintains an unknown connection

Fig. 5. Amount of memory read by the SystemWall through DMA in order to match
a new initiated connection to a running process.

4.3 Memory Throughput Requirements

In further test-runs, we investigated how much data needs to be read through
DMA in order decide if a new connection is allowed (Figure 5). The amount of
data that needs to be read strongly influences the performance. For this, we used
the same configurations as in the previous test-runs (standard Ubuntu installa-
tion and up to five unknown additional processes). Once a single new connection
was initiated and needed to be matched to 1 up to 5 unknown processes, up to
140 kilobyte was read (black bars). Once a single new connection was initiated
and each of the unknown processes maintained a connection, only up to 190
kilobyte was read (grey bars). This is little data and therefore the throughout
of the DMA bus cannot be a bottleneck for the SystemWall.

In general, DMA is executed on the PCI bus and therefore could be influenced
by other work-loads on the bus running in parallel. In order to investigate the
stability of the technique, we executed benchmarks on the target which focused
on CPU, memory, file I/O on the storage device and network utilization. In
parallel, we executed the procedures of the SystemWall. In each case, the time
remain unaffected and stable, since only small amount of data needs to be read.
Only if the SystemWall dumped the whole memory of the target system during
the benchmarks, deviations in the ranges of ±1% could be seen.

4.4 Process Identification

In order to verify running processes and to create and maintain a white-list of
known processes which are allowed to establish connections, investigating infor-

1 2 3 4 5

4

6

8

10

12

number of unknown applications which are checked

tim
e

[s
ec

on
ds

]

with hash over executable code
with hash and scan for shellcode in stack+heap

Fig. 6. Time required to decide if a new initiated connection can be allowed or should
be blocked using hashes over the executables, and hashes plus scanning for shellcode.

mation of a process like the name or other simple properties is not sufficient.
Malware could hide itself by presenting information and properties of known pro-
cesses. In the next test-runs, the SystemWall computed hashes (SHA1) over the
processes’ executable codes (ELF) stored in memory in order to verify integrity of
the code and to detect potential modifications (Figure 6). Computing the hashes
over up to 5 different processes could be checked in less than 5 seconds (contin-
uous line). Furthermore, Figure 6 shows the times for computing the hash and
additionally scanning the allocated heap and stack memory of each process for
a shellcode signature (long sequences of NOPs) indicating an exploited software
vulnerability (dashed line). Shellcode which could be found in these memory re-
gions can be the result of a successfully executed attack against the process that
could change its work-flow to do unwanted tasks for example revealing sensitive
information. Even if the SystemWall executes these additional in-depth checks,
the time increase only up to around 6 seconds for 3 processes and go up to 12
seconds for 5 processes (dashed line). However, the time is strongly depend on
the processes and their sizes.

5 Limitations

We believe that hardware assisted memory introspection had a very good po-
tential. Currently, a number of limitations exist. We believe these to be very
interesting research opportunities which we and other researchers can tackle
and make hardware-assisted memory introspection the new standard in memory
introspection work. Physical attacks are not in the scope of our work. However,

future design could be created which attempt to deal with physical attacks. An
attacker could physically disable or disconnect SystemWall from the system be-
ing monitored. Integration of SystemWall into vPro [11] or similar solution could
tightly integrate it with the target system’s hardware. Integration of SystemWall
into the networking infrastructure could also be another research direction. The
traffic management could be done at switch or router level. If this “distributed”
SystemWall does not receive information form a target (such as when there has
been a physical attack), then all traffic can be stopped deeper in the network
before the malware or sensitive information has ability to spread.

6 Conclusion

In this work we have presented SystemWall which uses hardware memory intro-
spection to transparently analyze the applications running on a target computer.
SystemWall is independent of any software running on the target computer, thus
cannot be affected by any malware on the target system, even by a compromised
hypervisor. The SystemWall can monitor the applications and control network
connections of these applications to prevent spread of malware, viruses or poten-
tially leakage of sensitive files. We have built and evaluated a prototype based on
a FireWire card and external SystemWall box. The prototype is able to control
network connections of the target system and decide if unknown application’s
connection can be let through or should be blocked. Our ongoing and future
work involves addressing the performance and other challenges presented in the
paper.

6.1 SystemWall Code

SystemWall code related to this publication and setup instructions are available
online at http://caslab.eng.yale.edu/code.

Acknowledgements

We would like to thank anonymous reviewers for their feedback, which helped
to improve the final version of this paper. We would like to also thank LSI
Corporation for the donation of the two LSI FireStorm FireWire PCIe cards.

References

1. R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic Processors
– A Survey. Proceedings of the IEEE, 94:357–369, 2006.

2. D. Aumaitre and C. Devine. Subverting Windows 7 x64 Kernel with DMA attacks.
HITB Security Conference Presentation, 2010. http://esec-lab.sogeti.com/

dotclear/public/publications/10-hitbamsterdam-dmaattacks.pdf, accessed
Aug. 8, 2014.

3. F. Baiardi and D. Sgandurra. Building Trustworthy Intrusion Detection through
VM Introspection. In Proceedings of the International Symposium on Information
Assurance and Security, pages 209–214, August 2007.

4. S. Balogh and M. Mydlo. New possibilities for memory acquisition by enabling
DMA using network card. In Proceedings of the International Conference on Intel-
ligent Data Acquisition and Advanced Computing Systems (IDAACS), pages 635–
639, September 2013.

5. A. Bellissimo, J. Burgess, and K. Fu. Secure Software Updates: Disappointments
and New Challenges. In Proceedings of USENIX Hot Topics in Security (HotSec),
pages 37–43, July 2006.

6. C. Benninger, S. Neville, Y. Yazir, C. Matthews, and Y. Coady. Maitland: Lighter-
Weight VM Introspection to Support Cyber-security in the Cloud. In Proceedings
of the International Conference on Cloud Computing (CLOUD), pages 471–478,
June 2012.

7. R. Breuk and A. Spruyt. Integrating DMA attacks in exploitation frameworks.
Technical Report, System and Network Engineering Research Group, University of
Amsterdam, February 2012.

8. B. D. Carrier and J. Grand. A hardware-based memory acquisition procedure for
digital investigations. Digital Investigation, 1(1):50–60, 2004.

9. Y. Chen, Y. Wang, Y. Ha, M. Felipe, S. Ren, and K. M. M. Aung. sAES: A high
throughput and low latency secure cloud storage with pipelined DMA based PCIe
interface. In Proceedings of the International Conference on Field-Programmable
Technology (FPT), pages 374–377, December 2013.

10. T. Fraser, M. Evenson, and W. Arbaugh. VICI – Virtual Machine Introspection for
Cognitive Immunity. In Proceedings of the Annual Computer Security Applications
Conference, pages 87–96, December 2008.

11. Intel vPro Technology. http://www.intel.com/content/www/us/en/

architecture-and-technology/vpro/vpro-technology-general.html, accessed
Aug. 8, 2014.

12. Y. Kinebuchi, S. Butt, V. Ganapathy, L. Iftode, and T. Nakajima. Monitoring In-
tegrity Using Limited Local Memory. IEEE Transactions on Information Forensics
and Security, pages 1230–1242, July 2013.

13. H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang. KI-Mon: A
Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Ob-
ject. In Proceedings of the USENIX Security Symposium, pages 511–526, August
2013.

14. Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi. CPU Transparent Protection
of OS Kernel and Hypervisor Integrity with Programmable DRAM. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 392–403,
June 2013.

15. FireStorm FW643/FW533 Evaluation Platform. http://www.lsi.com/

downloads/Public/1394\%20Products/1394\%20Products\%20Common\

%20Files/LSI-FireStorm-PB.pdf, accessed Aug. 8, 2014.
16. H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang. Vigilare: Toward Snoop-

based Kernel Integrity Monitor. In Proceedings of the Conference on Computer and
Communications Security, pages 28–37, October 2012.

17. F. F.-H. Nah. A study on tolerable waiting time: how long are web users willing
to wait? Behaviour & Information Technology, 23(3):153–163, 2004.

18. B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An Architecture for Secure
Active Monitoring Using Virtualization. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 233–247, May 2008.

19. B. Payne, M. de Carbone, and W. Lee. Secure and Flexible Monitoring of Virtual
Machines. In Proceedings of the Annual Computer Security Applications Confer-
ence, pages 385–397, December 2007.

20. N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a
Coprocessor-based Kernel Runtime Integrity Monitor. In Proceedings of the
USENIX Security Symposium, pages 13–13, August 2004.

21. S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for
secure embedded systems. In Proceedings of the International Conference on VLSI
Design, pages 605–611, January 2004.

22. J. Rutkowska. Beyond The CPU: Defeating Hardware Based RAM Acquisition.
Black Hat DC Presentation, 2007. http://www.blackhat.com/presentations/

bh-dc-07/Rutkowska/Presentation/bh-dc-07-Rutkowska-up.pdf, accessed
Aug. 8, 2014.

23. F. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte. Exploiting an I/OMMU
vulnerability. In Proceedings of the International Conference on Malicious and
Unwanted Software (MALWARE), pages 7–14, October 2010.

24. F. Sang, V. Nicomette, and Y. Deswarte. I/O Attacks in Intel PC-based Archi-
tectures and Countermeasures. In Proceedings of the SysSec Workshop (SysSec),
pages 19–26, July 2011.

25. O. Schwarz and C. Gehrmann. Securing DMA through virtualization. In Pro-
ceedings of the Workshop on Complexity in Engineering (COMPENG), pages 1–6,
June 2012.

26. M. Seeger and S. Wolthusen. Towards Concurrent Data Sampling Using GPU
Coprocessing. In Proceedings of the International Conference on Availability, Re-
liability and Security (ARES), pages 557–563, August 2012.

27. A. Srivastava and J. Giffin. Tamper-Resistant, Application-Aware Blocking of Ma-
licious Network Connections. In Recent Advances in Intrusion Detection, volume
5230 of Lecture Notes in Computer Science, pages 39–58. Springer, 2008.

28. P. Stewin and I. Bystrov. Understanding DMA Malware. In Proceedings of the
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
volume 7591, pages 21–41, July 2013.

29. P. Stewin, J.-P. Seifert, and C. Mulliner. Poster: Towards detecting DMA malware.
In Conference on Computer and Communications Security, pages 857–860, October
2011.

30. G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architec-
ture for Tamper-evident and Tamper-resistant Processing. In Proceedings of the
International Conference on Supercomputing, pages 160–171, June 2003.

31. J. Wang, A. Stavrou, and A. Ghosh. HyperCheck: A Hardware-assisted Integrity
Monitor. In Proceedings of International Conference on Recent Advances in Intru-
sion Detection, pages 158–177, September 2010.

32. T. Yashiro, M. Bessho, S. Kobayashi, N. Koshizuka, and K. Sakamura. T-
Kernel/SS: A Secure Filesystem with Access Control Protection Using Tamper-
Resistant Chip. In Computer Software and Applications Conference Workshops,
pages 134–139, July 2010.

33. F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and Memory-
efficient Regular Expression Matching for Deep Packet Inspection. In Proceedings
of the Symposium on Architecture for Networking and Communications Systems,
pages 93–102, December 2006.

