Hot-Hardening: Getting More Out of Your Security Settings

Sebastian Biedermann

Stefan Katzenbeisser

Security Engineering Group, Technische Universitat Darmstadt
{biedermann, katzenbeisser}@seceng.informatik.tu-darmstadt.de

Jakub Szefer
Computer Architecture and Security Laboratory, Yale University
jakub.szefer@yale.edu

ABSTRACT

Applying optimized security settings to applications is a
difficult and laborious task. Especially in cloud comput-
ing, where virtual servers with various pre-installed software
packages are leased, selecting optimized security settings is
very difficult. In particular, optimized security settings are
not identical in every setup. They depend on characteris-
tics of the setup, on the ways an application is used or on
other applications running on the same system. Configuring
optimized settings given these interdependencies is a com-
plex and time-consuming task. In this work, we present an
autonomous agent which improves security settings of ap-
plications which run in virtual servers. The agent retrieves
custom-made security settings for a target application by
investigating its specific setup, it tests and transparently
changes settings via introspection techniques unbeknownst
from the perspective of the virtual server. During setting se-
lection, the application’s operation is not disturbed nor any
user interaction is needed. Since optimal settings can change
over time or they can change depending on different tasks
the application handles, the agent can continuously adapt
settings as well as improve them periodically. We call this
approach hot-hardening and present results of an implemen-
tation that can hot-harden popular networking applications
such as Apache2 and OpenSSH.

1. INTRODUCTION

Configuration settings which are not well-chosen, not cor-
rectly applied or too weak can lead to security breaches and
loss of sensitive information. For example, allowing users to
set short passwords while also not limiting the amount of
login attempts can make systems vulnerable to brute force
password guessing attacks. Often, user selected security set-
tings are lax and do not fit well into the appropriate scenario.
On the other hand, strong and static security settings can be
perceived as being cumbersome since they can drastically de-
crease usability. In the worst case, they can even cause users
to become annoyed and motivated to disable or circumvent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

ACSAC ’14, December 08 - 12 2014, New Orleans, LA, USA

Copyright 2014 ACM 978-1-4503-3005-3/14/12 $15.00
http://dx.doi.org/10.1145/2664243.2664246.

the settings. For example, recall the famous anecdote about
users writing down complex passwords on a memo mounted
on the computer display.

In this work, we analyzed configuration settings of 28 pop-
ular Linux networking applications. The average applica-
tion has 43 different settings while 17 of these settings are
related to security characteristics (40%). This means if a
server runs three different networking applications, on av-
erage more than 50 security settings can be adapted to the
setup and its specific properties.

In this context, we introduce the term “custom-made” set-
tings. For example, the optimal limit for the maximal al-
lowed length of requests to a Web server varies depending
on the type of content a Web server provides and which
kind of tasks it usually processes. Selecting the same limit
for different Web servers will not be optimal even if these
Web servers are the same application — the properties of the
target specific setup in which a Web server runs need to
be included in the selection process. By analyzing proper-
ties and characteristics of a Web server’s setup an optimal
setting can be derived which we call custom-made setting.

Moreover, depending on how a setup is changing over
time, if software is installed or removed, if the number of
users or the ways in which applications are used varies,
custom-made security settings can change over time as well.
Maintaining an overview in this medley of settings is a com-
plex and time-consuming task in which failures can occur.
For example, SSL/TLS misconfiguration attacks have been
presented where if default setting values are not correctly
set they will result in potential man-in-the-middle attacks
due to peer hosts not being verified [1]. Obviously, an au-
tomated approach for continuous hardening of applications
seems to be a promising solution.

In this work, we present an agent that can autonomously
and transparently improve the security settings of appli-
cations that run in virtual servers. The agent generates
custom-made settings for each application from its setup by
analyzing the application’s characteristics and properties,
for example by investigating an application’s network traffic
or certain log files. The agent autonomously deploys these
settings to the running application unbeknownst from the
perspective of the virtual server and without the need to
restart the application. The agent can periodically adapt
the settings and dynamically change them depending on oc-
curred events or depending on changes in the characteristics
of the setup over time. Furthermore, the agent can also
change the settings promptly depending on different tasks
an application handles. This way, the agent can continu-

ously provide optimized settings for an application in its
unique scenario. We call this approach “hot-hardening”. In
particular, we define hot-hardening as the continuous and
transparent adaptation of security-related configuration set-
tings of an application depending on properties and charac-
teristics of its setup. Hot-hardening can be provided as a
scalable cloud service in a cloud computing scenario.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 shows the architec-
ture of the proposed agent and the different techniques it
uses. Section 4 explains the dynamic features of the agent
in detail. Section 5 evaluates the agent by investigating
different hot-hardening procedures, Section 6 discusses lim-
itations and Section 7 concludes.

2. RELATED WORK

In this section we list related work in the fields of hot-
patching and virtual machine introspection.

2.1 Hot-Patching of Applications

Hot-patching is an existing technique for transparently
updating a target application’s binary code, while our new
technique hot-hardening focuses on security settings of ap-
plications and not the executable binary code. Hot-patching
was developed in order to minimize application and server
down-times, as it applies patches to an application during
its run-time. In particular, this technique is of interest
when administrators want to deploy regularly released se-
curity patches. Huang et al. [12] developed an autonomous
hot patching framework which can automatically identify
the cause of a failure and patch the binary code of Web-
based applications. However, hot-patching can also be risky
since the system can run into an inconsistent state. To solve
the consistency issues, Ramaswamy et al. [16] proposed a
method for hot-patching ELF binaries which supports syn-
chronized global data. In their work, they use Patch Ob-
jects which are patches encoded as ELF relocatable object
files and which can be automatically created and applied to
a running process. Payer et al. [13] developed an update
system that provides hot-patching by integrating dynamic
patches with a sandbox based on dynamic binary transla-
tion. In a prototype implementation, they could patch 45 of
49 bugs on the Apache Web server at run-time.

2.2 Virtual Machine Introspection

Virtual machine introspection (VMI) allows to read and
write the memory of a target running virtual machine (VM)
from another privileged VM which is located on the same
physical server. This way, transparent security tools can
be developed [10, 15]. These tools are isolated from the
operating system of the target VM which they monitor. Ac-
cordingly, these tools are tamper-resistant since they can not
be manipulated or detected from the perspective of the tar-
get VM. VMI is the technique of timely and transparently
applying forensic methods on a target operating system’s
memory with the difference that the system is still running
and not terminated. Based on this technique, Baiardi et
al. [2] proposed an intrusion detection tool which merges
traditional host-based and network-based intrusion detec-
tion techniques with VMI. Fraser et al. [8] developed a secu-
rity tool which automatically identifies and repairs infected
kernels using various methods which include VMI. Payne et
al. [14] proposed security tools which actively monitor hooks

of VMs while these tools are isolated and tamper-resistant
in another trusted VM. Benniger et al. [4] used light-weight
introspection techniques based on para-virtualization in or-
der to efficiently and transparently detect malware in com-
mercial cloud computing environments. VMI can be used
to build security tools that passively monitor target VMs,
however, VMI can also be used to inject content into the op-
erating system’s memory of a VM and this way, for example,
enforce the execution of code [11].

In order to successfully use VMI, information about the
operation systems internals of the target VM is required.
This is the so called “semantic gap” — certain static memory
addresses depending on the used operating system need to
be known to be able to extract useful information from a
running VM. This introspection information is usually re-
trieved manually or assumed as being known. However,
there are several approaches for automatically bridging this
semantic gap. Dolan-Gavitt et al. [7] presented an approach
to retrieve the introspection information by automatically
analyzing dynamic traces of small programs running in the
target VMs. Yangchun Fu et al. [9] identified the required in-
trospection information using system wide instruction mon-
itoring.

In our work, we use fine-grained VMI to transparently
locate and modify security settings of applications which run
in VMs. In particular, we focus on networking applications.

3. HOT-HARDENING ARCHITECTURE

In this section we describe our techniques used to trans-
parently change settings of running applications, we intro-
duce application-dependent hot-hardening templates used
by our agent, and the ways in which settings are improved.

3.1 Hot-Hardening Procedure Overview

The agent runs in a separate agent-VM, which is a small
VM equipped with our software. The agent is privileged
and can access the hypervisor layer as well as all the mem-
ory addresses on the hardware component on which it runs.
The agent runs co-located with multiple user-VMs and can
periodically hot-harden the user-VMs and their applications
with our proposed techniques. An simplified overview of a
hot-hardening procedure can be seen in Figure 1.

+_

test and verify functionality
in isolated environment

Bl

deploy new settings
to isolated cloned VM

[[3]
analyze target setup and

compute custom-made settings

start

[4]

transparently deploy new
wait settings to original VM

Figure 1: Simplified overview of the steps in a hot-
hardening procedure performed by the agent.

In the first step, the agent discovers the operating system
of the target VM and its running applications. For each
operating system, there is a set of applications that the hot-
hardening agent can recognize and hot-harden. For sup-
ported applications, the agent analyzes the properties and
the status of the setup and computes custom-made settings

for that application. In the second step, the agent locates
and deploys the new settings to a clone of the target VM
in an isolated environment. This way, the settings can be
tested and the execution of the original target VM is not
disrupted. In the third step, the agent verifies the correct
execution of the application as it runs in the cloned VM;
and finally, in step four, it transparently deploys the new
settings to the original target VM. Because custom-made
settings can change over time, the agent repeats the hot-
hardening procedure in certain intervals.

Since retrieving custom-made settings and testing the set-
tings is a complex task requiring different strategies as well
as semantic knowledge about the settings and their char-
acteristics, we equip our agent with application-dependent
hot-hardening templates — one template for every supported
application. The agent can be equipped with multiple tem-
plates to support various applications. A template needs to
be manually created and defines properties of an applica-
tion and characteristics of its settings which are supported
for hot-hardening. For each supported setting, the template
can define two modules that are used by the agent: 1) to
retrieve a custom-made setting from a setup (get-modules)
and 2) to test a setting on a setup following a well-defined
strategy (test-modules). The modules retrieve and analyze
specific setting-dependent information from a setup.

3.2 Discovery and Hot-Hardening Templates

In first steps, the agent investigates which applications run
on a target user-VM by transparently analyzing the VM'’s
file system on the storage and open ports on the network
layer. For discovery, the agent can use third party tools like
Nmap! which offers a database of fingerprints of more than
2000 well-known services. The agent can also transparently
scan the volatile memory of the VM and use a database of
hashes of know applications to discover running applications.
Once an application was discovered and the agent owns a
hot-hardening template for this application, the agent initi-
ates a hot-hardening procedure. Figure 2 shows an example
template for an fictitious application called mysrv. It con-
tains the name and the version of mysrv used to match a
template to a discovered application. It defines the path to
mysrv’s configuration file located on the user-VM’s storage
which is required to retrieve mysrv’s currently deployed set-
tings. Not all settings of an application are suitable for
hot-hardening. Supported settings are manually selected
and defined in the template. Some applications may not
be suitable for hot-hardening because they do not have any
settings or they only use settings in their start-up phase
and do not read them again during run-time or they do not
store settings in the VM’s volatile memory. For the example
application mysrv, three different settings are supported:

e Setting s01 can be set in a range of 0 — 100, stepwise
changed by 10. The direction “low” is defined because
the security characteristics of mysrv increase the lower
s01 is set. There is a module get01.py available that
derives a custom-made setting for s01 from a target
setup. Furthermore, there is a module test01.py that
can test the effect of sO01 in a setup. In a real appli-
cation, this setting could be a limit on the number of
allowed requests.

"http://nmap.org

mysrv
1.1b
/etc/example.cfg
s01
0-100
10
low
get0l.py
test01.py

s02
0-2
1
low
test02.py

s03
1024-4096
128
high
get03.py
test03.py

s01|0|s03|*|s02
1,2,3
heap

Figure 2: Hot-hardening template of an application.

e Setting s02 can only be set in a range of 0 — 2, stepwise
changed by 1 where lower settings are beneficial for
security of mysrv. There is no module available to
derive a custom-made setting for s02 which means the
setting is independent from a setup. However its effect
can be tested with the module test02.py. In a real
application, this setting could be a string, for example
defining a log-level (high, medium, low), but stored in
volatile memory as an integer.

e Setting s03 has a possible range of 1024 — 4096 while
it can be stepwise changed by 128 and higher settings
are beneficial for security of mysrv. There is a module
get03.py that computes a custom-made setting for s03
and a module test03.py that can test its effect. In a
real application, this setting could be the length of a
cryptographic key.

In a hot-hardening procedure, the agent does not just set
the best possible (highest or lowest) setting. Instead, the
agent uses the get-modules to find the best setting for the
specific target setup in the allowed ranges defined by the
template. Additionally, the template defines an instruction
indicating how to generate a pattern which is used to lo-
cate the data structure that stores the currently deployed
settings in mysrv’s volatile memory. In this context, the
order of the settings in memory as well as the allowed con-
tent in-between them needs to be defined. In order to define
this instruction, manual investigations of the application’s
source code is required. Furthermore, the template defines
a memory address region in mysrv’s memory in which the
data structure of the settings is stored (heap) to accelerate
the localization procedure and the different steps required in
mysrv’s hot-hardening procedure. These steps are explained
in Section 3.4.

3.3 Isolated Setting Testing

Changing settings via VMI during an application’s run-
time can lead to interruptions in the application’s operation,
unexpected results and to misleading entries in log files. In
order to avoid these problems on the user-VM, the agent
clones the user-VM, deploys and tests settings on the clone.
Once better working settings could be found, the agent de-
ploys them on the original user-VM. Live cloning [17, 5] is
a modified live migration [6] process which creates a syn-
chronous replica of a target VM during its run-time. A new
VM-container is created and the VM’s memory is copied
while memory pages which were modified during the copy
process are again copied in multiple iterations until a certain
synchronization is reached. The VM'’s storage is not copied,
instead a copy-on-write snapshot is used (Figure 3).

live cloning
user-VM 01 > clone

agent-VM

multiple iterations
for synchronization

copy-on-write
snapshot

storage

shared hardware

Figure 3: The live cloning process triggered by the
agent to test new settings on the clone.

If the agent changes multiple different settings or settings
of different applications on the same user-VM, dependencies
of settings can play a role. For example, application A can
operate together with application B and changing a setting
of application A can increase their mutual workload while
changing a setting of application B decrease the amount of
workload application B can handle. In order to test new set-
tings and to detect potential unknown dependencies or any
other problems, the agent evaluates the effect of each new
setting by executing a setting dependent test-module. Each
test-module which tests the characteristics of a setting 7 re-
turns a numerical result R; that can deviate from the known
theoretically expected result Ry depending on the currently
deployed setting. If multiple settings are changed, the agent
first deploys the best settings as defined in the template and
tests the effects on the setup. If the results of the test of a
new setting deviates from its expected effect (R§ — R; > 0),
the agent stepwise reduces the setting according to the de-
fined steps in the template. In multiple rounds, the agent
evaluates the tests of all changed settings and tries to find
the best group of settings. This way, the agent can reveal if
changing a setting influences the effect of another setting.

It may happen that an application terminates during the
hot-hardening procedure. In this case, the agent creates a
new clone. Once the best working group of settings could
be found, the agent terminates the clone and finally deploys
the new tested settings on the original user-VM.

3.4 Transparent Setting Deployment Steps

Transparently changing settings on a running application
is facilitated by the underlying virtualization technologies
that allow the agent to use different transparent techniques

on a user-VM. First, the agent can use VMI to read and
modify a running application’s volatile memory. Second,
the agent can use forensic methods on the running VM’s
raw storage and this way retrieve information about stored
non-volatile data like files. Settings are automatically re-
placed by the agent unbeknownst from the perspective of the
user-VM and without the need to interrupt an application’s
operation. In particular, the agent deploys new settings by
executing up to three different steps which are illustrated in
Figure 4:

agent-VM user-VM 01 | eee | user-VM 02

@

replace
config file
on storage

® replace settings
in the data structure

replace config file
in page cache ®

storage memory

l shared hardware I

Figure 4: The agent can use three different steps
to transparently deploy new settings to a running
application on a user-VM.

1. The agent locates the configuration file of the appli-
cation by investigating the file system’s meta data on
the user-VM'’s raw storage. Once the corresponding
sectors are located, the sectors are overwritten and
the content is replaced with new content in the same
structure containing the new settings. Replacing the
configuration file on the storage prevents reuse of old
settings once the application is restarted or if it reloads
settings from its configuration file during run-time.

2. The agent tries to locate and replace a cached copy
of the application’s configuration file in the operating
system’s page cache with the new content. The page
cache helps applications to retrieve stored data faster
by keeping recently requested data in memory. Re-
placing potentially cached content of the configuration
file prevents reuse of old settings.

3. The agent locates and replaces the currently used con-
figuration settings in the application’s volatile memory.
To reach this goal, data structure alignment and en-
dianness of the settings need to be considered. There
are different ways in which an application can process
a configuration file and store its settings in memory,
depending on the programmed data structure and on
the used data types. Often, settings are summarized
and stored in a struct data type, sometimes settings
are stored independently. However, sometimes settings
are not stored in memory and read from the file each
time they are required. In order to locate the settings
in memory, the agent uses the < instruction > block
from the template to generate a pattern and the target
memory region defined in the template.

Sometimes, depending on the target application, only steps
1 and 2 are required, because the application does not store
settings in memory. Sometimes only step 1 is required, be-
cause there is no page cache as well as there are no settings in
memory. Sometimes only step 3 is required, because there is
no configuration file but there are settings in memory fetched
from other sources such as system variables or command line
arguments. The template defines which steps are required
for the application.

4. DYNAMIC CHILD ADAPTATION (DCA)

Up to this stage, the agent can transparently change set-
tings, test the new settings in an isolated environment (cloned
user-VM) and finally deploy them on a user-VM. In order
to define the semantics of settings and allow the agent to
work autonomously, we introduced application-dependent
templates. Furthermore, the proposed agent uses setting-
depending modules to retrieve a custom-made setting by
analyzing a target setup and to test the effects of a new
setting. According to Figure 1 the agent can periodically
repeat this hot-hardening procedure on the same user-VM
and this way adapt settings which may become suboptimal
over time since the setup or the scenario can change.

However, sometimes it is beneficial to allow the agent to
dynamically change settings depending on events. In this
context, an event can be a new connection or a new task
the application handles. Often, an application creates tem-
porary child processes to handle different tasks separately,
for example it creates a new child process per new network
connection. Sometimes, an application also assigns the data
structure of its settings to the child processes or the work-
flow of the child processes can be adapted by temporary
changing the stored settings of the main process for a very
short-time during child process creation. This allows the
agent to modify the settings of new child processes sepa-
rately in the volatile memory. This way, the agent can de-
ploy different settings for each new child process depending
on certain events or properties.

We call this fine-grained and dynamic hot-hardening pro-
cedure Dynamic Child Adaptation (DCA). In particular, a
property of a child process, for example of the connection
it processes, can lead to an adaptation of the child’s set-
tings. If an application has been hot-hardened once, the
agent can continuously monitor the user-VM and adapt cer-
tain settings of the corresponding child processes. As an
illustrative example, we extend the hot-hardening template
of mysrv which now additionally defines for which settings
DCA is supported and which properties lead to which adap-
tations (c.f. <dca> tags in Figure 5). The template allows
the agent to use DCA for the two settings s01 and s03. Once
a child process handles a connection from the own system,
setting s01 is set to 100 for the child. Once a child pro-
cess handles a connection from the same sub net, setting
s03 is set to 1024 for the child. This way, security settings
can be relaxed under certain circumstances in order to in-
crease usability or security characteristics can be dynami-
cally amplified. Furthermore, in this case, the settings are
directly deployed on the user-VM without creating and test-
ing them on a clone first. However, DCA is only supported
after the application has already been hot-hardened, which
means changing settings was already tested. The DCA pro-
cedure which the agent performs to adapt child processes is
illustrated in Figure 6 in more detail. First, a new incoming

mysrv
1.1b
/etc/example.cfg
s01
0-100
10
low
get0l.py
test01.py

127.0.0.1
100

s03
1024-4096
128
high
get03.py
test03.py

192.168.0.0/24
1024

Figure 5: Extensions to mysrv’s hot-hardening tem-
plate in order to support DCA for s01 and s03.

connection is detected and analyzed by the agent before it
reaches the user-VM. The agent retrieves the source IP ad-
dress and other information about the new connection. This
is possible since communication is tunneled through the vir-
tualized bridge of the hypervisor. If the properties of the new
connection match a DCA event definition in the extended
template, the connection is delayed until the settings of the
application are adapted. After adaptation, the connection
is allowed to proceed and the application now creates a spe-
cially adapted child process. Once the child was created, the
agent immediately reverts the settings in the parent appli-
cation back to the custom-made settings which are effective
for other clients.

new incoming connection connection
connection is delayed is established
—_— >—>
A
child child
not created created
hot-hardening
procedure
Y N .
revert

Figure 6: Steps in the Dynamic Child Adaptation
(DCA) hot-hardening procedure in detail.

S. EVALUATION

In the evaluation, we investigate hot-hardening applied to
popular applications and analyze the results in detail. We
use a Xen [3] server with a Quad CPU (2.67 GHz) and 8
GB memory and a user-VM with 4 GB memory. Both run
Ubuntu Linux 12.04 64-Bit.

5.1 Example: Apache2

First, we investigate a hot-hardening procedure for the
Apache2 Web server 2.2. Our Apache2 Web server is a
production system hosting our Web page and giving access
to a regularly used SVN repository. Without considering
any Apache2 extensions, we identified 7 settings of the ap-
plication which are related to security and which are suit-
able for hot-hardening. Apache2’s configuration file is lo-
cated in /etc/apache2/apache2.conf. The settings are stored
in Apache2’s volatile memory as a struct data type called
server_rec defined in the source code in include/httpd.h:

struct server_rec {

/** Timeout, before we give up */
apr_interval_time_t timeout;

/** Interval we will wait for another request */
apr_interval_time_t keep_alive_timeout;

/** Maximum requests per connection */

int keep_alive_max;

};

By default, Apache2 handles new connections in child pro-
cesses which maintain an own struct of the settings. This
means that DCA is applicable.

5.1.1 Apache2’s Hot-Hardening Template

A fragment of the hot-hardening template for Apache2 can
be seen in Figure 7. Seven different settings are supported.
Their effects mitigate Brute-Force attacks, prevent malicious
tools scanning for vulnerabilities and misconfiguration and
avoid Denial-of-Service (DoS) attacks and the execution of
exploits (for example based on large or unusual input). The
supported settings are briefly explained in the following:

e 501 defines the log level (0—7) and is originally a string
(emerg, alert, crit, ..., info, debug). The template lim-
its the setting to seven levels 0 — 6 (no debug mode)
which can be changed stepwise by 1 while 6 logs the
most (info). Logging more details increases Apache2’s
security characteristics.

e 502 defines the time Apache2 waits to receive a request
from a new connection before terminating it. The tem-
plate defines a range of 10 — 300 seconds for s02 which
can be stepwise changed by 10. A low setting increases
the security characteristics of Apache2.

e 503 defines the maximum number of requests allowed
during a persistent connection before Apache2 termi-
nates it. The template defines a range of 10 — 100 for
s03 that can be stepwise changed by 2, the lower it is
set the better the security characteristics are.

e 504 defines the time for which a connection is main-
tained for a next request. The template defines a range
of 2—30 seconds, a lower value is beneficial for security.

e 505 defines a limit for the size of HTTP request lines
in bytes. The template defines a range of 1024 — 8192
while low is assumed as being better.

e s06 limits the size of request header fields in bytes and
ranges between 1024 — 8192.

e s07 limits the number of header fields in requests. It
can be set to a range of 10 — 100.

s01
0-6
1
high
test01.py

192.168.0.0/24

s06
1024-8192
512
low
get06.py
test06.py

192.168.0.0/24
8192

s01]*|s02|0|s04|0|s03|.|s05]|0|s06|0|s07
1,2,3
anonymous

Figure 7: The hot-hardening template of Apache2.

For s01 no get-module is available since this setting is as-
sumed as being independent from a setup. For the settings
s02, ..., s07, get-modules are available which can retrieve
a custom-made setting from a setup (see Section 5.1.2).
The effect of each setting can be tested with a setting-
dependent test. The template also defines an instruction
how to generate a pattern in order to locate the currently
deployed settings (derived from the configuration file) in
Apache2’s volatile memory. In this context, the order of
the stored settings and the content in-between them (for
example other settings) is given. This information was de-
rived from the source code. The template defines which hot-
hardening steps are required (Section 3.4) and the memory
region in which the data structure of the settings is stored.
In this case, it is stored in anonymous mappings created
by mmap() with the MAP_ANONYMOUS flag. Analysis of
the source code showed that a child process maintains the
data structure. Accordingly, the template allows dynamic
child adaptation (DCA), but restricted to the settings s01
and s06. Setting s01 is dynamically set to 1 which means
less events need to be logged if a client connects from our
sub network. Setting s06 is set to the maximum of 8192
for clients connecting from our private sub network which
allows them to perform longer requests with more headers.

5.1.2 Apache2’s Hot-Hardening Modules

The template specifies six get-modules to retrieve custom-
made settings for s2, ..., s7 from our setup. The computed
settings depend on various properties, for example the work-
load of our system, other installed applications or the kind
of data our Web server provides. Our Apache2 server hosts

30000 9000,
10° 8000
o | = - o 7000
= =]
g 8 20000 8 6000
310 3 2
£ - - c < 5000
@ - -] ()
8 8 4000
o . o = o
Sl & - 5100000 ™ 5 3000
5 10 -t e - 3 — g
- - " - ° - 2000
- - - - - 5
- — - o= ™ 1000
10° . . . L d 9 - 0 L H
0 10 20 30 40 50 0 5 10 15 20 25 0 500 1000 1500 2000 2500

(a) Requests per connection.

(b) Time between requests [s].

(c) Length of requests [bytes].

Figure 8: Distributions of different events extracted from our setup by the get-modules which use this data

to derive a custom-made setting for s03, s04 and s05 (marked as dotted line).

a Web page and a repository (SVN) that can be remotely
used by employees who mostly connect from within our pri-
vate network. This is a special property of our setup which
actually leads to a frequent occurrence of multiple GET or
PUT requests in a row caused by users rapidly synchronizing
SVN projects consisting of multiple files. The get-modules
compute an average value of events occurring on the setup
which are affected by a setting or analyze the distribution of
events based on analysis of log files or network traffic of the
application. The get-modules select the next best possible
value as custom-made setting according to the definitions in
the template.

e get02.py analyzes network traffic and the timings of
new connections and their first request. In our setup,
the mean is 2.89+4.01 seconds which leads to a custom-
made setting of 10 seconds (default is 300).

e get03.py analyzes network traffic and investigates the
amount of requests performed per connection (Fig-
ure 8a). In our setup, there is a second peak in the
figure caused by users synchronizing multiple files with
our SVN repository. This is a special property of our
setup and leads to a custom-made setting for the limit
of requests per connection of 42 (default is 100).

e get04.py analyzes timings between multiple request on
a persistent connection (Figure 8b). It calculates a
custom-made setting of 18 seconds for our setup (de-
fault is 30).

e get05.py analyzes the length of requests retrieved from
the Apache2 access log file (Figure 8c). It calculates a
custom-made setting of 1536 bytes for our setup (de-
fault is 8190).

e get06.py analyzes the length of the headers in requests
from the Apache2 log file. It calculates a custom-made
setting of 1024 bytes for our setup (default is 8190).

e get(07.py analyzes the numbers of fields used in headers
in requests. It calculates a custom-made setting of 30
(default is 100).

The get-modules consider the special properties of our
setup and derive custom-made settings for Apache2 which
increase security while minimally affecting the work-flow.
The test-modules actively perform tests on the setup. Each

test-module analyzes the effect of a currently deployed set-
ting. For example, they establish new connections to Apache2
to verify expected timeouts, limits or other characteristics
caused by the settings. In this context, the test-module for
s01 analyzes the information that is logged while it actively
performs requests, other test-modules analyze the timeouts
for s02 and s04 while maintaining a connection and the mod-
ule for s03 tests how many requests are possible on a persis-
tent connection. The modules which test s05, s06 and s07
perform different kinds of requests (length and header fields)
to evaluate the corresponding setting.

5.1.3 Apache2’s Hot-Hardening Procedure

In this section, we investigate the hot-hardening proce-
dure in detail after the custom-made settings have been com-
puted. First, the agent clones the user-VM before applying
and testing any new settings. In our setup, live cloning
of a running user-VM with 4 GB of memory into a syn-
chronous replica can be performed in 17 £ 2 seconds on av-
erage. This timing strongly depends on the current workload
of the VM. In order to reduce the time required for cloning,
prepared clones can be maintained or they can be created
using copy-on-write (CoW) methods for both memory and
storage which enables the creation of a clone in the range
of milliseconds [17]. In the first step, the agent identifies
the currently deployed settings by locating and reading the
corresponding sectors of Apache2’s configuration file on the
clone’s raw storage. In general, struct members are stored
in the order they are declared (C99 standard) and if neces-
sary, padding is added before each struct member to ensure
correct alignment. Setting s02 and s04 are stored as long
data types representing microseconds. The other settings
are stored as integer data types. Furthermore, the order of
the byte representation of s02, s04, s05 and s06 has to be
adapted according to Little-Endianness. With the help of
the current settings and the instruction defined in the tem-
plate, the agent generates a pattern to locate the deployed
settings in Apache2’s memory. The generated characteristic
pattern P in hexadecimal representation is

P = 04(.)*700a3e111(0)*780c3c901 ... felf(0)*764

The pattern allows padding with zeros between successive
settings and arbitrary content between settings which have
other settings in-between.

Retrieving custom-made settings from our setup using the
seven different get-modules takes 121 4 4 seconds based on

an anonymized network capture of 62 MB and a log file of
24 MB. Finding the corresponding sectors of the configura-
tion file on the storage and replacing the content with new
content takes only 0.3 4+ 0.1 seconds. Locating and replac-
ing the content of the cached configuration file in the Linux
page cache takes 5.2 + 0.9 seconds. Generating the pattern
according to the instructions, locating the data structure of
the settings in Apache2’s memory and replacing the current
settings with new settings takes 2.4+ 0.1 seconds. Once new
settings are deployed, the agent executes the setting depen-
dent tests and analyzed the results in order to reveal unex-
pected deviations. Evaluating the seven tests takes 46 + 8
seconds. Finally, a full hot-hardening procedure for Apache2
takes around 3 minutes in our setup without any user inter-
action. This is a good result considering that the agent
performs deep analysis on network traffic and log files and
that the agent needs to wait during executing test-modules
in order to realistically verify timeouts.

For DCA, no configuration files need to be replaced. The
settings s01 and s03 are dynamically hot-hardened. Hot-
hardening of a child once the triggering properties of a new
client could be detected takes only 2.1 4+ 0.1 seconds.

5.1.4 Extension: Apache2 and PHP5

Apache2 usually runs in combination with several exten-
sions. In this section, we introduce a template for PHP5 hot-
hardening and let the agent hot-harden Apache2 and PHP5
on the same setup. Interesting security-related settings of
PHPS5 are stored in a struct data type called php_core_globals
defined in the source code in the file php_globals.h:

struct _php_core_globals {

long memory_limit;
long max_input_time;

};

The template for PHP5 (no Figure shown) provides five
different settings which are related to security and supported
by the agent:

e 501 defines the maximum amount of memory (MB) a
PHP script can consume (default 128MB).

e s02 defines the maximum time a PHP script can spend
parsing a request (default 60 seconds).

e 503 defines the maximum size (MB) for uploads (de-
fault 2MB).

e 504 defines the maximum level of nested requests, for
example of an array[][][] (default 64).

e s05 defines the maximum number of GET and POST
input variables (default 1000).

The get-module of s02 analyses the timings between re-
quests for PHP scripts and the resulting replies sent from
the server. The get-module of s03 analyzes the Apache2 log
for uploads and their sizes. The get-modules of s04 and s05
analyze the PHP code found in Apache2’s public directory
(default /var/www/) for definitions of nested variables and
their depth and the amount of variables accepted by scripts.

The agent retrieves the currently deployed settings from
the configuration file /etc/php5/apache2/php.ini and gen-
erates a pattern according to the instruction given in the

PHP5 template while taking into account data alignment
and endianness. The settings are stored in the anonymously
mapped memory region of libphp5.so used by Apache2. The
agent uses the get-modules to derive new custom-made set-
tings from our setup. The agent uses the test-modules to
evaluate the new settings, in this case also by creating and
inserting PHP code on the clone. To reach this goal, the
agent creates specific PHP files in the public directory of
Apache2 and triggers the execution in order to evaluate the
PHP characteristics. Execution of the modules could be per-
formed in 104 43 seconds and insertion of new custom-made
settings to PHP5 running in the clone while also replacing
the stored configuration file and the file in the page cache
could be performed in 8 + 1 seconds.

In the first step, Apache2 is hot-hardened and the set-
ting dependent tests are evaluated for both Apache2 and
PHPS5 according to the agent’s testing strategy defined in
Section 3.3. In the second step, the agent hot-hardens PHP5
and again evaluates the tests for both applications. Since
the agent evaluates two templates, dependencies can come
into play. For example, during Apache2’s hot-hardening,
the evaluation of PHP5 test03.py detected a high deviation
between the expected characteristics and the actually mea-
sured characteristics on our setup. PHP5 test03.py evalu-
ates the maximum allowed size for uploads according to the
PHP5 setting s03 which defines 2 MB in our setup before
hot-hardening. After the agent changed Apache2 setting s02
which defines the timeout for requests to the new custom-
made setting of 10 seconds, the PHP5 test03.py could not
upload a file of size 2 MB since the new timeout was too
low for the upload. According to the proposed strategy,
the agent automatically revoked Apache2 setting s02 and
deployed the next possible step defined in Apache2’s tem-
plate, which is 20 seconds. However, identifying a depen-
dency between Apache2 setting s02 and PHP5 setting s03
caused two additional testing rounds and which led to a
hot-hardening time for Apache2 of 8 minutes instead of 3
minutes. Dependencies like this can occur when applica-
tions share resources or somehow work together like in this
scenario. However, with the help of the agent’s strategy and
well-defined templates, dependencies can be revealed and
settings can be successfully adapted. Finally, hot-hardening
of Apache2 and PHP5 takes around 11 minutes in our setup.

5.2 Example: OpenSSH2

Finally, we investigate hot-hardening of OpenSSH2 in de-
tail. Our OpenSSH2 server is a production system having
several users who log in regularly, also using SCP and sFTP.

5.2.1 OpenSSH2’s Hot-Hardening Template

The settings of OpenSSH2 are stored in a struct data type
called ServerOptions defined in servconf.h. The template for
OpenSSH2 can be partially seen in Figure 9 and supports 8
different security settings. The supported settings are briefly
explained in the following:

e s01: Size of the key (protocol 1, default 768 bits).

e s02: Time after which the key is regenerated (protocol
1) in seconds (default 3600 seconds).

e 503: Different ciphers which are allowed (protocol 2)
(e.g. aes128-cbc, blowfish-cbe, ...). The template de-
fines three groups classified by strength.

s04
5-120
5
low
get04.py
test04.py

s05
1-6
1
low
get05.py
test05.py

s06
0-1
1
low
get06.py

192.168.1.7

Figure 9: The template of OpenSSH2.

e s04: The server disconnects after this defined time if
the client has not logged in (default 120 seconds).

e s05: Maximum number of authentication attempts al-
lowed before the connection is terminated (default 6).

e s06: Specifies if host-based authentication (together
with public key) is allowed (default no).

e s07: Specifies if forwarding of X11 is allowed (default
no).

e s08: Specifies if root login is allowed (default no).

The template defines DCA for the setting s06, s07 and s08.
Host-based authentication is only enabled for the back-up
server (192.168.1.7) that automatically transfers and stores
new data daily. This is done by DCA. Accordingly, no other
client is allowed to use host-based authentication. Forward-
ing of X11 is allowed only for clients connecting from our
private network and remote root login only allowed for one
host which is used by the administrator. The OpenSSH2
server is dynamically hot-hardened which allows different
settings under different circumstances which normally could
only be statically deployed for all clients.

5.2.2 OpenSSH2’s Hot-Hardening Modules

The get-modules and their results in our specific setup are
briefly explain in this section:

e get0l.py investigates if protocol 1 is supported and
which key size is used by default. It then suggests
to use highest setting (2048).

e get02.py and get03.py investigate the status of the
setup and propose 300 for s02 and 3 for s03, which
means only the strongest cipher algorithms are sup-
ported.

e get04.py investigates a network capture and the au-
thentication log file and analyzes the timings between
the establishment of a new connection and a success-
ful login. In our setup 7.31 + 2.76 which leads to a
suggested custom-made setting of 10.

e get05.py analyzes the login tries users need to success-
fully log-in. In our setup 1.11 4+ 0.39 which leads to a
custom-made value of 2.

The get-modules get06.py, get07.py and get08.py investi-
gate the status and suggest the best setting if feasible.

5.2.3 OpenSSH2’s Hot-Hardening Procedure

In our test-runs, the agent clones the user-VM in 16 + 4
seconds and evaluates the get-modules to retrieves custom-
made settings in 47 £+ 5 seconds Finding the sectors of the
OpenSSH2 configuration file and replacing the content with
new content takes 0.2 4+ 0.3 seconds. Locating and replac-
ing the file’s content in the Linux page cache takes 5.4 £0.8
seconds. Generating the pattern and locating the deployed
settings in OpenSSH2’s volatile memory and replacing the
current settings with new settings takes 1.9 4= 0.2 seconds.
The testing phase takes only 31.2 4 2.2 seconds. Finally, the
hot-hardening procedure of OpenSSH2 could be automat-
ically performed by the agent in around 1 minute and 42
seconds.

After the main hot-hardening procedure is finished, DCA
is enabled, which means the agent continuously monitors the
user-VM and dynamically adapts the settings s06, s07 and
s08 for new child processes depending on properties of the
IP address of a new client. DCA of OpenSSH2 can be per-
formed by the agent in 2.1 £0.2 seconds which means a new
TCP connection to the SSH port for which DCA is allowed
needs only to be delayed for that period of time until it can
proceed. Other connections for which DCA is not enabled
are only delayed in the range of milliseconds. In our scenario,
DCA enables specific settings for our backup server which
now can log-in via host-based authentication while this op-
tion is disabled for all other clients. In the same manner,
X11 forwarding and remote root login is only allowed for
specific clients while maintaining stronger security settings
for the others. DCA allows to define the utilization of stan-
dard settings on a more fine-grained way and can greatly
increase security as well as usability.

6. LIMITATIONS

The agent can not hot-harden every application. Some
applications do not store configuration settings in memory
or they do not provide any configuration settings. Only ap-
plications which store settings in memory and which also
regularly read and use these settings during their operation
are suitable. Some applications only adapt their operation
during the start and do not read the settings again, they use
external resources or there is a risk of creating race condi-
tions. Additionally, not all security settings of an application
are suitable for hot-hardening — they need to be well-chosen
and defined in the template. Furthermore, there is no guar-
antee that unknown dependencies of different applications

can be detected in every scenario. The templates need to be
well-defined and the agent should only hot-harden settings
which effects can be reliably estimated. For DCA, it is only
applicable if the application assigns separate settings to the
child processes or adapts their operation based on settings.

7. CONCLUSION

Applying optimized security settings for different applica-
tions is a difficult and time-consuming task. In this work,
we presented an autonomous agent that can periodically im-
prove the security settings of different applications running
on virtual servers which we called hot-hardening. The pro-
posed agent only uses transparent techniques based on virtu-
alization technologies in order to update configuration files
and data structures that store settings in an application’s
memory. During setting selection and improvement, the
operation of an application is not disturbed as well as no
user interaction is required. The agent can support applica-
tions for which a template is defined and for which setting-
dependent modules are available. Modifying the source code
of an application is not required. The agent uses setting-
dependent modules to retrieve custom-made settings from a
specific setup and setting-dependent tests in a testing strat-
egy to verify correct functionality. Since optimal settings
can change over time the agent can periodically analyze the
characteristics of a setup and periodically adapt the secu-
rity settings. In order to support different setting for differ-
ent tasks, we introduced Dynamic Child Adaptation (DCA)
which enables the agent to rapidly deploy specific settings
for new child processes depending on properties of the task
the child handles. In an evaluation, we showed that the
agent can hot-harden three different popular applications
(Apache2, PHP5 and OpenSSH2) in feasible time and au-
tomatically improve their security characteristics. Code re-
lated to this publication will be made available online at
http://caslab.eng.yale.edu/code.

Acknowledgments

The work presented in this paper was performed in the
context of the Software-Cluster project SINNODIUM (www.
software-cluster.org). It was funded by the German Fed-
eral Ministry of Education and Research (BMBF) under
grant no. "01C12S01V”.

8. REFERENCES

[1] #PeerJacking - SSL Ecosystem Attacks Against
Online Commerce.
http://www.unrest.ca/peerjacking.

[2] F. Baiardi and D. Sgandurra. Building Trustworthy
Intrusion Detection through VM Introspection. In
Proceedings of the Third International Symposium on
Information Assurance and Security (IAS), pages
209-214, 2007.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), pages 164-177, 2003.

[4] C. Benninger, S. Neville, Y. Yazir, C. Matthews, and
Y. Coady. Maitland: Lighter-weight vm introspection
to support cyber-security in the cloud. In Proceedings

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

of the 5th IEEE International Conference on Cloud
Computing (CLOUD), pages 471-478, 2012.

S. Biedermann and E. Tews. How to enable Live
Cloning of Virtual Machines using the Xen
Hypervisor. Technical report, 2013.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the Symposium
on Networked Systems Design € Implementation,
pages 273-286, 2005.

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Proceedings of the
IEEE Symposium on Security and Privacy (SEP),
pages 297-312, 2011.

T. Fraser, M. Evenson, and W. Arbaugh. Vici: Virtual
machine introspection for cognitive immunity. In
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pages 87-96, 2008.
Y. Fu and Z. Lin. Space Traveling across VM:
Automatically Bridging the Semantic Gap in Virtual
Machine Introspection via Online Kernel Data
Redirection. In Proceedings of the IEEE Symposium
on Security and Privacy (S€P), pages 586-600, 2012.
T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the Network and
Distributed Systems Security Symposium (NDSS),
pages 191-206, 2003.

Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process
implanting: A new active introspection framework for
virtualization. In Proceedings of the 30th IEEE
Symposium on Reliable Distributed Systems (SRDS),
pages 147-156, 2011.

H. Huang, W.-T. Tsai, and Y. Chen. Autonomous hot
patching for web-based applications. In Proceedings of
the 29th Annual International Computer Software and
Applications Conference (COMPSAC), volume 2,
pages 51-56, 2005.

M. Payer and T. Gross. Hot-patching a web server: A
case study of asap code repair. In Proceedings of the
11th Annual International Conference on Privacy,
Security and Trust (PST), pages 143-150, 2013.

B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:
An architecture for secure active monitoring using
virtualization. In Proceedings of the IEEE Symposium
on Security and Privacy (S€P), pages 233-247, 2008.
B. Payne, M. de Carbone, and W. Lee. Secure and
flexible monitoring of virtual machines. In Proceedings
of the Annual Computer Security Applications
Conference (ACSAC), pages 385-397, 2007.

A. Ramaswamy, S. Bratus, S. Smith, and M. Locasto.
Katana: A Hot Patching Framework for ELF
Executables. In Proceedings of the International
Conference on Availability, Reliability, and Security
(ARES), pages 507-512, 2010.

Y. Sun, Y. Luo, X. Wang, Z. Wang, B. Zhang,

H. Chen, and X. Li. Fast Live Cloning of Virtual
Machine Based on Xen. In Proceedings of the 11th
IEEE International Conference on High Performance
Computing and Communications (HPCC), pages
392-399, 2009.

